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Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease of preterm infants,

associated with high morbidity and hospitalization expenses. With the revolutionary

advances in microbiological analysis technology, increasing evidence indicates that

children with BPD are affected by lung microbiota dysbiosis, which may be related to the

illness occurrence and progression. However, dysbiosis treatment in BPD patients has

not been fully investigated. Probiotics are livingmicroorganisms known to improve human

health for their anti-inflammatory and anti-tumor effects, and particularly by balancing

gut microbiota composition, which promotes gut-lung axis recovery. The aim of the

present review is to examine current evidence of lung microbiota dysbiosis and explore

potential applications of probiotics in BPD, whichmay provide new insights into treatment

strategies of this disease.
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INTRODUCTION

For more than 50 years, the definition, epidemiology, pathophysiology, and pathogenesis of BPD
have been continuously updated (1–4). BPD was initially proposed by Northway and colleagues
(5) in 1967 as a lung injury in preterm neonates due to mechanical ventilation and oxygen
poisoning. However, current pathogenesis is more complex, involving exposure of infants to one
or multiple pre- and/or post-natal high-risk events associated with lung immaturity, perinatal
infection, inflammation, and altered blood vessel development (1, 2, 4, 6) (Figure 1).

The term probiotics derived from a Greekmeaning “for life” (7), was coined by Lilly and Stillwell
(8) in 1965, and described microorganisms with potential to release growth-promoting factors.
In 2002, the FAO/WHO defined probiotics as “live microorganisms which when administered in
adequate amounts confer a health benefit on the host,” but in 2013, The International Scientific
Association for Probiotics and Prebiotics reached a consensus on modifying the concept to “live
microorganisms that, when administered in adequate amounts, confer a health benefit on the host,”
includingmicrobial species that have been shown to confer health benefits in controlled studies, and
new commensal and consortium strains from human samples, with evidence of safety and efficacy
(9). At present, commonly used probiotics derive from the Bifidobacterium and Lactobacillus genus.

In recent years, a large body of evidence has related BPD to microbiota dysbiosis, however,
therapy approaches have rarely been discussed or investigated. Therefore, this review explores new
frontiers of probiotics to ameliorate BPD based on microbiota recovery.
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FIGURE 1 | Risk factors for BPD (IUGR, intrauterine growth restriction; PDA,

patent ductus arteriosus).

LUNG MICROBIOTA AND BPD

Microorganisms living in a given environment constitute a
microbiota, whereas a microbiome relates to microbial genome,
metabolism, and growth surroundings (10). It then becomes
relevant to understand the impact ofmicrobiota on human health
and disease.

Airway Microbiota Dysbiosis in BPD
Contrary to conventional wisdom, the human respiratory tract
immediately acquires microbiota, detecting a low bacterial DNA
load before or shortly after birth (11–13), which gradually builds
up by the 1st month of life, developing colonization of relatively-
stable bacteria at the phylum level (14). In this regard, different
individuals and even distinct anatomical parts have their unique
bacterial colonization patterns, and microbiota in each zone
has its preponderant operational taxonomic units (OTUs) (14).
Elucidating lung microbiota composition is a challenge, since
it requires highly sensitive detection methods and reagents,
and collected samples are susceptible to contamination by
pathogenic microorganisms in the upper respiratory tract,
such as oropharynx and nasopharynx (15). Furthermore, pre-
and post-natal lung microbiota is compromised because of
the use of antibiotics, maternal chorioamnionitis, mechanical
ventilation, infection/inflammation, nutritional deficiencies, and
abnormal colonization of the intestine (16). For example,
antibiotics enhance the invasive potential of pathogenic bacteria
by increasing their nutrient requirements such as organic
acids, carbon, and nitrogen, thereby temporarily or permanently
reducing the diversity and richness of the microbiota (17). As
a result, some advances in research have generated inconsistent
results in reporting lung microbiota at birth. However, in
general terms, in a period after birth, the pulmonary microbiota

composition at the phylum level is predominantly Proteobacteria
and Firmicutes (12, 14).

