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Abstract

Background: Genomic control (GC) method is a useful tool to correct for the cryptic
relatedness in population-based association studies. It was originally proposed for correcting for
the variance inflation of Cochran-Armitage’s additive trend test by using information from unlinked
null markers, and was later generalized to be applicable to other tests with the additional
requirement that the null markers are matched with the candidate marker in allele frequencies.
However, matching allele frequencies limits the number of available null markers and thus limits the
applicability of the GC method. On the other hand, errors in genotype/allele frequencies may cause
further bias and variance inflation and thereby aggravate the effect of GC correction.

Results: In this paper, we propose a regression-based GC method using null markers that are not
necessarily matched in allele frequencies with the candidate marker. Variation of allele frequencies
of the null markers is adjusted by a regression method.

Conclusion: The proposed method can be readily applied to the Cochran-Armitage’s trend tests
other than the additive trend test, the Pearson’s chi-square test and other robust efficiency tests.
Simulation results show that the proposed method is effective in controlling type I error in the
presence of population substructure.

Background
Population-based genetic association analysis is a power-
ful method for detecting susceptibility loci for complex
diseases. A common issue in such design is that it may
be subject to population heterogeneity and, as a result,
spurious association may be reported if the population
substructure is not properly addressed. Many methods
have been proposed to deal with population hetero-
geneity in genetic association analysis.

When there is population stratification (PS) on allele
frequencies, a direct method is to use family-based
design [1-5] in which unaffected family members are

chosen to match each case so that the association
detected is truly due to the linkage between the
candidate marker and the disease. But this method is
limited by the cost and the difficulty in recruiting family
members. Pritchard et al. [6,7] used a Bayesian clustering
method to infer the number of subpopulations and to
assign the individuals to putative subpopulations. The
inferred memberships in each subpopulation are then
used to perform tests of association for that subpopula-
tion. A modification of this method was implemented by
Satten et al. [8], in which subpopulation memberships
were decided by a latent class model. Patterson et al. [9]
proposed a principle components analysis method to

Page 1 of 7
(page number not for citation purposes)

BioMed Central

Open Access

mailto:sunroom@mail.ustc.edu.cn
mailto:houbo@ustc.edu.cn
mailto:ynyang@ustc.edu.cn
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


correct for the population structure and obtained a test
statistic based on the eigenvalues of the correlation
matrix to detect the population structure. When the
population has substructure, the usual chi-square statis-
tics have non-central chi-square distributions under the
null. Gorroochurn et al. [10] proposed a δ-centralization
method to correct for PS by centralizing the test statistics
using information from the null markers.

Another form of population heterogeneity is the cryptic
relatedness or correlation across individuals. For this type
of data, Devlin and Roeder [11] developed the genomic-
control (GC) method to correct for the variance inflation.
They proposed to use the additive Cochran-Armitage trend
test to detect the gene-phenotype association. Assuming
that the correlations or kinship coefficients are the same
across all markers, they showed that the scaled test statistic
has asymptotically a 1-df chi-square distribution. The
scaling factor, known as the variance inflation factor
(VIF), can be estimated from information of the unlinked
null markers.

The GC method is a simple and effective method in
association studies to correct for population heteroge-
neity caused by cryptic relatedness. However, when the
GC method is applied to recessive or dominant trend
tests [12] or, to Pearson’s chi-square test [13] or other
robust tests [14], the null loci are required to match with
the candidate loci in allele frequencies, which reduces
the number of available null makers.

In this study, we propose a regression-based genomic
control (RGC) method that can be applied to association
tests other than the additive trend test. This method allows
for using arbitrary null markers in the GC correction
procedure by adjusting the variability of the allele
frequencies of the null markers through linear regression.
We use simulation studies to check whether the method
appropriately corrects for the problem of spurious associa-
tion. In addition the robustness of the proposed method to
the errors in selecting null markers is assessed. We also
simulate the power of our method.

Methods
Trend tests
Let A be the high-risk candidate allele with the allele
frequency p and a the normal one with the allele
frequency q = 1 - p. To detect the association between the
marker A and a disease, we assume that there are n0 cases
and n1 controls with total n = n0 + n1 individuals. The
genotype data are summarized in Table 1.

