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Abstract

Most tissue collections of neoplasms are composed of formalin-fixed and paraffin-embedded (FFPE) excised tumor samples
used for routine diagnostics. DNA sequencing is becoming increasingly important in cancer research and clinical
management; however it is difficult to accurately sequence DNA from FFPE samples. We developed and validated a new
bioinformatic pipeline to use existing variant-calling strategies to robustly identify somatic single nucleotide variants
(SNVs) from whole exome sequencing using small amounts of DNA extracted from archival FFPE samples of breast cancers.
We optimized this strategy using 28 pairs of technical replicates. After optimization, the mean similarity between replicates
increased 5-fold, reaching 88% (range 0–100%), with a mean of 21.4 SNVs (range 1–68) per sample, representing a markedly
superior performance to existing tools. We found that the SNV-identification accuracy declined when there was less than
40 ng of DNA available and that insertion–deletion variant calls are less reliable than single base substitutions. As the first
application of the new algorithm, we compared samples of ductal carcinoma in situ of the breast to their adjacent invasive
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ductal carcinoma samples. We observed an increased number of mutations (paired-samples sign test, P < 0.05), and a higher
genetic divergence in the invasive samples (paired-samples sign test, P < 0.01). Our method provides a significant
improvement in detecting SNVs in FFPE samples over previous approaches.
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Introduction

Tumors are characterized by a high-genetic heterogeneity both
within the same tumor type and in different parts of the same
neoplasm [1]. Genetic heterogeneity determines the capacity
of the neoplastic cell population to adapt to new microenvi-
ronments and to develop resistance to therapeutic treatments
[2–4]. We and others have hypothesized that the quantification
of genetic heterogeneity will be generally useful for risk strat-
ification of patients [5, 6]. However, in order to do so, we need
accurate methods for identifying somatic genomic alterations in
neoplasms.

Cancers can develop from different combinations of genetic
mutations and each patient typically has a unique mutational
profile, distributed among a mosaic of subclones across the
tumor [7]. This makes it difficult to develop universal biomarkers
to predict cancer progression based on specific mutations and
a single sample from a neoplasm. Alternatively, measures that
characterize the underlying evolutionary process do not focus
on specific progression mechanisms or the particular mutations
that occur, making them more generalizable [6]. Intratumor het-
erogeneity is one such measure, and we have successfully used
it in the past to predict cancer progression of premalignant
diseases [8–10] and overall survival in cancers [3].

Routine diagnosis in oncology relies on histopathological
analysis of formalin-fixed and paraffin-embedded (FFPE) excised
tumor samples. Using these samples for genetic analysis has
numerous advantages: histopathological analyses are already
available for them, specific areas can be selected with preci-
sion eliminating the need to take additional samples dedicated
to genetic analysis and, moreover, they are archived in large
numbers, readily available to carry out retrospective studies.
On the other hand, these samples have several technical lim-
itations when used for genetic analyses. Histological fixation
and embedding partially degrades and binds amino acids to
the DNA, which continues to deteriorate over time [11]. Deam-
ination of cytosine residues leading to apparent C to T transi-
tions is also a common artifact in FFPE derived DNA [12]. These
problems are exacerbated when the amount of available DNA
is limited, because DNA artifacts are not compensated by the
abundance of intact molecules, leading to sequencing errors [13,
14]. This is particularly relevant when studying early or precan-
cerous conditions where the lesion can be very small. In order
to study genomic intratumor heterogeneity using FFPE samples,
we must often sequence the degraded and imperfectly purified
DNA extracted from small focal areas of the tumor or precancer.
Furthermore, estimates of intratumor heterogeneity as well as
other precision medicine efforts are confounded by both false
positives and false negatives in the detection of mutations. Pre-
cision medicine requires avoiding false positives and negatives
which would potentially expose patients to the wrong therapeu-
tic interventions. Thus, there is a clear need for robust and accu-
rate methods for sequencing and detecting mutations in small
amounts of DNA extracted from FFPE samples. Most methods
commonly used to detect single nucleotide variants (SNVs) in
this kind of samples (e.g. Platypus, Mutect2) do not take these
biases into account, and it is unclear if their results are robust to

them. There are a number of studies benchmarking SNV callers
under different circumstances and data sources [15] but none
for this specific and very important case. cisCall [16] stands out
as the state-of-the-art method specifically developed to analyze
FFPE samples. Here, we developed an alternative approach, a
bioinformatic pipeline that refines the calls of existing variant
callers to reduce these obstacles for the estimation of genetic
intratumor heterogeneity using paired FFPE samples and show
that supersedes all these existing methods. We developed this
somatic-variant postprocessing pipeline by empirical optimiza-
tion using 28 whole exome sequencing replicates—DNA samples
sequenced twice independently, and validated the results using
a different, high depth, sequencing technique.