The incipient composition of the lung microbiota cannot be
neglected because it is closely related to the onset of mucosal
immunity (18), the development of immune tolerance in the
lungs (19), and healthy breathing (15). Several reports have
shown alterations in the stability and diversity of the respiratory
tract microbiota in BPD. Lohmann et al. (11) tested tracheal
aspirates of 25 premature infants at different periods and
showed that bacterial multiplicity of 10 patients with BPD
significantly decreased, according to the observed species count
and the Shannon index. As the disease progresses, Firmicutes and
Proteobacteria populations increase and decrease respectively;
at the genus level, the relative abundance of Acinetobacter
sp. significantly decreases, whereas that of Staphylococcus and
Klebsiella increases. However, microbiota in the non-BPD group
invariably maintains high diversity and stability, indicating that
lower diversity of airway microbiota may be associated with
the disease.

A study by Lal et al. (12) showed that at the phylum level,
the Proteobacteria amount was higher than that of Firmicutes
and Fusobacteria in babies with BPD, whereas at the genus-
level, Lactobacillus content was significantly low, which persisted
during the disease. The reduction of Lactobacillus leading
to an inflammatory response and consequently interfering
with lung development is an important reason why the
microbiota directly affects BPD, as many studies have shown that
Lactobacillus possesses very strong anti-inflammatory properties.
Furthermore, increased endotoxin was observed in the airways of
patients with BPD, which was attributed to microbiota dysbiosis.

Lohmann et al. (11) and Lal et al. (12) put forward that
conflicting results related to changes in the populations at the
phylum level may indicate that lung microbiota is affected
by multiple factors, including demographic characteristics,
geographic position, living environment, methods and detection
reagents, and sequencing platforms. In fact, both studies differed
in criteria for the inclusion of children and timing of the sample
collection. However, the ecological imbalance of the airway
microbiota in children with BPD is an important characteristic
in such investigations.

Imamura et al. (20) examined 169 infants with or without
severe BPD and noted that all patients with the disease exhibited
maladaptive changes in the lungmicrobiota. The detection rate of
Corynebacterium species in the lower respiratory tract of severe
BPD was higher than that of non-severe disease, and sepsis
was commonly observed seven days after birth, speculating that
airway microbiota dysbiosis is associated with infections, which
may be a significant cause of BPD exacerbation.

Another longitudinal investigation of two research centers
found that preterm infants with severe BPD contained abundant
Ureaplasma after birth, and diversity in lung microbiota was
more prominent with age (13). Ureaplasma colonization is
considered an independent risk factor for BPD (21). On the one
hand, it causes chronic infection of the uterine cavity to promote
preterm delivery (22), whereas preterm birth is one of the most
important causes of BPD. Furthermore, Ureaplasma damages
the respiratory mucosa and interferes with lung development
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by producing virulence factors and stimulating the release of
pro-inflammatory mediators. Importantly, colonization of the
respiratory tract by this species is negatively correlated with
gestational age (22), which may partly explain the higher risk of
BPD in preterm infants with low gestational age.

In addition, a recent systematic review of microbiota and
BPD reported that microbiome disorders are present in patient
airways and the frequency of microbiota transformation was
associated with BPD impairment (23).

Taken together, lung microbiota composition establishes early
in life, but the stabilization and diversity of microorganisms are
altered by a number of factors, which are particularly relevant
in children with BPD. Therefore, it becomes important to the
relationship between microbiome dysregulation and this disease.

BPD and Lung Microbiota Dysbiosis
Association
Although the causal link between lung microbiota and BPD
has not been fully demonstrated, it can be assumed that
the lung maladaptive microbiome is an effective driver
for other potentially harmful factors in this illness (24).
Dysregulation of the lung microbiota elicits local or systemic
infection/inflammation, activates the immune response (25–27),
and is related to oxidative stress and metabolic disorders in the
host (24), which impairs dysbiosis, thus creating a vicious circle
involved in the disease onset and exacerbation.

