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Abstract
Cannabinoid 1 receptor and glutamatergic dysfunction have both been implicated in the pathophysiology of schizophrenia. 
However, it remains unclear if cannabinoid 1 receptor alterations shown in drug-naïve/free patients with first episode psy-
chosis may be linked to glutamatergic alterations in the illness. We aimed to investigate glutamate levels and cannabinoid 1 
receptor levels in the same region in patients with first episode psychosis. Forty volunteers (20 healthy volunteers, 20 drug-
naïve/free patients with first episode psychosis diagnosed with schizophrenia/schizoaffective disorder) were included in the 
study. Glutamate levels were measured using proton magnetic resonance spectroscopy. CB1R availability was indexed using 
the distribution volume (VT (ml/cm3)) of [11C]MePPEP using arterial blood sampling. There were no significant associations 
between ACC CB1R levels and ACC glutamate levels in controls (R = − 0.24, p = 0.32) or patients (R = − 0.10, p = 0.25). 
However, ACC glutamate levels were negatively associated with CB1R availability in the striatum (R = − 0.50, p = 0.02) and 
hippocampus (R = − 0.50, p = 0.042) in controls, but these associations were not observed in patients (p > 0.05). Our find-
ings extend our previous work in an overlapping sample to show, for the first time as far as we’re aware, that cannabinoid 1 
receptor alterations in the anterior cingulate cortex are shown in the absence of glutamatergic dysfunction in the same region, 
and indicate potential interactions between glutamatergic signalling in the anterior cingulate cortex and the endocannabinoid 
system in the striatum and hippocampus.
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Introduction

Schizophrenia is ranked as one of the most disabling health 
conditions [1], with annual costs ranging between 94 million 
to 102 billion dollars across a range of countries [2]. While 
current pharmacological treatments predominately block 
the D2 dopamine receptor [3], they have limited efficacy 
in reducing symptom severity in 30% of patients [4, 5] and 
they fail to improve cognitive deficits [6, 7]. In view of these 
limitations, further work is needed to identify therapeutic 
mechanisms and biomarkers that may be useful for target-
ing both psychotic and cognitive symptoms in schizophrenia 
[8–10].

The pathophysiology of schizophrenia has been postu-
lated to involve glutamatergic dysfunction [11, 12], since 
N-methyl-D-aspartate receptor (NMDAR) antagonists 
induce positive and negative symptoms and cognitive 
impairments in healthy controls, mimicking the pheno-
type of schizophrenia [13–15]. In particular, low doses of 
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ketamine, an NMDAR antagonist, induce psychotic symp-
toms, cognitive impairments, and increase anterior cingu-
late cortex (ACC) glutamate levels in healthy volunteers 
[16]. While this finding was taken to suggest that altered 
ACC glutamate levels may be associated with the induc-
tion of psychotic symptoms, other studies have shown that 
ketamine induces psychotic symptoms in the absence of 
any change in ACC glutamate levels [17, 18].

Glutamate levels can be measured in vivo using proton 
magnetic resonance spectroscopy (1H-MRS). Discrep-
ant findings have been reported in chronic patients taking 
antipsychotic medication including reports of no differ-
ences [19] and decreased glutamate levels in the anterior 
cingulate cortex (ACC) [20, 21]. In contrast, patients with 
first episode psychosis who are not taking antipsychotics 
have largely been shown to have no differences in ACC 
glutamate levels relative to healthy volunteers [22–25], 
with the exception of one study reporting decreased ACC 
glutamate levels [26]. Despite the absence of group differ-
ences in ACC glutamate levels in drug-free patients with 
first episode psychosis, ACC glutamate levels have been 
shown to be negatively associated with symptom severity 
and striatal dopamine synthesis capacity [27].

Excitatory and inhibitory synaptic transmission is regu-
lated by the cannabinoid 1 receptor (CB1R), a G-protein-
coupled receptor distributed on pre-synaptic nerve termi-
nals of glutamate and GABA interneurons throughout the 
cortex, hippocampus, and striatum [28]. CB1R activation 
transiently suppresses neurotransmitter release by the inhi-
bition of N-, P-, and Q-type calcium channel openings 
and through activation of inwardly rectifying potassium 
channels on the pre-synaptic neuron [29–31] and adjacent 
neurons containing CB1R within a within < 20 μm radius 
[29, 32]. However, these effects can be blocked by CB1R 
antagonists or the genetic ablation of the CB1R [33].