Most scientific disciplines rely heavily on replication to
measure stochasticity and reduce different types of errors.
However, most sequencing experiments do not use any kind
of biological or technical replication, relying on increasing
levels of sequencing depth and postprocessing strategies to
improve their accuracy. This limitation has been highlighted
in the past in a small number of studies [17, 18]. These
studies identified quality control metrics that correlate with
the concordance between technical replicates and their relative
importance. However, only very recently has this concept been
applied to the improvement of variant-calling methods [19, 20].
Karimnezhad et al. [19] advocate using the intersection SNVs
identified by different methods and/or technical replicates,
whereas Kim et al. [20] developed a variant-calling method
(RePlow) that leverages technical replicates to dramatically
improve the specificity in the detection of somatic variants
present at very low variant allele frequency. This approach is
promising but requires the generation of technical replicates
for all study samples, potentially doubling sequencing costs.
Alternatively, here we present and implement a strategy to
use a small number of technical replicates to optimize a
pipeline, which then can be used to estimate intratumor
genetic heterogeneity reliably without the need to use technical
replicates for all study samples.

We selected a precursor of breast cancer, ductal carcinoma
in situ (DCIS), to develop and optimize our pipeline because
most of these tumors are detected in the early phase of their
development, and there is an important clinical need to be able
to estimate the risk level of this commonly diagnosed precancer
in order to better understand the genomic changes that are
associated with cancer progression. Improved risk stratification
in DCIS could guide improvements in management of the
condition and therapeutic intervention. The majority of breast
tumors develop in the terminal duct lobular unit, mainly starting
among duct cells [21, 22] (Figure 1). The cancer cells proliferate
within the ducts and deform their anatomical structure. Despite
the ducts’ growth in volume their walls remain intact, confining
the tumor cells in the lumen, separating them from nearby
tissues and limiting their dissemination. In this phase, the
tumor is defined as DCIS. Subsequently, the cells may evolve to
invasive disease, crossing the duct wall’s boundaries, invading
the surrounding tissue, and potentially metastasizing. DCIS
tumors can remain noninvasive but there is substantial evidence
that a subset will invade and, in some cases, metastasize. The
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Figure 1. Breast cancer anatomy. Schematic representation of mammary gland anatomy and cancer development. The majority of breast tumors develop in the terminal

duct lobular unit, 80% starting among ductal cells. Initially, the duct suffers a benign hypertrophic growth of cells that can progress into ductal carcinoma in situ (DCIS).

In this phase the neoplasm is confined within the duct’s lumen and it is still clinically benign. Cancer cells can cross the duct wall’s boundaries, invading nearby tissues

(IDC) and metastasizing.

development of a new bioinformatic algorithm to identify
somatic SNVs and measure genetic heterogeneity could provide
a significant contribution to the estimation of DCIS patients’ risk
for progressing to breast cancer.

Results
Ideally, the same sample of tumor DNA, when sequenced twice
with the same methodology, should give the same results (detect
the same mutations). We developed our mutation detection
pipeline (Figure 2, Supplementary Figure S1), optimized it using
duplicate (technical replicate) whole exome sequencing of the
same samples, and validated our results using deep targeted
sequencing.

Pipeline optimization

We used an empirical method for optimizing the analysis algo-
rithm through the comparison of technical replicates of whole
exome sequences. Any variant detected only in one sample but
not in the other is likely the result of a sequencing or data
processing error. This approach allowed us to systematically
and objectively compare alternative parameterizations of the
estimation pipeline to single out the best overall and to find the
most generalizable parameter values using cross-validation.

In order to optimize our pipeline, we assigned a range of
values to explore for each of the 13 parameters that control
its execution (Figure 2, Supplementary Figure S1) and explored
every possible combination of them, scoring each using a statis-
tic that integrates the central tendency and dispersion of the
heterogeneity across the 28 technical replicates. Furthermore,
we used different DNA quantities (from 20 ng to >100 ng) to
determine the limits of the method on small amounts of DNA
(Supplementary Table S1).

The resulting algorithm (Figure 2) yielded a mean similar-
ity across the 28 technical replicates of 88% (range 0–100%)
(Figure 3, Supplementary Table S2), which constitutes a 5-fold
improvement over using the same variant caller—Platypus—
without any postprocessing of the results [23], (17.8%, range:
0.1–61.8%). We identified a mean of 21.4 (range 1–68) SNVs per
sample (Table 1), which are distributed throughout the entire
exome (Supplementary Figure S2). In comparison against the
state-of-the-art FFPE-specific variant caller—cisCall, our algo-
rithm shows a 2-fold improvement in mean similarity (cisCall:
39.2%, range: 5–81%) (Supplementary Table S3).

Finally, we also assayed an alternative implementation of our
algorithm that uses Mutect2 to call variants, but it achieved a
much lower accuracy, with a mean similarity (including indels)
across the 28 technical replicates of only 2.4%, range 0.4–6.9%.
Overall, we found that only 14.9% of the SNVs overlap between
our main pipeline and this alternative implementation using
Mutect2.