Gut-lung Axis in BPD
Lung microbiota dysbiosis in BPD may disrupt gut microbiota,
which probably plays an important role in worsening this disease.
Ryan et al. (28) analyzed stool samples of 50 preterm BPD
infants and observed that among transvaginal babies, Escherichia
and Shigella were significantly increased, whereas Klebsiella and
Salmonella were in lower amounts, demonstrating that the
disease is involved in gut microbiota dysbiosis. Furthermore, a
case-control study of eight subjects with BPD and 10 subjects
without the disease showed that gut microbiota diversity in the
BPD group was significantly reduced (OTU, relative abundance,
and Shannon index), and severe BPD may make gut microbiota
more susceptible to destruction early in life (29).

In turn, gut microbiota dysbiosis also affects BPD. Cantey et
al. (30) reported that for infants with a very low birth weight
receiving antibiotics for 2 weeks significantly increased the risk
of death or BPD, which still exists after controlling the severity
of the disease. Furthermore, this risk increases with the duration
of antibiotic exposure [i.e., every additional day of antibiotics
increases the risk of BPD by ∼13% (30)]. A possible explanation
is that antibiotics destroy the gut microbiota, and the dysbiosis
exacerbates the disease. In a perinatal antibiotics-exposed BPD
mouse model, it was shown that gut maladaptive microbiota
increased pulmonary fibrosis and worsened the condition, which
may be related to the reduced expression of lung IL-22 caused
by gut microbiota dysbiosis (31). Moreover, gut microbiota,
which controls trimethylamine N-oxide (TMAO) production
(32), regulates BPD susceptibility by changing TMAO levels (33).

A growing body of research indicates an apparent
bidirectional influence of intestinal and lung microbiota.

The gut-lung axis hypothesis, which involves a complex cross-
talk between lung/gut disease and gut/lung microbiota dysbiosis,
has been extensively tested (34–37). Newborn mice that have
been depleted of gut microbiota with antibiotics become more
susceptible to Streptococcus pneumoniae infection, however,
restoring intestinal microbiota increases neonatal and germ-
free (GF) mice resistance (38) and potentiates phagocytosis
of alveolar macrophages (39), thus protecting lungs from
bacterial infection. In addition, two separate studies on severe
pneumonia and childhood community-acquired pneumonia
have shown that maladaptive gut microbiota may be relevant in
the onset and development of pneumonia (40, 41). Moreover,
the administration of lipopolysaccharide (LPS) in mouse lungs
significantly alters gut microbiota (42).

Influenza virus-infected mice develop gut microbiota
dysbiosis earlier, which reduces the secretion of metabolites by
intestinal microorganisms, thus increasing the susceptibility of
mice to S. pneumoniae infection (43), suggesting a close link
between gut microbiota and the lung immune response. Dickson
et al. (44) demonstrated live intestinal bacteria in lungs in a
murine model of sepsis and in bronchoalveolar lavage fluid
(BALF) of 68 patients with acute respiratory distress syndrome,
which indicates that local or systemic inflammation mediates
gut microbiota displacement, disrupting the lung microecology
homeostasis, and in turn, dysregulated lung microbiota
exacerbates the inflammatory response. These data suggest an
important interrelationship between gut and lung microbiota,
and BPD onset and development. Microbiota dysbiosis in these
organs may trigger the inflammatory process, leading to immune
disorders and exacerbating the disease outcome. Therefore,
preserving the intestines and lungs microecological balance
significantly improves BPD.