Since CB1R activation inhibits synaptic transmission 
at both glutamate and GABA neurons in the ACC, CB1R 
activation regulates both excitatory and inhibitory synaptic 
transmission. In particular, CB1R activation at GABAergic 
interneurons in the ACC disinhibits downstream synaptic 
transmission [34], whereas CB1R activation on glutamate 
neurons in the ACC inhibits glutamate release [35]. These 
findings indicate that ACC CB1R regulate both excitatory 
and inhibitory synaptic transmission.

Previous literature has shown that CB1R agonists modu-
late glutamate release in rodents [36, 37] and humans [38]. 
Moreover, mice with CB1R deletions on cortical glutamate 
neurons exhibit enhanced excitability on cortical gluta-
mate neurons leading to stronger seizures following the 
kainic acid induced excitation in hippocampal pyramidal 
neurons as well as the significant loss of glutamatergic 
neurons [39, 40].

Since we recently showed that drug-free patients with 
schizophrenia have lower levels of CB1R in the ACC, and 
that greater reductions were linked to greater cognitive 
deficits [41], we specifically aimed to investigate whether 
CB1R alterations in the ACC may be associated with glu-
tamatergic alterations in the ACC in the same drug-free 
patients. We hypothesized that ACC CB1R levels would be 
associated with ACC glutamate levels. We also aimed to 
conduct exploratory analyses to investigate the association 
between ACC glutamate levels and CB1 receptors in other 
brain regions where CB1R levels are altered in schizophre-
nia [41–43]. We also aimed to investigate the association 
between ACC glutamate levels, symptom severity, and 
cognitive functioning, as determined by the Wechsler Digit 
Symbol Coding test [44] based on evidence that it is highly 
corelated with total cognitive deficits in first episode psy-
chosis [45].

Methods

Ethics statement

Relevant ethical approvals were obtained from the Camber-
well St. Giles Research Ethics Committee (14/LO/1289). 
Informed written consent was obtained from all subjects 
prior to participation.

Participants

A total of 40 volunteers (20 healthy volunteers and 20 drug-
free patients with first episode psychosis) were recruited. All 
patients were recruited from early intervention services for 
psychosis in London, United Kingdom. Age (age ± 3 years) 
and sex-matched healthy volunteers were recruited via local 
advertising.

Inclusion/exclusion criteria

First episode psychosis patients met the following inclusion 
criteria: (1) diagnosis of a psychotic disorder as determined 
by the ICD-10; (2) antipsychotic naïve or antipsychotic free 
for at least 6 months, as determined by medical records and 
self-report; (3) no current use of any concurrent pharma-
cological treatments as determined by medical records and 
self-report (e.g., benzodiazepines, antidepressants etc.); (4) 
illness duration of less than 3 years as determined by medi-
cal records and self-report.

Healthy volunteers met the additional inclusion criteria 
including: (1) no current or lifetime history of an Axis-I 
disorder as determined by the Structured Clinical Interview 
for DSM-IV-TR (SCID-I/P) [46] and (2) no family history 
of an Axis-I disorder in first- and second-degree relatives 
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as determined by the Family Inventory for Genetics stud-
ies (FIGS) [47]. Exclusion criteria for all volunteers: (1) 
reported current use of any recreational substances within 
the last month; (2) screened positive on a urine toxicology 
test that can detect THC metabolite THCCOOH for up to 
30 days (50 ng/ml cut off) (SureScreen, Diagnostics; 50 ng/
ml cut off); (3) screened positive on a multi-panel drug 
screen detecting the following substances: amphetamine 
(300 ng/ml cut off), cocaine (150 ng/ml cut off), ketamine 
(1000 ng/ml cut off), methamphetamine (300 ng/ml cut off), 
and opiates (2000 ng/ml cut off) (SureScreen Diagnostics).

Volunteers were aged 18–35 and were able to give 
informed, written consent. Volunteers were excluded if they 
had: (1) a history of a head injury leading to loss of con-
sciousness, (2) personal or family history of neurological 
or physical health problems, (3) contraindications to MRI 
safety including head trauma, pregnancy, the presence of 
metal plates, pins, bridges, or dentures; or 4) current history 
of substance use or dependence as determined by the Struc-
tured Clinical Interview for DSM-IV-TR (SCID-I/P) [46].