Intratumor genetic heterogeneity estimation pipeline

In order to estimate the genetic heterogeneity between two
samples (A, B), we applied the concept that the presence of a
high confidence variant in one sample should increase the con-
fidence of that variant in the other sample. This concept could
also be applied to multiregion sequencing projects. We imple-
mented this in a crossed unequal comparison scheme (Figure 2,
Supplementary Figure S1), by which the set of filtered variants
detected in a sample is compared against all variants estimated
in the other sample. This comparison is then reversed, to finally
integrate the result of the two comparisons by considering any
variant found common in either comparison as common, or
private otherwise. Thus, if a variant has been detected with
high confidence in one sample and has also been detected in
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Figure 2. Flowchart of the algorithm used to estimate the genetic heterogeneity between two samples and details of its optimization. Inputs: aligned sequences (BAM

files) of the two samples (A, in red; and B, in blue) and their healthy tissue control (N, in green), population allele frequency data from the gnomAD database (single

nucleotide polymorphisms, SNPs, in purple), and user-specified configuration parameters (gear icon). Outputs: estimate of the genetic heterogeneity between samples

A and B and set of variants (level of detail user-specified). All parameters that control this pipeline are detailed in the Parameters box, accompanied by the range of

values assayed during optimization between parentheses and the final set of optimized values in bold. The key step of this algorithm is the generation of two sets of

private and common variants by comparing the variants in the two samples twice, alternatively filtering one of the sets and using all variants from the other.

Figure 3. Empirical optimization of the variant postprocessing algorithm. Each violin plot summarizes the distribution of optimization scores of 5 308 416 combinations

of values of the 13 parameters that control the pipeline for one of the 28 technical replicates (same DNA sample processed twice independently). The optimization

score indicates the two-dimensional euclidean distance to the theoretical optimum value of similarity between technical replicates (1) and proportion of final common

variants that have a population allele frequency below 0.05 (1) relative to the maximum possible distance. After parameter optimization the similarity between the

technical replicates was on average 88%, range 0–100% (x = score before optimization; —: score after optimization; colors indicate the amount (ng) of DNA used as

template).

the other sample–even if with low confidence–the variant is
considered present in both samples. However, if a variant is
detected with low confidence in both samples the variant is
discarded, preventing an artificial increase in the confidence

of shared variants. Finally, variants that are detected with high
confidence in only one sample and not detected even at low
confidence in the other sample, are considered private. Before
the integration step, the algorithm refines the variants removing
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Table 1. Similarity between technical replicates and number of variants. The similarity between technical replicates on average is 88%, range
0–100%. Number of total, common and private SNVs. Common SNVs: SNVs detected in both replicas of the same DNA samples; Private SNVs:
SNVs detected only in one of the two DNA sequences of the same DNA

Sample Common A + B Total Similarity (%)

DCIS-017 0 1 1 0
DCIS-020-B3 19 8 27 70.4
DCIS-020-B6 57 11 68 83.8
DCIS-028-K12 4 0 4 100
DCIS-029-D5 20 6 26 76.9
DCIS-029-D8 11 2 13 84.6
DCIS-050 8 1 9 88.9
DCIS-064 28 2 30 93.3
DCIS-080 7 0 7 100
DCIS-094-B11 45 4 49 91.8
DCIS-094-B7 35 1 36 97.2
DCIS-122 3 0 3 100
DCIS-135 9 2 11 81.8
DCIS-163 1 0 1 100
DCIS-164 44 2 46 95.7
DCIS-168-C4 55 2 57 96.5
DCIS-168-C8 41 0 41 100
DCIS-171 NA NA NA NA
DCIS-178 8.0 0 8 100
DCIS-211 12 0 12 100
DCIS-213 NA NA NA NA
DCIS-222-B10 6 0 6 100
DCIS-222-B6 1.0 0 1 100
DCIS-225-A16 9 5 14 64.3
DCIS-225-A6 NA NA NA NA
DCIS-227 6 0 6 100
DCIS-250 NA NA NA NA
DCIS-267 33 5 38 86.8
Average 19.3 2.2 21.4 88.0
SD 18.2 2.9 19.8 21.4

detected germline variants, known germline variants in human
populations, and variants with insufficient coverage in either
the normal sample (all variants) or the other sample (private
variants) (see Methods for additional details).

Validation of filtering parameters

We performed a 5-fold cross-validation study to assess the sensi-
tivity of the optimization strategy to input data, and how well the
algorithm generalizes to independent datasets. The optimiza-
tion strategy was relatively robust to the input data, returning
a mean evaluation score (empirical cumulative distribution
of test score) of 0.79, range 0.4–1 (Supplementary Figure S3).
Importantly, this experiment shows the robustness of the overall
optimal model across different cross-validation folds, being the
model with the highest mean training score and within the
top 0.00006% of the mean test scores in this cross-validation
analysis. The test score of the overall optimal model is always
as good or better than the model selected based on the training
score for each fold, and both are always better than the scores
obtained by cisCall. The test scores for some folds are relatively
low for both methods. Our score integrates information of
central tendency and dispersion (see Methods for details) but
is calculated using a small sample size in the test set (n ≤ 7).
The test set always includes samples across all categories of
initial amount of DNA. The small number of samples of different
quality increases the dispersion of the values and, in turn,
decreases the final test scores.