Infection/Inflammation
Infection/inflammation may play a central role in BPD
pathogenesis. Stressmann et al. (45) observed a number of
pathogens (particularly S. aureus, Enterobacter sp., Moraxella
catarrhalis, Pseudomonas aeruginosa, and Streptococcus sp.) in
the tracheal secretions of eight preterm infants at risk of
developing BPD. Another investigation of 192 newborns found
that lung infections in early newborns (particularly in the
first 3 days of life) were related to the evolution of chronic
lung disease (46). Under a combined effect of other BPD risk
factors such as hyperoxia and mechanical ventilation, infection
triggers a series of pro-inflammatory substances, such as IL-
1β, IL-6, IL-8, NLRP3, TNF-α, and collagen I, which are
further regulated by infiltrating neutrophils and macrophages
(47–49). These inflammatory mediators in immature lungs of
premature infants restrict the activity of surfactant proteins
and the vascular endothelial growth factor (49), contributing
to the development of alveolar and vascular alterations and
other characteristic pathologies in BPD. Furthermore, TLR
binding-induced reactive oxygen species (ROS) activate the
NLRP3/caspase-1 pathway, which promotes IL-1b production
(47), amplifying the inflammation process.

Microbiota dysbiosis may stimulate a robust inflammatory
response and have a significant impact on BPD (Figure 2).
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FIGURE 2 | The impact of microbiota dysbiosis on BPD and the potential function of probiotics in BPD.

Lung microbiota dysbiosis triggers the release of the pro-
inflammatory cytokines IL-1β, IL-6, MIP-1α, IL-12p70, and
CXCL8, which are associated with pulmonary fibrosis (50).
Among them, IL-6 increases with the rise of Firmicutes richness,
but IL-12P70 augments with the reduction of Proteobacteria
richness. Similarly, a series of cytokines such as IFN-α2, IL-13,
IL-4, IL-15, TNF-α, TNF-β, andMCP1were detected in the BALF
of hematopoietic cell transplantation recipients, and changes in
their concentration were mostly associated with lung microbiota
dysbiosis (51). In this regard, IFN-α2, IL-13, TNF-β, and TNF-α
negatively correlated with the relative abundance of Firmicutes,
whereas IL-4 and IL-13 positively correlated with Bacteroidetes.
Another study demonstrated that the increased inflammation
observed in the LPS-induced mouse lung injury model was
associated with lung microbiota dysbiosis, which enhanced the
IL-6 pro-inflammatory effect probably mediated by abnormally
dominant OTUs (52). Moreover, in the bleomycin-induced lung
fibrosis model, Th1 cells in GF mice were reduced, whereas

Foxp3+ T regulatory cells were higher compared with non-GF
mice, thus demonstrating the regulatory effect of lungmicrobiota
on cellular immunity (50).

The inflammatory reaction attributable to the lung
maladaptive microbiota may also be closely related to Th17
activation (27). In this regard, the lung microbiota has been
shown to modulate local mucosal barrier function by enhancing
or reducing the release of IL-17 family cytokines, which are
mainly secreted by Th17 cells (26). However, microbiota
dysbiosis may activate pulmonary fibrosis by stimulating IL-
17B production, which in turn acts on Th17 and neutrophil
recruitment genes under TNF-α coordination in a feedback
event (53). Furthermore, lung microbiota may intervene in
inflammation by altering alveolar macrophages, DCs, invariant
natural killer T cells, Treg cells, and lung-resident Tgd cells
function (26). These cells induce neutrophil migration. They
are involved in the intestine-lung axis by controlling pathogenic
microorganisms, maintaining pulmonary homeostasis, and
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FIGURE 3 | Gut-lung axis diagram.

affecting chronic inflammatory activities of lung diseases (26),
but microbiota dysbiosis may modify these effects. Dysbiosis
activates the lung immune response through the gut-lung axis
(Figure 3), by stimulating lymphocyte infiltration in the gut and
lung mucosa (54). DCs first recognize pathogens in the intestine
and present antigens to T lymphocytes of mesenteric lymph
nodes or gut-associated lymphoid tissue, where T cell subsets
are activated and migrate to the respiratory mucosa, attracted
by chemotactic molecules, and stimulate a local inflammatory
response (37). Furthermore, microbiota dysbiosis increases LPS,
which stimulates TLR and NF-κB to produce IL-18, IL-4, IL-1,
IL-6, TGF-b, IFN-g, and TNF-α involved in pulmonary immune
responses (37, 55).