Demographics

Age, sex, ethnicity, and years of education were recorded.

Clinical measures

Clinical symptom severity was determined by trained staff 
using the Positive and Negative Syndrome scale (PANSS) 
[48]. Social and occupational functioning was measured 
using the Global Assessment of Functioning (GAF) [49]. 
Healthy volunteers were screened for personal and family 
history of mental health problems using SCID-I/P [46] and 
FIGS [47]. Cognition was measured using the Wechsler 
Digit Symbol Coding test [44] based on evidence that it is 
highly corelated with total cognitive deficits in first episode 
psychosis [45].

Neuroimaging

Positron emission tomography

CB1R-selective radiotracer, [11C]MePPEP, was used to 
investigate the distribution volume of the cannabinoid 1 
receptor. A continuous 90-min PET scan acquired using 
a Hi-Rez Biograph 6 CT44931 scanner in three-dimen-
sional mode, following a bolus injection (mean = 314; 
SD = 34.4 MBq) of [11C]MePPEP synthesized using meth-
ods reported elsewhere [50, 51]. CT scans were acquired 
prior to each PET scan for correction for attenuation and 
scatter. Continuous arterial blood sampling took place for 
the first 15 min of the scan which was followed by discrete 
blood sampling at 2, 5, 10, 15, 20, 25, 35, 40, 50, 60, 

70, 80, and 90 min after the radioligand injection. Images 
were reconstructed with filtered back projection includ-
ing corrections for attenuation and scatter. PET scans 
were performed between 9:00 AM and 3 PM; participants 
fasted (water was allowed) and abstained from alcohol 
and substances for more than 12 h before undergoing the 
scan. PET and MRI scans were conducted approximately 
2 weeks apart.

Magnetic resonance imaging and proton magnetic 
resonance spectroscopy (1H‑MRS)

MRI scans were acquired using the General Electric MR750 
3.0 T MRI scanner. High-resolution 3D T1-weighted struc-
tural MRI images were acquired for the 1H-MRS voxel pre-
scription and anatomical co-localisation (in-plane matrix 
size of 256 × 256, FOV = 26.0 mm) using a whole-brain, 
sagittal IR-SPGR acquisition, and an eight-channel head 
coil (TR = 7.34 mm, TI = 400 ms, inversion time = 4 s, flip 
angle = 11°, and slice thickness = 1.2 mm). Data included 
here were previously published as a part of a multi-centre 
study [41]. The neuroimaging acquisition parameters for the 
acquisition of the proton magnetic resonance spectroscopy 
data were as follows: internal localizer scans were used 
to determine the anterior commissure–posterior commis-
sure line and inter-hemispheric angle. For the voxel place-
ment, the sagittal IR-SPGR scans were reformatted into 
axial and coronal planes and the voxel positioned in the 
ACC. This was followed by auto pre-scans for optimisa-
tion of water suppression and shimming of the MRS voxel. 
1H-MRS spectra were acquired from the anterior cingulate 
region-of-interest (right-left 20 mm × anterior–posterior 
20 mm × superior–inferior 20 mm). The placement of the 
anterior cingulate voxel was based on the midline sagittal 
localizer with the centre of the 20 mm × 20 mm × 20 mm 
voxel placed 13 mm above the anterior portion of the genu 
of the corpus callosum, perpendicular to the anterior com-
missure-posterior commissure line to minimize the inclusion 
of white matter and cerebral spinal fluid (CSF) (see Fig. 1 
for images of the coronal, axial, and sagittal placement of 
the voxel). Finally, the 1H-MRS spectra (Point RESolves 
Spectroscopy (PRESS), TE = 30 ms, TR = 2 s) were obtained 
through the PROton Brain Examination (PROBE) sequence 
by GE, which includes water suppression. Water unsup-
pressed scans were also acquired for subsequent eddy cur-
rent correction and water referenced metabolite quantifi-
cation. A subset of these data (17 subjects) were reported 
previously [25]. As described previously [52], MRI scans 
were performed between 9:00 and 11:30 am; participants 
fasted (water was allowed) and abstained from alcohol and 
other substances for more than 12 h before undergoing the 
MRI scan.
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Analysis