Sensitivity analysis of the number of technical
replicates

We saw a fast increase in the relative score, reaching a
plateau with just six technical replicates and exhibiting
diminishing returns when going over 10 technical replicates
(Supplementary Figure S4). With six technical replicates the
results are very close to the ones obtained using the whole
dataset, resulting in conditions that show a mean empirical
cumulative probability of the optimization score that is 0.98
times the score obtained using all samples.

Validation of somatic variants

In order to validate the identified mutations with our new
method, we analyzed the same DNA used for the exome
sequences using targeted primers and the AmpliSeq™ tech-
nology. We achieved an average of 18 821 (tumor) and 12 904
(control) read coverage for each SNV in the validation set.
The comparison of the data confirmed 89.6% (with optimal
parameters, O) and 86.3% (with permissive parameters, P) SNVs
identified by applying our pipeline to the exome sequence
(Table 2). We found two (O) or two (P) of the unconfirmed variants
belong to the same gene MUC6 characterized by highly repetitive
sequences, thus subject to read alignment errors and known
to have an unreliable reference sequence [24]. Excluding all
MUC6 (three (O) or three (P) variants), we validated 90.7% (O)
or 86.7% (P) of the remaining variants. We found that 21.4%
(O) and 18.7% (P) of the confirmed variants are also present
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Table 2. Validation. Targeted sequencing confirmed that 89.6% (optimal filtering pipeline) and 86.3% (permissive filtering pipeline) of single
nucleotide variants identified using our algorithm. Excluding MUC6 and low input amounts of DNA we validated 94.7% (O) or 93.2% (P) of
variants. We found that the 14.2% (O) or 12% (P) of the confirmed variants are also present in the control samples with a frequency >10%. These
variants may be SNPs

Optimal filter (O) Variants Common (A and B) Private (A or B) Variants in controls (>10%)

Total number of SNVs 154 146 (94.8%) 8 (5.2%) 33 (21.4%)
Validated variants 138 (89.6%) 133 (91.1%) 5 (62.5%) 32 (97%)
Nonvalidated variants 16 (10.4%) 13 (8.9%) 3 (37.5%) 1 (3%)
MUC6-excluded, DNA � 40 ng SNVs 113 110 (97.3%) 3 (2.7%) 16 (14.2%)
Validated variants 107 (94.7%) 105 (95.5%) 2 (66.7%) 15 (93.8%)
Nonvalidated variants 6 (5.3%) 5 (4.5%) 1 (33.3%) 1 (6.3%)
Permissive filter (P) Variants Common (A and B) Private (A or B) Variants in controls (>10%)
Total number of SNVs 182 170 (93.4%) 12 (6.6%) 34 (18.7%)
Validated variants 157 (86.3%) 152 (89.4%) 5 (41.7%) 33 (97.1%)
Nonvalidated variants 25 (13.7%) 18 (10.6%) 7 (10.6%) 1 (2.9%)
MUC6-excluded, DNA � 40 ng SNVs 133 130 (97.7%) 3 (2.3%) 16 (12%)
Validated variants 124 (93.2%) 122 (93.8%) 2 (66.7%) 15 (93.8%)
Nonvalidated variants 9 (6.8%) 8 (6.2%) 1 (33.3%) 1 (6.3%)

in the control samples with a frequency >10%; thus, these
could be SNPs and not somatic mutations (Table 2). However,
the expected frequency (50%) of the two alternative alleles of
a germline SNP only occurs in seven (O and P) cases, if we
include alleles with frequency >40% (Supplementary Table S4,
Supplementary Figure S5). Importantly, we found a strong
negative correlation between the amount of input DNA used
(20, 40, 60 and 80 ng, validation set) for the NGS libraries and
the inability to identify correctly the SNPs in the germ line
DNA (Spearman correlation r = −0.31, P < 0.0001(O), r = −0.28,
P < 0.001(P); Supplementary Table S4). Excluding MUC6 variants
and DNA samples with less than 40 ng (this cut-off value reduces
the errors by 50%), we validated 94.7% (O) or 93.2% (P) of the
variants, however, three (2.7%) (O) or three (2.3%) (P) variants
were detected only in one of the two technical replicates.

We found that insertion–deletion variants are an unreliable
subset of mutations (22 (O) and 16 (P) indels tested: 31.8% (O) and
31.3 (P) indels fully validated, 31.8% (O) and 25 (P) indels partially
validated, in which not all nucleotides have been confirmed).