Taken together, these data suggest that gut and lung
microbiota may have a significant impact on BPD, and that the
disease outcomemay be improved by protecting themicrobiome.

ROLE OF PROBIOTICS IN BPD

In recent years, the potential of probiotics to exert several
biological activities is remarkable. Lactobacillus reesei has been
shown to be useful in delaying tissue damage and relieving upper
respiratory tract infections in patients with cystic fibrosis with
mild to moderate lung disease (56), whereas Bifidobacterium
mixture reduces the clinical manifestations of allergic rhinitis
and improves the quality of life of children with the occasional
paroxysm of asthma (57). In addition, prophylactic use of
probiotics decreases lung infections in mechanically ventilated
children (58) and lessens the likelihood of late-onset sepsis in
preterm infants (59, 60).

It is not difficult to infer that probiotics have great potential
in the treatment of respiratory diseases. More importantly,
some studies have shown interest in probiotics and BPD.
Consequently, we attempted to explore the feasible influence of
probiotics on BPD.

Anti-infection and Anti-inflammatory Roles
of Probiotics
Probiotics, as living microorganisms, become useful in relieving
microbiome dysregulations. It has been shown in animal studies
that oral probiotics enhance the richness and diversity of
airway microbial communities (61), which provide a starting
point for understanding the interaction of probiotics and BPD.
Furthermore, probiotics have unexpected anti-infection and anti-
inflammatory elements and the potential to recover nutrition and
antioxidant properties (Figure 2), which are essential for children
with BPD.

Oral administration of Lactobacillus plantarum was observed
to significantly reduce pulmonary inflammation in Klebsiella
pneumoniae-infected mice, as shown by the decreased number of
macrophages and neutrophils, and pro-inflammatory cytokines
(KC, IL-6, and TNF-α), and the blocking of NF-κB activation by
an interaction with TLR (62). L. plantarum also down-regulates
T-bet and IL-2 levels, stimulates Foxp3+ and z/70mRNA
expression in lung tissue, and expands the number of
CD4+CD25+Foxp3+ cells in mediastinal lymph nodes (62).
Although L. plantarum failed to increase the amount of
DCs, it attracts them to produce IL-10, promoting Treg cell
immunoregulatory action (62).

In a mouse model of Neisseria meningitides secondary to
influenza A virus (IAV) infection, Belkacem et al. (63) observed
that L. paracasei increased the amount of DCs, neutrophils,
and monocytes in the lungs. Although some highly expressed
inflammatory cytokines, such as IL-6, MCP1, KC, and IL-12p70,
were detected, only IL-6 and MCP1 were statistically significant.
They consider that L. paracasei simultaneously augments the
health status of IAV and influenza-meningococcal infection in
mice, by attracting interstitial monocytes and DCs (63). In
addition, intratracheal administration of Lactobacillus probably
suppresses the PAO1 virulence factor and reduces IL-6 and TNF-
α activities, affecting lung infection outcome by Pseudomonas
aeruginosa in mice (64).

Similarly, Bifidobacterium bifidum was shown to produce a
significant anti-inflammatory response with a high production of
IFN-g, IL-12, and IL-4 (cellular immunity) and IgG1 and IgG2α
levels (humoral immunity) in mice infected with influenza virus,
but reduced IL-6 production in lung tissue (65). In a mice model
of severe asthma, Bifidobacterium breve significantly decreased
the levels of the pro-inflammatory cytokines IL-1α and IL-1b and
the chemokine CXCL-2, which stimulate neutrophil migration to
pulmonary tissue, as compared with control, where an increase of
IL-1α was observed (66). Furthermore, B. breve down-regulated
activated CD11b+ cells, up-regulated CD4+CD44+ cells and
CD4+FoxP3+ cells, and increased the number of macrophages.