Denote the three genotypes by G0 = aa, G1 = Aa and G2 =
AA. Let fi = P(case|Gi) be the penetrance given genotype

Gi, i = 0, 1, 2. The null hypothesis of no association
between the candidate marker and a disorder can be
expressed as H0: f0 = f1 = f2. Since A is a high risk allele
and a a normal one, let the score of genotype aa be 0,
and that of AA be 1. For a specific choice of score x for
genotype Aa, let

Δ x p p x p p= − + −( ) ( )� � � �12 02 11 01

be the difference in weighted allele frequency between
cases and controls, where �pij = nij/ni, i = 0, 1, j = 1, 2.
When there is no allelic dependence or Hardy-Weinberg
equilibrium holds in the population, Δx has, under the
null hypothesis, the variance

σ x n n p x p p xp2
1

1
0

1
2

2
1 2 1

2= + + − +− −( )[( ) ( ) ], (1)

where p1 and p2 are the frequencies of Aa and AA
respectively. It can be estimated by
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where �pk = mk/n is the estimate of pk, k = 1, 2. The
Cochran-Armitage’s trend test indexed by x is then given
by
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In standard situation, Z x
2 has a central chi-square

distribution with one degree of freedom under the null
hypothesis. However, if there is cryptic relatedness, σ x

2

may be inflated. Denote the inflated variance of Δx under
the null by τ x

2 = varCR(Δx) and the variance inflation
factor by λ τ σx x x= 2 2/ . By this notation, in the presence
of CR, Zx ~ N(0, lx) under the null hypothesis. Illustrated
in Figure 1 are the VIF l0, l0.5 and l1 as a function of the
allele frequency p of the candidate marker. This figure
was drawn from a simulated data of three subpopula-
tions with (20, 30, 50) cases and (50, 30, 20) controls,
and the Wright’s coefficient F being 0.01. It shows that
l0.5 of the additive model is a constant, l1 of a dominant
trend test is a decreasing function of p while l0 of a

Table 1: Genotype counts

Genotype

Group aa Aa AA Total

Case n00 n01 n02 n0
Control n10 n11 n12 n1

Total m0 m1 m2 n
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recessive trend test is an increasing function of p. This
verifies the results in [12].

The fact that the VIF l0.5 of the additive trend test doesn’t
depend on allele frequency of the candidatemarkermakes it
possible that the l0.5 can be consistently estimated from a
sequence of unlinked markers with arbitrary allele frequen-
cies [11]. Unfortunately this is not true for trend tests with x
other than 0.5 since the quantity lx does depend on allele
frequency of the candidate marker. Therefore, dominant or
recessive trend tests and other robust tests cannot be
uniformly adjusted by the GC method using null markers
with different allele frequencies. To overcome this problem,
Zheng et al. [12] proposed to use null markers that have the
same allele frequency as that of the candidate marker to
evaluate the variance inflation factor. This constraint of
matching allele frequency limits substantially the number of
null markers that can be used.

RGC method
In what follows, we propose a regression-based GC
method to adjust for the frequency variability of null
markers when the GC method is applied to the general
trend tests and the Pearson chi-square test.

In the Appendix, we show that when cryptic relatedness
is present, under the null hypothesis the variance of Δx is
a quartic polynomial of allele frequency p,

τ β β β βx p p p p2
1 2

2
3

3
4

4= + + + . (3)

Gorroochurn et al. [10] pointed out that when the
population has several subpopulations, Δx has a non-
zero mean

μ α α αx p p= + +0 1 2
2. (4)

When the population is of pure CR, the theoretical value
of μx is zero. But in reality the PS and CR are usually
mixed together, so it won’t do any harm if we include
this term in our analysis.

Let B1, B2, ..., BK be arbitrary K null markers with minor
allele frequencies p1, ..., pK. For the k-th marker, let �p ij

k( )

be the genotype frequency estimate for genotype j
in g roup i , i = 0 , 1 , j = 0 , 1 , 2 . Then

Δ x
k k k k kp p x p p( ) ( ) ( ) ( ) ( )( ) ( )= − + −� � � �12 02 11 01 is the analogue of

Δx for null marker Bk. Let �pk be the sample estimate of pk.