Breast cancer genetic divergence

In order to showcase the application of our algorithm, we
compared synchronous samples from two regions of DCIS and
one sample of invasive ductal carcinoma (IDC) in each of 53
patients. We found a statistically significant difference in the
number of mutations between these two diseases, (mean 10.40
in DCIS and 18.05 in IDC, paired-samples sign test, P < 0.05).
Importantly, our method allowed us to measure a statistically
significant genetic divergence (heterogeneity) between the
two synchronous DCIS samples and between DCIS versus IDC
samples (Figure 4) (paired-samples sign test, P < 0.01; Mann–
Whitney U test, P < 0.01). Genetic divergence is defined as the
percentage of mutations detected in the union of the mutations
from the two samples that are not shared by both samples.
It is a common metric in evolutionary biology to estimate
the amount of evolutionary change that has occurred since
two populations shared a common ancestor. Previous work
has shown that genetic divergence can predict progression to
malignancy [8–10].

Discussion
Cancer is a disease of clonal evolution, and intratumor het-
erogeneity is its fuel. There is increasing recognition that this

Figure 4. Mutational burden and genetic divergence. The average of the number

of mutations of synchronous DCIS samples (10.40 ± 15.31 SD) is lower than the

IDC samples (18.05 ± 31.48 SD) and there is a statistically significant difference

between the two groups, paired-samples sign test, P < 0.05. We found a sta-

tistically significant difference in genetic divergence comparing two regions

of synchronous DCIS (21.48% ± 17.54 SD) versus the divergence between syn-

chronous DCIS IDC samples (44.51% ± 29.04 SD) within the same patient, paired-

sample sign test and Mann–Whitney U test, P < 0.01. White circle = median, box

limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the

interquartile range from the 25th and 75th percentiles; curves represent density

and extend to extreme values. Data points are plotted as dots.

heterogeneity poses a challenge for traditional sampling and
prognosis, as different biopsies may sample different clones
with variable relevance to the future behavior of the tumor.
However, because heterogeneity itself drives clonal evolution,
the magnitude of heterogeneity may itself be prognostic. Our
previous studies of metrics of intratumor heterogeneity showed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab221#supplementary-data
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that one robust measure is the degree to which two samples
from the same tumor have genetically diverged (i.e. genetic
diversity) [9]. This measure has the useful property that the
more of the genome is sequenced the more accurate it becomes.
We hypothesized that those DCIS lesions with greater clonal
heterogeneity would be more likely to progress to invasive and
metastatic disease. However, in order to test that hypothesis,
we required a reliable method to measure clonal heterogeneity
in this experimental system. Here we have developed, charac-
terized and validated a method to measure genetic divergence
from two FFPE derived DNA samples from the same tumor,
solving this limitation. Our bioinformatics pipeline represents a
significant methodological advance compared to the currently
available bioinformatic tools used for the analysis of small FFPE
samples.

The sequencing of small quantities (less than 200 ng) of
DNA extracted from FFPE samples leads to low coverage, high
duplication rates and substantial sequencing errors that require
correction in order to obtain accurate detection of somatic muta-
tions. Variant-calling software packages need to be optimized
to reduce the impact of sequencing errors. This is particularly
important in the study of heterogeneity, as well as precision
medicine, as both false positive and false negative detection of
mutations can impact clinical decision making and diminish the
predictive power of heterogeneity as a potential biomarker.

Any study of tumor heterogeneity using comparable DNA
samples must account for and minimize technical variation.
We found 88% of the variants were detected in both dupli-
cated sequences and 94.7% excluding the MUC6 gene and those
samples with ≤40 ng input DNA. Both levels of filtering strin-
gency tested (optimal and permissive) have proven successful.
As expected, the relaxed version of the algorithm allows the
detection of a higher number of variants in exchange for a
small reduction of accuracy. It is surprising that, when not
using a postprocessing pipeline such as the one presented here,
variant callers like cisCall, Platypus and Mutect2 generated a
range of relatively inaccurate results on our WES data, with
similarities between the technical replicates of only 39.2%, 17.8%
and 2.4%, respectively. Our systematic study reveals the magni-
tude of uncertainty related to making mutation calls from small
amounts of FFPE derived DNA.

We validated the bioinformatic algorithm by resequencing
the regions containing the variants using a different sequenc-
ing technique: AmpliSeq™. This technology allows for a deep
resequencing of the regions of interest, improving our ability
to identify mutations correctly. The comparison between the
data obtained with these two techniques allowed us to validate
the new algorithm. Among these, some are presumably SNPs
and not somatic variants. However, the frequency of the two
alternative alleles is often far from the expected frequency of
50%. This could be because of difficulties encountered when
sequencing with AmpliSeq™ to analyze DNA extracted from
FFPE, or biological signals of neoplastic DNA present in the
control samples. The fact that there is a strong statistically
significant negative correlation between the amount of DNA
used for the preparation of the libraries and the presence of SNPs
detected as SNVs suggests that at least 40 ng of input DNA be
used for standard library preparation. In particular, this result
indicates that the quality and quantity of control DNA is a key
factor in the ability to correctly identify somatic mutations in
tumors. In many instances, control DNA is not a limiting factor
and higher amounts can be used for the preparation of the NGS
libraries. Moreover, control samples could be collected during
surgery or from blood cells, obtaining DNA from specimens that

have not undergone the effect of fixation and DNA deterioration.
Our algorithm allows us to modulate the stringency of SNP fil-
tering parameters and to obtain the frequency of each potential
SNP in the population.