Imaging analysis

Positron emission tomography

Methods were reported previously [41]. Data pre-pro-
cessing was performed using a combination of Statistical 
Parametric Mapping 12 (https​://www.fil.ion.ucl.ac.uk/spm) 
and FSL (https​://www.fsl.fmrib​.ox.ac.uk/fsl) functions, as 
implemented in MIAKAT Version 1.0 (miakat.org) using 
MATLAB R2015b [53]. Motion correction was applied to 
non-attenuation corrected images [54]. Non-attenuated-
corrected frames were realigned to a single “reference” 
frame by employing a mutual information algorithm. The 
transformation parameters were then applied to the corre-
sponding attenuated-corrected dynamic images, creating a 
movement-corrected dynamic image which was used for the 
analysis. Realigned frames were then summated to create 
single-subject motion-corrected maps which were then used 
for MRI and PET co-registration prior to PET data quantifi-
cation. T1-weighted structural images were co-registered to 
the PET image using rigid body transformation. Normaliza-
tion parameters were obtained by warping the co-registered 
structural MRI to MNI space (International Consortium for 
Brain Mapping ICBM/MNI) using bias-corrected segmenta-
tion. The inverse of these parameters was used to fit a neu-
roanatomical atlas to each individual PET scan using the 
Hammersmith atlas [55]. Whole blood time–activity curves 
(TACs) were fitted using a multi-exponential function as 
derived by Feng’s model [56]. For each scan, a time delay 
was fitted and applied to the input functions (both parent 

and whole blood TACs) to account for any temporal delay 
between blood sample measurement and target the tissue 
data. Voxel-based morphometry analyses reported elsewhere 
[41] indicated that there were no significant volumetric dif-
ferences between patients and controls in the anterior cin-
gulate cortex, and thus, no partial volume corrections were 
conducted.

CB1R distribution volume (VT) was calculated using 
the Logan graphical method with a metabolite-free arte-
rial plasma input function [57] using a regional approach. 
An independently derived region of interest of the anterior 
cingulate cortex was obtained from a standard probabilis-
tic atlas [55]. A 3D image containing the MNI coordinates 
used for the MRS voxel placement was also generated using 
SPM12, so that ACC VT values could be extracted from the 
ACC MRS voxel using MATLAB R2015b [53]. The ACC 
was selected given prior findings implicating this region in 
the pathophysiology of psychotic and cognitive symptoms 
[58, 59], and findings indicated that the CB1R regulates syn-
aptic transmission in this region [29, 60].

Proton magnetic resonance spectroscopy

Methods were reported previously [25]. Water-scaled 
metabolites were analysed using LC-model 6.3-0I using 
an experimentally acquired basis set to estimate concen-
trations of 16 metabolites including glutamate, glutamine, 
GLX (glutamate + glutamine), N-Acetyl-Aspartate (NAA), 
l-alanine, aspartate, creatine, phosphocreatine, GABA, 
glucose, glycerophosphocholine, glycine, myo-inositol, 
l-lactate, N-acetylaspartylglutamate, phosphocholine, and 
taurine. Metabolite analyses were restricted to spectra with 

Fig. 1   Coronal (left), axial (middle), and sagittal (right) planes 
depicting the placement of the voxel over the anterior cingulate dur-
ing the proton magnetic resonance spectroscopy scan. The place-
ment of the anterior cingulate voxel was based on the midline sagittal 

localizer with the centre of the 20 mm × 20 mm × 20 mm voxel placed 
13 mm above the anterior portion of the genu of the corpus callosum, 
perpendicular to the anterior commissure–posterior commissure line 
to minimize the inclusion of white matter and cerebral spinal fluid

https://www.fil.ion.ucl.ac.uk/spm
https://www.fsl.fmrib.ox.ac.uk/fsl
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linewidth (full-width at half-maximum; FWHM) ≤ 0.1 ppm, 
Cramér–Rao lower bounds (CRLB) for glutamate ≤ 20%, 
and signal-to-noise ratio ≥ 5. Corrections were applied to 
take into account the relative distribution of cerebrospinal 
fluid within the anterior cingulate. In-house scripts written 
in Python were used to identify the relative distribution of 
white matter, grey matter, and cerebrospinal fluid in the 8 
cm3 voxel prescribed to the anterior cingulate. The follow-
ing correction described previously [61] was subsequently 
applied to correct for CSF, grey matter (GM), and white 
matter (WM) content within the 8 cm3 voxel, where M = raw 
metabolite value:

Apart from assuming the T2 = 80 ms for tissue water, no 
corrections were applied for tissue and metabolite T1 and 

Mcorr = M (
WM + (GM × 1.22) + (CSF × 1.55)

(WM + GM)
).