In vitro experiments showed antibacterial activity of
Bifidobacterium and Lactobacillus against Clostridium (67),
which was probably mediated by bacteriocins, microcins, and
short-chain fatty acids (SCFAs) (68). Bacteriocins change the
permeability of the inner membrane of pathogenic bacteria,
affecting cell wall synthesis (69), whereas microcins directly
impair the activity of enzymes required by pathogens in the
process of gene replication and transcription (70).
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SCFAs generated by probiotics interfere with pathogenicity
by reducing intestinal pH, destroying pathogen cell membrane
structure, accelerating oxidative phosphorylation, enhancing the
antibacterial potential of other molecules (68), regulating the
expression of histone deacetylase, and coupling with G protein
receptors (71). In addition, SCFAs blocks secretion of IL-8
and macrophage inflammatory protein 2 by intestinal IL-1b
in naive mice, evidencing the characteristic anti-inflammatory
effect of SCFAs (72). Moreover, probiotics improve immunity by
stimulating IgA production through the following mechanisms:
(a) triggering the activation of TLR9 and TLR2, (b) promoting
DCsmaturation, (c) regulating B lymphocytes, (d) being involved
in mucosa cytokines production, and (e) inducing the release of
TGF-β, IL-10, and IL-6 (68, 71).

The Antioxidant and Nutritional Effects of
Probiotics
It is well-known that oxidative stress plays a central function in
BPD pathogenesis. Hyperoxia exposure activates an excessive
production of ROS, inhibits the development of alveolar and
pulmonary blood vessels, and participates in the inflammatory
process (73). In addition, ROS causes endothelial dysfunction
and increases vascular permeability, leading to pulmonary
tissue edema (74). Microbiota dysbiosis may initiate oxidative
stress because lung microbiota stimulates the aryl hydrocarbon
receptor, which regulates the activity of antioxidant enzymes, by
changing the levels of tryptophan catabolites (74). Lactobacillus
and Bifidobacterium are known to possess antioxidant properties
(75). In vitro experiments showed that Lactobacillus plantarum
MA2 inhibits hydrogen peroxide and lipid peroxidation, and
possesses the great potential to chelate Fe2+ and scavenge
free radicals such as 1,1-diphenyl-2-picrylhydrazine (DPPH),
hydroxyl radicals, superoxide anion radicals, and has exceptional
reducing activity (76). Mechanistically, antioxidant genes
(e.g., glutathione peroxidase, catalase, NADH oxidase, NADH
peroxidase, and glutathione reductase genes) encode superoxide
dismutase and glutathione peroxidase to exert antioxidant
effects (76). Furthermore, exopolysaccharides extracted from
Lactobacillus plantarum possess antioxidant activities. At a
concentration of 10 mg/mL, exopolysaccharides reached the
maximum 80.4, 65.5, and 60.5% scavenging rates for hydroxyl,
2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate), and DPPH
radicals, respectively (77). Similarly, Bifidobacterium has a
high potential to scavenge free radicals and an acceptable
reducing activity (78). However, it should be recognized that
the antioxidant properties of probiotics are unique. The free
radical scavenging activity of probiotics greatly varies from
strain to strain (79). In short, probiotics prevent oxidative
stress in different ways, ① chelating metal ions, ② activating
antioxidant enzymes and metabolites, ③ boosting antioxidant
signaling pathways such as Nrf2-Keap1-ARE, mitogen-activated
protein kinases, and protein kinase C pathway, ④ reducing ROS
production, ⑤ protecting gut microbiota, and ⑥ increasing the
host’s antioxidant capacity (80).