The variants detected using our algorithm were distributed
over the entire exome and we have cataloged numerous muta-
tions in well-known breast cancer genes. As a first application of
the new algorithm, we compared synchronous DCIS and invasive
(IDC) samples. We identified a statistically significant increase
in the number of mutations and genetic divergence in the inva-
sive samples compared to DCIS samples. This result has been
described in other types of tumors [9]. Given these findings, we
can test if genetic divergence between regions of DCIS predicts
future recurrence of DCIS or progression to IDC in a larger cohort.

The current version of our algorithm has been developed and
implemented to fit our needs, analyzing two samples per patient
to measure their genetic divergence. However, this strategy is
easy to generalize to any number of samples to apply it to larger
multiregion datasets. We have not done it here since there are
some nuances that may need to be adjusted depending on the
final purpose of the called SNVs. The removal of variants with
insufficient coverage in other samples is the main focus of these
decisions. For example, for a downstream analysis that does not
integrate uncertainty easily, the algorithm could require enough
coverage in most (or all) samples, discarding variants with a
lot of missing data, whereas for other applications those SNVs
could be kept if they are at least present in another sample,
assigning missing values or a measure of uncertainty to samples
with insufficient coverage. The core step of the algorithm—
comparison of filtered and unfiltered sets of variants—could be
kept as it is. However, we also envision more stringent alter-
natives in which a variant must be present in more than one
nonfiltered sample to be kept in the final set. The removal of
germline variants and SNPs would remain, since it does not
depend on the number of samples.

Conclusion
We developed a bioinformatics pipeline to analyze pairs of DCIS
samples taken from the same neoplasm. We identified the
mutations present in each sample and we showed that this
method has high fidelity in technical replicates and is capable
of identifying different levels of genetic heterogeneity between
regions of the same tumor. This algorithm is easily modifiable
and can be integrated with additional parameters or different
ranges of values, allowing investigators to choose the level
of filtering stringency most appropriate for their system.
These parameter values can be reoptimized for a different
experimental system with as few as six sets of technical
replicates, and the optimized set of parameter values provided
here is robust to changes in the input data and thus is expected
to translate well to other systems. These characteristics make
our algorithm readily applicable to large tissue banks of FFPE
samples of any neoplasm and are particularly useful for studies
to quantify genomic heterogeneity.

Online methods
Clinical data of patients and biological samples

This study was approved by the Institutional Review Board (IRB)
of Duke University Medical Center, and a waiver of consent was
obtained according to the approved protocol. FFPE breast tissue
blocks were retrieved from Duke Pathology archives. All cases
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underwent pathology review (AH) for tissue diagnosis and case
eligibility.

Breast tumors were classified using the World Health Organi-
zation criteria [25]. Following pathology review, a total of 66 sep-
arate patients are included in this study. All DNA was extracted
from archival FFPE thin sections stained with hematoxylin.
For tumors, the study pathologist identified areas of DCIS or
invasive cancer that were macrodissected to enrich for tumor
epithelial cells. Control DNA was extracted from either distant
benign areas of the breast or a benign lymph node using the
same procedure employed for the tumor containing areas. These
benign areas were confirmed to be devoid of tumor by the study
pathologist.

A total of 28 breast tumor DNA samples were included in the
development of the method procedure divides as follows: pure
DCIS (DCIS not associated with invasion; n = 15 tumors, from 11
patients), synchronous DCIS (DCIS identified concurrently with
invasive cancer; n = 6 tumors, from six patients) and IDC (n = 7
tumors, from five patients) (Table 3). Fifty-three synchronous
DCIS patients were used for the experimental validation of the
new algorithm. For each patient we selected two DCIS samples
located at least 8 mm apart (total 106 samples) and 37 IDC
samples derived from the same synchronous DCIS patients.
Each specimen was macrodissected and DNA extracted sepa-
rately. IDCs and DCIS were graded according to the Nottingham
grading system [26] or recommendations from the Consensus
conference on DCIS classification [27], respectively.

DNA extraction

The DCIS component of all cases as well as IDC from syn-
chronous DCIS cases were macrodissected separately, following
hematoxylin staining, of between 10 and 25 five-micron-thick
histological sections. The first and last slides were stained with
hematoxylin–eosin (H&E) staining and reviewed by a pathologist
to confirm the presence of ≥70% of neoplastic cells.

DNA was extracted using the FFPE GeneRead DNA Kit which
incorporates enzymatic cleavage of DNA at uracil residues via
uracil DNA glycosylase reducing the problem of cytosine deam-
ination (Qiagen, cat n. 180 134) according to manufacturers’
instructions. DNA quantification was performed using a Qubit™
1X dsDNA HS Assay Kits (ThermoFisher, cat. n. Q33230), and DNA
quality assessed with an Agilent 2100 Bioanalyzer.