T2 relaxation. The equation also includes a correction for 
the default assumption the voxel is pure WM during the 
LCModel analysis Table 1. 

Statistical analysis

The Statistical Package for the Social Sciences (version 22) 
[62] was used for all statistical analyses. Data normality was 
assessed using the Shapiro–Wilk test.

Independent samples t tests were also used to investi-
gate group differences in experimental PET variables that 
may potentially confound the results including weight, dose 
(Mbq), injected mass (µg), specific activity (GBq/μmol), 
fraction of ligand free in plasma (fp), and total motion 
(frame-to-frame displacement) (see Table 2) and experi-
mental 1H-MRS variables that may potentially confound 
the results including linewidth, signal-to-noise, and data 
shift (see Table 3).

Table 1   Demographics

N sample size, FEP first episode psychosis, t independent samples t test, χ2 Chi-square, df degrees of freedom, N/A not applicable, SD standard 
deviation, BPRS brief psychiatric rating scale
All demographics reported in this table were reported previously [41]

Healthy volunteers First episode psychosis patients

N 20 20
Age (years) mean (SD) Mean = 27.15; SD = 6.12 Mean = 27.00

SD = 5.06
Sex (male/female) 20/0 20/0
Ethnicity (CAUCASIAN/black African or Caribbean/Asian/mixed) 7/2/9/2 10/4/5/1
Diagnosis (schizophrenia/schizoaffective disorder) N/A 18/2
Illness duration (months) mean (SD) N/A Mean = 22.66;

SD = 11.64
Duration of prior treatment (if applicable) (months) mean (SD) N/A Mean = 4.21

SD = 5.44
Current use of antipsychotics
(yes/no)

N/A 0/20

Prior use of antidepressant (yes/no) N/A 5/15
Prior use of antipsychotics (yes/no) N/A 16/4
PANSS positive
mean (SD)

N/A Mean = 26.95
SD = 17.75

PANSS negative
mean (SD)

N/A Mean = 22.79
SD = 6.96

PANSS general
mean (SD)

N/A Mean = 39.74
SD = 10.77

PANSS total
mean (SD)

N/A Mean = 84.21
SD = 22.10

PANSS five-factor positive mean (SD) N/A mean = 14.61 SD = 4.34
PANSS five-factor negative mean (SD) N/A Mean = 24.94 SD = 7.28
PANSS factor cognitive disorganization mean (SD) N/A Mean = 18.61 SD = 6.17
PANSS five-factor depression/anxiety mean (SD) N/A Mean = 8.50 SD = 2.94
PANSS five-factor excitability/hostility mean (SD) N/A Mean = 6.28 SD = 3.51
Current cannabis use (yes/no) 0/20 0/20
Current alcohol use (yes/no/missing data) 12/8/0 12/8/2
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To test the main hypothesis that ACC CB1R availability 
would be associated with ACC glutamate levels, a Pearson’s 
correlation coefficient was calculated to investigate the asso-
ciation between ACC glutamate levels and ACC CB1R avail-
ability (using a standard probabilistic atlas [55] and values 
extracted from the whole ACC MRS voxel). Exploratory 
analyses were also conducted to determine whether ACC glu-
tamate levels were associated with CB1R availability in the 
striatum, hippocampus, and thalamus.

Exploratory analyses were also conducted to investigate the 
association between ACC glutamate levels and cognition and 
symptom severity (PANSS total and PANSS 5-factor model 
described previously [63].

Results

Demographics

There were no significant differences between healthy vol-
unteers and patients in age, gender, ethnicity, alcohol use, 
tobacco use, or history of cannabis abstinence in study 1 
(see Table 1).

Positron emission tomography: cannabinoid 
receptor availability

The CB1R imaging data from this cohort have previously 
been reported. As we previously reported [41], patients 
showed significantly lower CB1R availability in the ante-
rior cingulate cortex relative to controls (Hedge’s g = 0.8).

Proton magnetic resonance spectroscopy (1H‑MRS)

The 1H-MRS data from this cohort have previously been 
reported. As we previously reported [25], there were no 
significant differences between healthy volunteers and 
patients with first episode psychosis in glutamate  (see 
Table 4).