The nutritional factor is also important in BPD onset. It
has been observed that providing enrichment proteins and

energy complements to children with protracted mechanical
ventilation, reduces the disease incidence (81). Probiotics may
increase the nutritional status of preterm infants. In this regard,
it was observed that intestinal digestive enzymes (for example,
α-amylase, lipase, and trypsin) of mice fed with Bacillus subtilis
and Bacillus velezensis were significantly increased, as compared
with control (82). In addition, it was shown that from weeks
2 to 3, the average daily weight gain of mice in the probiotic
group was significantly higher and the feed conversion rate was
lower, indicating that probiotics promote mice growth. Similarly,
probiotics increase the appetite and weight of older dogs,
improve immunity, and enrich gut microbiota (83). Moreover, a
meta-analysis demonstrated that supplementing with probiotics
reduces the time to full enteral feeding for premature infants
to achieve better weight gain and growth development (84).
Probiotics decrease nutrient wastage by protecting the integrity
of the intestinal mucosa, promoting digestion and absorption,
and blocking undesirable metabolic pathways (85).

Lactobacillus sp.may also alter alveolar structure and regulate
alveolar growth (86). Furthermore, probiotics were shown in
animal studies to be involved in angiogenesis (87).

In general, given the outstanding advantages of probiotics,
we may need to broaden our horizons to fully comprehend the
activities and mechanisms of probiotics, particularly associated
with their potential to improve BPD outcome.

CHALLENGE

As we envision the benefits of probiotics for BPD patients, we
must also be very aware that there are still numerous problems
that must be overcome. A meta-analysis indirectly evaluated
the impact of probiotics on BPD (88). Unfortunately, the result
was denied by the authors. However, all studies by the authors
exclusively use BPD as a secondary result of the research, which
may be one of their limitations. In addition, several studies have
not given the importance the disease and probiotics deserve,
possibly impacting judgment. In fact, the designated species and
strains are likely to largely dominate the efficacy of probiotics,
which has been certified in tests by Monteiro et al. (67) Different
doses and preparations of probiotics may produce divergent
conclusions as well. It is also probable that each host system
possesses its own “proprietary probiotics.”

Detection of high-quality probiotics that may relate to BPD
requires a number of well-established, safe, reliable, and laborious
scientific methods. However, in any case, this meta-analysis is
suggested, as it opens a new direction in the discussion of
probiotics and BPD.

For immensely frail infants with BPD, they can only
face the following burdensome issues: How to determine the
optimal therapy time window and duration of probiotics? Are
combination medications used? How to choose the route of
administration? Oral administration should anticipate whether
probiotics will add to the burden of the gastrointestinal tract
and whether a safe dose of probiotics achieves the therapeutic
concentration. Theoretically, compared with oral administration,
probiotics possibly have a more apparent curative effect by
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aerosolized inhalation and intratracheal administration, since
they directly act on the respiratory mucosa, but this assumption
needs experimental verification.

Even though probiotics are beneficial bacteria for humans,
they also can produce adverse effects, including involvement
in systemic disease, harmful metabolic events, and excessive
stimulation of the immune system (89). Thus, it is necessary
to find more effective and precise probiotic action pathways to
optimize their use in human health. They produce differential
effects on the population. Particularly in infancy, premature
babies may become a high-risk group to use probiotics, because
of their immature immunity. Previous investigations reported
that probiotic supplementation early after birth increases
the occurrence of mucosal (oral, respiratory, gastrointestinal)
infection diseases (90). Infants taking probiotics have complained
of unpleasant taste, dry skin, bloating, vomiting, rash, and other
adverse events (91). Some premature babies may be affected

by bacteremia when receiving probiotics treatment, and the
infected strain derives from the probiotics themselves (92, 93).
In this regard, it is necessary to conduct a thorough long-term
evaluation of the safety of probiotics in children (especially
newborns) in consecutive trials, before using them in therapy.

In conclusion, probiotics have promising applications,
particularly to improve BPD prognosis. However, it is essential
to carefully select the probiotic strains, medication dosage,
frequency, and routes. Furthermore, more valid scientific
information and follow-up studies are required to support the
adequate use of probiotics in human health.
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