DNA sequencing

We sequenced different quantities of genomic DNA (20, 40, 60,
80, 100, >100 ng) to estimate the effects of DNA quantity on
the estimation of intratumor genomic heterogeneity. All techni-
cal replicates were separated into two aliquots from the same
tube of DNA sample before all subsequent steps. For experi-
mental validation of the new algorithm, we used ≥40 ng of
genomic DNA. Each aliquot was sheared to a mean fragment
length of 250 bp using the Covaris LE200 instrument, and Illu-
mina sequencing libraries were generated as dual-indexed, with
unique bar-code identifiers, using the Accel-NGS 2S PCR-Free
library kit (Swift Biosciences, cat. n. 20,096). We pooled groups of
96 equimolar libraries (100 ng/library) for hybrid capture using
two target panels, the human exome and a panel containing all
exons of the 83 genes in the breast cancer gene panel (BRC83,
Supplementary Table S5). To capture BRC83 we used biotinylated
‘ultramer’ oligonucleotides synthesized by Integrated DNA Tech-
nologies (Coralville, Iowa), and to capture the human exome we
used IDT’s xGen Exome Research Panel v1.0. After hybridization,

capture pools were quantitated via qPCR (KAPA Biosystems kit).
We sequenced the final product using an Illumina HiSeq 2500 1T
instrument multiplexing nine tumor samples per lane.

After binning the sample data according to its index
identifier, we aligned it to the Genome Reference Consortium
Human Build 37 using the BWA-MEM (Li, 2013) algorithm,
and marked sequencing duplicates with Picard’s MarkDu-
plicates. The resulting BAM files are the input data for our
pipeline for intratumor genetic heterogeneity calculation. We
discarded samples with less than 40% of the target covered at
40× (Supplementary Table S1). This sequencing protocol was
performed at the McDonnell Genome Institute at Washington
University School of Medicine in St Louis.

Intratumor genetic heterogeneity estimation pipeline

We implemented our heterogeneity estimation pipeline
(Figure 2) in our Perl computational framework ITHE, tailored
to be run on high-performance computing clusters. Variants
are first called using Platypus 0.8.1 [23] against the Genome
Reference Consortium Human Build 37 reference genome
using the default settings except for the parameters regulated
during pipeline optimization (Figure 2): The inclusion of reads
with small inserts (—filterReadPairsWithSmallInserts), and the
minimum number of reads supporting a variant to consider it for
calling (—minReads). Before downstream analyses, our pipeline
splits multiallelic sites into biallelic sites, and clusters of variants
into individual SNVs. The variant filtering step uses SnpSift 4.2
[28] (Phred Quality: QUAL, Coverage: GEN[∗].NR[∗], Forward and
Reverse variant reads: NF & NR, Variant reads: GEN[∗].NV[∗]).
The depth estimation step, which estimates the coverage of the
position of a variant in the other samples (and the proportion
of reads supporting that specific allele) is carried out by first
generating a bed file integrating deletions, insertions, and SNVs
using BEDOPS [29], and then using it as intervals input for GATK
3.5.0’s UnifiedGenotyper, executed to output data for all sites
(—output_mode EMIT_ALL_SITES, −glm BOTH). The position
filtering step is carried out in the inhouse pipeline with these
results. This step differs slightly in the comparison between
tumor samples and the comparison against the normal. In the
first case, a variant is discarded if any of the conditions is not
met, whereas in the second both the allele frequency and the
number of variants need not be met for them to trigger the
discard of a variant while the coverage filter acts independently.
Importantly, although the steps of variant removal are generally
applied to all sets of variants (e.g. removal of germline variants,
candidate SNPs and positions with lack of support in the
normal), the removal of variants based on insufficient coverage
in the other tumor samples only applies to private variants.

Population allele frequency estimates are obtained from the
gnomAD 2.1.1 genomic database [30], which spans 15 708 whole-
genome sequences, and filtering using this information is car-
ried out within our pipeline. All variant comparisons within our
pipeline are genotype specific.

We also implemented an alternative version of this pipeline
identifying somatic mutations using Mutect2 [31] version
4.0.5.0 for comparison purposes against a developing ver-
sion of our pipeline, both lacking the population allele fre-
quency step (Figure 2), and using slightly different parameter
values, which were optimal at that stage of development
(Supplementary Table S6). To use this variant caller, first we
generated a panel of normals using all control tissue samples
and the CreateSomaticPanelOfNormals GATK command. Then,
we called variants on all paired tumor files using the panel

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab221#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab221#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab221#supplementary-data
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of normals, IDT’s xGen Exome Research Panel v1.0, and the
AllowAllReadsReadFilter. We filtered the resulting variants with
an equivalent reimplementation of our postprocessing pipeline
that uses Bcftools isec to perform comparisons between sets of
variants and ran FilterMutectCalls to obtain the final calls.