Then we estimate the coefficients in (4) by minimizing
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Denote the estimate of ai by �α i , i = 0, 1, 2. Let
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Let p be the MAF of the candidate marker. Then we can
estimate τ x

2 and μx by
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The RGC-corrected Cochran-Armitage’s trend test with
score x can then be defined as

Z x x
x

x
∗ = −Δ �

�
μ

τ
. (7)

The Cochran-Armitage’s trend tests are more powerful
than the Pearson’s chi-square test if the genetic model or
x can be correctly specified. When the genetic model is
unknown and the score x may be subject to misspecifica-
tion, robust tests such as Pearson’s chi-square test is
preferred. Zheng et al. [13] proposed the following 2-df
Pearson’s chi-square test

Figure 1
VIF as function of allele frequency p of candidate
marker (F = 0.01).
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where �ρ = + +
m m

m m m m
0 2

0 1 1 2( )( ) is the estimate of the

correlation coefficient of Z0 and Z1. Combining (7) and
(8) together, we therefore, propose the RGC-corrected
Pearson’s chi-square test as
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Simulation study
To assess the validity of the proposed RGC method, we
have implemented extensive simulations. Following
[11], we use Wright’s coefficient F to measure the
correlation due to CR. Since it is difficult to simulate
pure CR data, following [11,12] and [14], we employ the
following procedure to generate a CR population. Let p
be the allele frequency of a marker. Assume that there are
L subpopulations including a1,..., aL cases and b1, ..., bL
controls. We first generate p1, ..., pL independently from
the Beta distribution Beta((1 - F)p/F, (1 - F)(1 - p)/F). We
then generate L subpopulations having allele frequency
p1, ..., pL respectively, assuming that within each
subpopulation Hardy-Weinberg equilibrium holds.
Finally we mix the L subpopulations together. From
long run, this mixed population would resemble a pure
CR population.

The details of the data generation are as follows. We used
two subpopulations in each of our simulation. First we
chose an allele frequency p of amarkerwhich could be either
a candidate marker or a null marker. We generated each of
p1 and p2 from the Beta distribution Beta((1 - F)p/F, (1 - F)
(1 - p)/F). Let C1, C2 represent the two subpopulations. We
calculated the probabilities P(Gi|Cj), i = 0, 1, 2, j = 1, 2
according to HWE. The disease prevalence kj in subpopula-
tion Cj was estimated by

k P case C P G C f P G C f P G C f jj j j j j= = + + =( | ) ( | ) ( | ) ( | ) , , .0 0 1 1 2 2 1 2

We then calculated p i
j

1
( ) and p i

j
0
( ) , the probabilities

of genotype Gi in cases and controls in subpopulation Cj,
by

p P G C f k p P G C f ki
j

i j i j i
j

i j i j1 0 1 1( ) ( )( | ) / ( | )( ) /( ).= = − − and 

Next we drew independent genotype counts (a0j, a1j, a2j)
of cases and (b0j, b1j, b2j) of controls from multino-
mial distributions Mul( a p p pj

j j j; , ,( ) ( ) ( )
10 11 12 ) and Mul

( b p p pj
j j j; , ,( ) ( ) ( )

00 01 02 ) respectively. We then mixed (a0j, a1j, a2j)

and (b0j, b1j, b2j) up to obtain a case-control data set given in

Table1,with n ai ijj0 1

2=
=∑ and n bi ijj1 1

2=
=∑ for i=0,1,2.

With this method of generating data, we simulated the
cases of p = 0.2 and 0.45 where p is the minor allele
frequency of candidate marker. The frequencies of
unlinked null markers were selected randomly with
equal probability from [0.1, 0.5]. The data for the K null
markers with the same penetrances f0 = f1 = f2 and a
candidate marker with different penetrances f0, f1, f2 are
independently generated. The number of replicates in
each simulation was 10, 000. To avoid the instability of
the linear regression, the predictors were centered before
to be fitted into the regression [15].

Results
A regression-based genomic control (RGC) method is
proposed and applied to association tests other than the
additive trend test. This method allows for using
arbitrary null markers in the GC correction procedure,
in which the variability of the allele frequencies of the
null markers is adjusted by linear regression. The method
is assessed by extensive simulation results. In addition,
the robustness of the proposed method to the errors in
selecting null markers is evaluated. We also simulate the
power of our method.