Table 2   Experimental PET 
variables

FEP first episode psychosis, N number, kg kilograms, mm millimetres, MBq megabecquerel, µg microgram, 
umol micromoles, GBq gigabecquerel
a Body mass index, calculated using methods described previously [84]
b Total scanner motion was defined as the sum of total frame-to-frame movement during imaging acquisi-
tion

Healthy volunteers FEP patients T df p

N 20 20
Weight (kg) M = 78.29; SD = 13.26 M = 85.09; SD = 14.17 − 1.568 38 0.13
Body mass indexa M = 25.47; SD = 3.78 M = 26.65; SD = 5.24 − 0.674 26 0.51
Dose (MBq) M = 311.32; SD = 44.87 M = 311.50; SD = 27.48 0.016 38 0.98
Injected mass (µg) M = 4.31; SD = 1.60 M = 4.72. SD = 2.46 − 0.583 38 0.56
Specific activity GBq/μmol M = 97.32; SD = 287.91 M = 158.38; SD = 556.02 − 0.436 38 0.67
Fp (% if > 1 or fraction if < 1) M = 0.19; SD = 4.68 M = 0.16; SD = 0.05 1.758 38 0.09
Total scanner motion (mm)b M = 12.58; SD = 4.68 M = 13.78; SD = 5.95 − 0.709 38 0.48

Table 3   Experimental 1H-MRS 
variables

ppm parts per million

Healthy volunteers FEP patients t df p

N 20 20
Linewidth (ppm) M = 0.03; SD = 0.01 M = 0.04; SD = 0.01 − 1.257 38 0.22
Signal-to-noise M = 26.35; SD = 6.47 M = 24.75; SD = 6.31 0.79 38 0.43
Data shift (ppm) M = 0.02; SD = 0.01 M = 0.02; SD = 0.01 0.05 38 0.96

Table 4   1H-MRS results

Healthy volun-
teers

First episode psy-
chosis patients

t df p

Glutamate 15.38 (1.85) 16.36 (1.90) − 1.659 38 0.11
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Association between cannabinoid 1 receptor 
availability and metabolite levels

There was no significant association between ACC CB1R 
levels and ACC glutamate levels in controls (R = − 0.24, 
p = 0.32) or patients (R = − 0.10, p = 0.97) (see Fig. 2). Since 
cannabinoid 1 receptor levels in the anterior cingulate cortex 
were extracted using a probabilistic atlas which may be dif-
ferent to the MRS voxel prescribed to the anterior cingulate 
cortex, we repeated these analyses using identical regions 
of interest to extract the PET and MRS data using the MRS 
voxel prescribed to the anterior cingulate cortex. Findings 
remained unchanged when investigating the association 
between ACC glutamate and VT values extracted from the 
ACC MRS voxel. In particular, there were no significant 
associations between ACC glutamate and ACC VT values 
in controls (R = − 0.055, p = 0.819) or patients (R = 0.086, 
p = 0.719).

Exploratory analyses in healthy volunteers indicated 
that ACC glutamate levels were negatively associated with 
CB1R availability in the striatum (R = − 0.50, p = 0.02), 

hippocampus (R = − 0.50, p = 0.042), but not the thalamus 
(R = − 0.30, p = 0.30) or the ACC (R = − 0.26, p = 0.32). In 
contrast, patients failed to show any associations between 
ACC glutamate levels and CB1R availability in the striatum 
(R = − 0.30, p = 0.20), hippocampus (R = 0.14, p = 0.60), 
thalamus (R = −  0.12, p = 0.61), or ACC (R = −  0.01, 
p = 0.98).

Association between metabolite levels 
and symptom severity

There were no significant associations between total 
PANSS symptom severity and glutamate levels (R = − 0.10, 
p = 0.69), GLX levels (R = 0.05, p = 0.85), glutamine levels 
(R = 0.15, p = 0.55), or NAA levels (R = − 0.03, p = 0.90) 
in the ACC. These findings remained unchanged when 
investigating the association between PANSS subscales of 
positive, negative, and general symptom severity. Using a 
five-factor model [63], patients showed a significant posi-
tive association between glutamate levels in the anterior 
cingulate and the positive factor (R = 0.613, p = 0.007) (see 
supplementary Figure  1), the depression/anxiety factor 
(R = 0.514, p = 0.029) (see supplementary Figure 2) and a 
trend-level association with the cognitive/disorganization 
factor (R = 0.411, p = 0.09).