Finally, we run cisCall’s cisMuton algorithm using the default
options (except for options related to high-performance comput-
ing specifications) and dbSNP build 151. We used a slightly differ-
ent version of the reference genome (chromosomes 1 to 22, X, Y
and M of hg19) that is distributed with cisCall, because cisCall is
not compatible with the reference genome we used in the rest of
the analyses. Both are based on the same major reference build,
and the minor differences between them (mostly contig names)
should not have a relevant effect in the results. Due to cisCall’s
scalability problems, we only run this software in the targets of
the exome panel used for sequencing. Whenever we compare
the similarity results between our algorithm and cisCall, we only
consider variants lying within these regions to ensure that the
comparison between the two programs is fair.

Optimization of the intratumor genetic heterogeneity
pipeline

We assigned a range of values to explore for each of the 13
parameters that control the genetic heterogeneity estimation
pipeline (Figure 2) and explored every possible combination of
them with the data from all 28 technical replicates, assessing
a total of 5 308 416 parameter combinations. We calculated the
score of a condition (set of parameter values) as the minimum
value of the 90% confidence interval of the mean (P = 0.9) of the
scores of that condition across the 28 technical replicates. We
used this statistic to integrate central tendency and dispersion
in the same measure. The score of each technical replicate
was calculated as the two-dimensional euclidean distance to
the theoretical optimum value of similarity between technical
replicates (1) and proportion of final common variants that have
a population allele frequency below 0.05 (1) relative to the max-
imum possible distance. This score ranging from 0 to 1, allowed
us to co-optimize the similarity between technical replicates and
the sets of variants with the least chance of being dominated
by germline variants not detected in the normal and detected
as somatic common variants. We performed a 5-fold cross-
validation study stratified by amount of DNA, in which patients
were partitioned randomly into five subsets, with at least one
patient from each DNA category 20, 40, 60, 80, ≥100 ng. In each
of the five interactions, one of the subsets (testing set) was held
out of the parameter optimization and then evaluated based on
the optimal parameter values obtained from the training set. We
implemented the optimization and cross-validation steps in R
[32], using the LSR [33], and cowplot [34] packages.

Sensitivity analysis on the number of technical
replicates

We subsampled our dataset to create smaller technical replicate
datasets of k = {2, . . . ,28} sizes. For each k, we generated all
combinations of size k with our 28 technical replicates and took
a random sample of 104 of them (or all if ≤104) without replace-
ment. We optimized the pipeline using each of these resampled
subsets and reported the empirical cumulative probability of
its optimization score using all samples. This statistic indicates
how this resulting pipeline compares with the overall optimal
pipeline in the complete dataset.

Validation of somatic variants

In order to validate the robustness of the method we used both
the optimized stringent (O) parameter values and a permissive
(P) version of the algorithm (minimum number of forward
and reverse reads supporting the variant = 7 instead of 10).
The permissive version allowed us to increase the number
of the variants selected. We randomly selected for validation
a subset of SNVs (O = 154 out of 514, P = 182 out of 758) and
insertion–deletion mutations (O = 22 out of 227, P = 16 out of 381)
sequencing DNA amplicons containing the variants detected
with our bioinformatic algorithm by targeted resequencing using
AmpliSeq™ technology (Thermo Fisher Scientific, Waltham,
MA, USA) according to the manufacturer’s specification. The
AmpliSeq™ technology allows for a deep resequencing of the
regions of interest, improving our ability to identify mutations
correctly. We resequenced both tumor and control samples.
Alternative alleles were validated if their frequency was ≥1%.

Calculation of genetic divergence

We calculate genetic divergence between two samples as the
number of mutations that are not shared between the two
samples, divided by the total number of mutations in the union
of the mutations detected in the two samples (expressed as a
percentage). Divergence can only be reliably calculated if there
are enough mutations to distinguish shared ancestry (mutations
in common, sometimes called ‘public mutations’) from the evo-
lution that has occurred after two populations last shared a
common ancestor (private mutations). In order to reduce error in
the divergence percentage calculation, we remove the samples
with less than five total variants in the union of the SNVs called
for both samples.

Software availability

All software developed to carry out this study is distributed
under the GPLv3 license. The implementation of the intratumor
heterogeneity estimation pipeline—ITHE, can be found at
https://github.com/adamallo/ITHE, scripts to carry out the
cross-validation study and data analysis can be found at
https://github.com/adamallo/ITHE_analyses, and the alternative
implementation of our intratumor genetic heterogeneity
pipeline using Mutect2 to call variants can be found at https://gi
thub.com/icwells/mutect2Parallel.

Key Points
• The sequencing of reduced quantities of DNA

extracted from FFPE samples leads to substantial
sequencing errors that require correction in order to
obtain accurate detection of somatic mutations.

• We developed and validated a new bioinformatic algo-
rithm to robustly identify somatic single nucleotide
variants using small amounts of DNA extracted from
archival FFPE samples of breast cancers.

• Variant-calling software packages need to be opti-
mized to reduce the impact of sequencing errors.
Our bioinformatics pipeline represents a significant
methodological advance compared to the currently
available bioinformatic tools used for the analysis of
small FFPE samples.

https://github.com/icwells/mutect2Parallel
https://github.com/icwells/mutect2Parallel
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Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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