Table 2 provides simulated type I error results for the
uncorrected, GC and RGC tests. It shows that the
uncorrected trend tests have highly inflated type I error
and the type I errors of GC-corrected test deviate from
the nominal level 0.05 more or less. As can be seen from
Table 2 the RGC tests yield almost all the simulated type
I errors around 0.05. The only exceptions are when
p = 0.2, K = 200 and F is either 0.01 or 0.02 the
RGC-corrected T0 test yields p-values 0.063 and
0.065 respectively. This is because T0 uses the count of
genotype AA only, therefore the sample size for this test
is small.

Table 3 presents the simulated power of RGC-corrected
tests. From this table, we see that the trend tests with the
correct mode of inheritance have optimal power. The
Pearson’s chi-square test has less power but is very robust
as to model specifications.

Selection of null markers is an important issue when
applying the GC method. The null markers are pre-
sumably unlinked to the disease, but in practice some
linked loci may be chosen as null markers. To investigate
the influence of the inclusion of linked markers in the set
of null markers, we allowed the markers to be linked to
the disease with probability 2%. Table 4 shows that the
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linked markers have some effect on the type I error which
varies across genetic models. But the RGC method still
controls the type I error around the nominal level 0.05.

Discussion
Case-control design is useful in detecting genes related to
complex disease. For a case-control sample, if there is
population structure and cryptic relatedness, spurious
association between disease and genotype can occur due

to variance inflation in the statistical tests. The genomic
control method proposed by Devlin and Roeder [11] is a
simple and effective method for eliminating spurious
results caused by cryptic relatedness.

However when applying the GC method to correct for
inflation of type I error of general trend test or the
Pearson’s chi-square test, it is required that the null
markers are matched with the candidate marker in allele

Table 3: Power of RGC-corrected tests- nominal level 0.05, K = 200, a = (300, 200), b = (200, 300)

F MAF Model T0 T1/2 T1 χ2
2

0.01 p = 0.2 DOM(f0 = 0.1, f1 = f2 = 0.15) 0.134 0.791 0.857 0.777
ADD(f0 = 0.1, f1 = 0.17, f2 = 0.24) 0.401 0.805 0.781 0.734
REC(f0 = f1 = 0.1, f2 = 0.2) 0.803 0.378 0.130 0.728

p = 0.4 DOM(f0 = 0.1, f1 = f2 = 0.15) 0.179 0.704 0.852 0.780
ADD(f0 = 0.1, f1 = 0.14, f2 = 0.18) 0.701 0.905 0.856 0.866
REC(f0 = f1 = 0.1, f2 = 0.2) 0.995 0.936 0.418 0.990

0.02 p = 0.2 DOM(f0 = 0.1, f1 = f2 = 0.15) 0.129 0.682 0.767 0.674
ADD(f0 = 0.1, f1 = 0.17, f2 = 0.24) 0.362 0.698 0.689 0.636
REC(f0 = f1 = 0.1, f2 = 0.2) 0.753 0.333 0.130 0.687

p = 0.4 DOM(f0 = 0.1, f1 = f2 = 0.15) 0.179 0.704 0.852 0.780
ADD(f0 = 0.1, f1 = 0.14, f2 = 0.18) 0.655 0.853 0.811 0.809
REC(f0 = f1 = 0.1, f2 = 0.2) 0.987 0.876 0.403 0.974

The frequencies of null markers are randomly selected from [0.1, 0.5].

Table 2: Type I error of the uncorrected and GC or RGC-corrected tests under H0: f0 = f1 = f2 (nominal level is 0.05, a = (500, 1500),
b = (1500, 500)

F MAF K Method T0 T1/2 T1 χ2
2

0.01 p = 0.2 200 Uncorrected 0.350 0.557 0.539 0.509
GC 0.032 0.056 0.067 0.045
RGC 0.063 0.054 0.052 0.055

300 Uncorrected 0.335 0.551 0.532 0.497
GC 0.027 0.047 0.057 0.038
RGC 0.055 0.053 0.051 0.052

p = 0.45 200 Uncorrected 0.446 0.543 0.486 0.496
GC 0.085 0.051 0.035 0.053
RGC 0.052 0.052 0.054 0.049