Association between metabolite levels 
and cognition

There was no significant association between WAIS digit 
symbol coding test scores and glutamate levels in controls 
(R = − 0.18, p = 0.48) or patients (R = − 0.23, p = 0.34).

Discussion

Our findings extend our previous work in an overlapping 
sample showing that cannabinoid 1 receptor levels are lower 
in anterior cingulate cortex in drug-naïve/free patients with 
first episode psychosis [41] to show that these cannabinoid 
1 receptor alterations are shown in the absence of evidence 
of glutamatergic alterations in the same brain region. In con-
trast to our predictions, ACC glutamate was not associated 
with ACC CB1R availability in patients or controls. Explor-
atory analyses indicated that ACC glutamate levels were 
associated with CB1R availability in the hippocampus and 
striatum in controls, but not patients. We also showed that 
ACC glutamate levels were associated with greater symptom 
severity on the positive factor (R = 0.613, p = 0.007) and the 
depression and anxiety factor (R = 0.514, p = 0.029) using a 
five-factor model [63].This is the first study, as far as we’re 
aware, to investigate the association between cannabinoid 1 

Fig. 2   Scatter plot showing no association was detected between 
anterior cingulate cortex glutamate levels (ppm) and anterior cin-
gulate cortex cannabinoid 1 receptor availability, indexed using the 
VT of [11C]MePPEP in a healthy volunteers controls (R = −  0.24, 
p = 0.32) or b patients (R = − 0.10, p = 0.25)
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receptor levels and glutamate levels in humans or patients 
with schizophrenia.

These findings extend previous literature, showing that 
glutamate release can be modulated following the adminis-
tration of a cannabinoid 1 receptor agonist in rodents [36, 
37] and humans [38] to show that CB1R levels are related 
to glutamate levels in vivo in healthy individuals. These 
findings also extend previous work, showing that mice 
with CB1R deletions on cortical glutamate neurons exhibit 
enhanced excitability on hippocampal glutamate neurons 
leading to stronger seizures and neuronal loss [39, 40]. 
Given previous work indicating that CB1R are localised on 
glutamate neurons in the ACC [35], hippocampus [64], and 
cortical layer 5 [65], and that CB1R activation suppresses 
glutamate release via depolarisation-induced suppression 
of excitation (DSE), we expected an inverse relationship 
between CB1R and glutamate levels. Our finding that con-
trols showed an association between ACC glutamate and 
CB1R availability in the striatum and hippocampus but not 
the ACC or thalamus partially support this, and highlight 
the need for future studies to understand endocannabinoid 
circuits. Our finding that patients failed to show any of the 
relationships between CB1R and glutamate seen in controls 
highlights how endocannabinoid signalling pathways involv-
ing the anterior cingulate, hippocampus, and striatum may 
be disrupted in schizophrenia.

Previous literature has shown that the endogenous CB1R 
agonist, AEA, that is elevated in schizophrenia [66] modu-
lates synaptic plasticity by inhibiting glutamatergic NMDA 
Ca2 + flux in the hippocampus, critical for modulating the 
relative strength and efficacy between synaptic connections 
[67]. CB1R agonists also modulate synaptic plasticity by 
dysregulating the protein synthesis involved in the formation 
and degradation of synaptic connections [68]. Our findings 
extend this work to show that CB1R availability is not asso-
ciated with glutamate levels in the anterior cingulate. Future 
work should investigate whether glutamatergic alterations 
in the striatum and hippocampus are also associated with 
CB1R alterations.

Strengths and limitations

A strength of the study was that all participants had not been 
taking any compounds acting on the central nervous system, 
including pharmacological treatments or illicit substances. 
While we cannot exclude the possibility that prior use of 
antipsychotics may have influenced the results, patients had 
a minimum drug washout period of 6 months and no patients 
had previously taken depot medications.

Moreover, patients had negative urine drug screens prior 
to scanning using a test that was able to detect cannabis, 
cocaine, amphetamine, and opiate use, and we excluded 
subjects with a history of substance use or dependence. 

Prior substance use is, therefore, unlikely to be a signifi-
cant confound. However, since occasional users may have 
THCCOOH concentrations below the limit of sensitivity 
(50 ng/mL) [69], infrequent cannabis use may have been 
undetected. While some volunteers had previously used can-
nabis, 1 month of abstinence has been shown to normalise 
CB1R levels [70].

While we cannot exclude the possibility that the corre-
lation between CB1R availability and glutamate may have 
been underpowered, our sample size was comparable to 
previously published findings investigating the association 
between dopamine and glutamate in first episode psychosis 
[27]. While our sample size was powered to detect clinically 
significant associations (r > 0.4), it may have been under-
powered to detect smaller associations. However, the clinical 
significance of smaller associations is unclear. While only 
males were included due to sex differences in CB1R [71], 
future studies are needed to determine if female patients 
show CB1R alterations and whether these may be linked to 
glutamatergic function.

Glutamate metabolite estimates acquired using proton 
magnetic resonance spectroscopy reflect the average signal 
of intra-cellular and extra-cellular glutamate levels within a 
particular brain region [72]. In view of the limited spatial 
resolution of proton magnetic resonance spectroscopy, these 
findings do not exclude the possibility that pre-synaptic syn-
thesis of glutamate or release may be associated with can-
nabinoid 1 receptor levels. Previous work has shown that 
glutamate release can be modulated following the admin-
istration of a cannabinoid 1 receptor agonist in rodents 
[36, 37] and humans [38]. However, we may have failed to 
observe an association, because we measured the average 
of both intra-cellular and extra-cellular glutamate. In view 
of these limitations and that glutamatergic functioning is 
involved in the dynamic modulation of synaptic connections 
thought to underlie learning and memory [73, 74], our find-
ings do not exclude the possibility that patients with first epi-
sode psychosis may show other alterations in glutamatergic 
function that are related to CB1 receptors. Although we used 
a well-validated 1H-MRS neuroimaging acquisition proto-
col, the voxel placement was not rotated to align the anterior 
cingulate, because GE scanners do not enable voxel rotation 
handles in their MRS prescription interface.

Future studies using 7-T scanners could be useful as 
higher field strengths improve the quantification of metabo-
lites and improve signal-to-noise ratios. Previous literature 
has reported a 2.8 × increase in signal-to-noise ratios and 
a significant decrease in the variability of metabolite esti-
mates acquired on a 7-Tesla scanner relative to metabolites 
acquired on a 3-Tesla scanner [75]. These methodological 
advances will improve the validity and reliability of metabo-
lite estimates and enable us to estimate metabolites present 
at lower concentrations in the brain [75, 76].
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Implications

The radiotracer which we used, [11C]MePPEP, is not 
displaced by a synthetic analogue of an endogenous can-
nabinoid, methanandamide [77]. As such, the VT of [11C]
MePPEP is thought to primarily reflect receptor density, 
not receptor function. Our findings, therefore, indicate 
that the density of cannabinoid 1 receptor levels has not 
associated with glutamate levels in the anterior cingulate. 
However, these findings do not exclude the possibility that 
the function of the cannabinoid 1 receptor may be altered 
in patients, and that this may be associated with gluta-
matergic alterations. The function could be tested in the 
context of pharmacological challenges using cannabinoid 
1 receptor agonists, shown to modulate glutamate levels 
in rodents [36, 37] and humans [38].

Since CB1R binding inhibits calcium entry into the 
pre-synaptic neuron via N-, P-, and Q-type calcium chan-
nels [32, 78], fewer CB1R may dysregulate calcium and 
potassium channels, leading to neurochemical alterations 
in psychosis [27, 79–82]. While we did not show that can-
nabinoid 1 receptor levels in the anterior cingulate were 
associated with glutamate levels in the same region, this 
finding does not exclude the possibility that cannabinoid 1 
receptor levels may modulate of neurotransmitters impli-
cated in psychosis including dopamine [83] and gamma-
aminobutyric acid (GABA) [32]. Future studies are, there-
fore, needed to investigate if CB1R alterations precipitate 
other neurochemical alterations in psychosis.

Conclusions

We did not find evidence of a relationship between cannab-
inoid 1 receptor levels in the anterior cingulate cortex and 
glutamate levels in the anterior cingulate cortex. However, 
exploratory analyses indicated that healthy volunteers 
showed a negative association between ACC glutamate 
and CB1R availability in the striatum and hippocampus; 
however, these associations were lost in patients. These 
findings highlight the need for future studies to investigate 
endocannabinoid signalling pathways, and to investigate 
whether they may be altered in schizophrenia.
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