300 Uncorrected 0.464 0.550 0.487 0.512
GC 0.096 0.049 0.037 0.058
RGC 0.051 0.050 0.052 0.051

0.02 p = 0.2 200 Uncorrected 0.473 0.667 0.650 0.633
GC 0.026 0.046 0.061 0.040
RGC 0.065 0.053 0.052 0.056

300 Uncorrected 0.452 0.679 0.662 0.637
GC 0.022 0.048 0.060 0.035
RGC 0.054 0.050 0.051 0.053

p = 0.45 200 Uncorrected 0.591 0.665 0.612 0.627
GC 0.101 0.047 0.038 0.060
RGC 0.052 0.053 0.054 0.050

300 Uncorrected 0.581 0.663 0.610 0.622
GC 0.106 0.047 0.032 0.062
RGC 0.051 0.052 0.053 0.052

The frequencies of null markers are randomly selected from [0.1, 0.5].
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frequencies. This matching limits the applicability of the
GC method. In this paper we propose a RGC method to
correct for the population stratification effects which
allows for use of any null markers. To adjust for the
variability of allele frequencies of the null markers we
estimate the inflated variance τx and the noncentral
parameter μx by linear regression. This RGC method can
be applied to the Cochran-Armitage’s trend tests other
than the additive trend test, with arbitrary score, the
Pearson genotype-based association test and other
robust efficiency tests.

Simulation results show that the RGC method can
properly correct for the inflation of type I error of
trend tests or Pearson’s chi-square test caused by cryptic
relatedness in the population. It is observed that the
RGC method is slightly conservative for recessive trend
test and anti-conservative for dominant trend test when
the minor allele frequency is close to 0. We think that
this is due to the instability of linear regression near the
boundary of MAF values.

Conclusion
Simulation studies show that the RGC method can
effectively correct for the variance inflation caused by
cryptic relatedness and is robust to inclusion of linked
loci in the selection of null markers.
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Appendix
Here, we calculate the variance of Δx under population
structure and various genetic models. Assume that case-
control samples come from L subpopulations, which
include a1, ..., aL cases and b1, ..., bL controls, respectively.

Thus a nkk
=∑ 0 , b nkk

=∑ 1 and n0 + n1 = n. We also

assume that individuals from different subpopulations
are independent. For each subpopulation, the genotypic
frequencies are described by

Pr A A
p Fp p if i j

F p p if i ji j
i i j

i j

( )
( )

=
+ =
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⎨
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where pi is the frequency of the allelic Ai. Let
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Using the results from Devlin and Roeder [11] and
Zheng et al [12], we have
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Table 4: Type I error of the uncorrected, GC and RGC-corrected tests when the markers are linked to the disease with probability
2% (nominal level is 0.05, K = 200, a = (500, 1500), b = (1500, 500), F = 0.02, f2, f1, f0 are the penetrances for AA, Aa, aa.)

(f0, f1, f2) MAF Method T0 T1/2 T1 χ2
2

(0.01, 0.02, 0.02) p = 0.2 Uncorrected 0.470 0.673 0.657 0.631
GC 0.021 0.041 0.055 0.035
RGC 0.064 0.051 0.047 0.058

(0.01, 0.015, 0.02) Uncorrected 0.474 0.679 0.656 0.637
GC 0.018 0.042 0.056 0.034
RGC 0.056 0.052 0.051 0.054

(0.01, 0.01, 0.02) Uncorrected 0.473 0.669 0.653 0.630
GC 0.022 0.040 0.054 0.039
RGC 0.063 0.052 0.053 0.055

(0.01, 0.02, 0.02) p = 0.45 Uncorrected 0.592 0.668 0.615 0.630
GC 0.098 0.046 0.034 0.062
RGC 0.054 0.051 0.046 0.049

(0.01, 0.015, 0.02) Uncorrected 0.608 0.675 0.619 0.638
GC 0.105 0.045 0.033 0.060
RGC 0.053 0.052 0.053 0.050

(0.01, 0.01, 0.02) Uncorrected 0.598 0.670 0.620 0.631
GC 0.103 0.045 0.034 0.061
RGC 0.049 0.051 0.054 0.048
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where p is the frequency of the allelic A.
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