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Abstract

We study nonlinear electrical oscillator networks, the smallest example of which consists of a voltage-dependent capacitor,
an inductor, and a resistor driven by a pure tone source. By allowing the network topology to be that of any connected
graph, such circuits generalize spatially discrete nonlinear transmission lines/lattices that have proven useful in high-
frequency analog devices. For such networks, we develop two algorithms to compute the steady-state response when a
subset of nodes are driven at the same fixed frequency. The algorithms we devise are orders of magnitude more accurate
and efficient than stepping towards the steady-state using a standard numerical integrator. We seek to enhance a given
network’s nonlinear behavior by altering the eigenvalues of the graph Laplacian, i.e., the resonances of the linearized
system. We develop a Newton-type method that solves for the network inductances such that the graph Laplacian achieves
a desired set of eigenvalues; this method enables one to move the eigenvalues while keeping the network topology fixed.
Running numerical experiments using three different random graph models, we show that shrinking the gap between the
graph Laplacian’s first two eigenvalues dramatically improves a network’s ability to (i) transfer energy to higher harmonics,
and (ii) generate large-amplitude signals. Our results shed light on the relationship between a network’s structure, encoded
by the graph Laplacian, and its function, defined in this case by the presence of strongly nonlinear effects in the frequency
response.
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Introduction

Networks of nonlinear electrical oscillators have found recent

application in several microwave frequency analog devices [1–6].

The fundamental unit in these networks is a nonlinear oscillator

wired as in Figure 1; this oscillator consists of one inductor, one

voltage-dependent capacitor, one source, and one sink (a resistor).

While many nonlinear oscillatory circuits have been studied for

their chaotic behavior, the particular oscillator in Figure 1 does not

exhibit sensitive dependence on initial conditions in the regime of

operation that we consider. Instead, assuming the source is of the

form A cos (vtzw), the oscillator reaches a steady-state consisting

of a sum of harmonics with fundamental frequency v [7].

When networks of these oscillators have been studied, the

network topology has either been a one-dimensional linear chain,

in which case the circuit is called a nonlinear transmission line [8–

13]—see Figure 2, or a two-dimensional rectangular lattice [14–

18]—see Figure 3. Even if each individual block in the chain/

lattice is weakly nonlinear, the overall circuit can exhibit strongly

nonlinear behavior. It is this property that is exploited for

microwave device applications, enabling low-frequency, low-

power inputs to be transformed into high-frequency, high-power

outputs.

The first objective of this work is to develop numerical

algorithms to compute the frequency response of a nonlinear

electrical network with topology given by an arbitrary connected

graph. Here we are motivated by the successful application of

computational techniques in the design of the high-frequency

analog devices referenced above. As we show, to compute steady-

state solutions with comparable accuracy, both the perturbative

and iterative algorithms developed in this paper require orders of

magnitude less computational time than standard numerical

integration. While the perturbative algorithm generalizes deriva-

tions given in prior work [7,18], the iterative algorithm has not

been previously applied to nonlinear electrical networks. Both new

algorithms show exponential convergence in the number of

iterations, and for a test problem on a network with N~400
nodes, less than 20 iterations are required to achieve machine

precision errors.

The second objective of this work is to relate structural

properties of the network to the dynamics of the nonlinear

oscillator system. The derivation of the perturbative algorithm

indicates that nonlinearity in the electrical network manifests itself

through energy transfer from the fundamental forcing frequency

to higher harmonics. This helps us understand why properties

such as amplitude boosting [7,18] and frequency upconversion [1],

observed in nonlinear electrical networks with regular lattice

topologies, can be expected when the topology is that of a random,

disordered network. Additionally, we observe that an inductance-

weighted graph Laplacian matrix features prominently in both

algorithms for computing the steady-state solution. This graph

Laplacian matrix encodes the structure of the network, and its

eigenvalues are the squares of the resonant frequencies for the

undamped, linear version of the circuit. Driving the damped,
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linearized circuit at one of these resonances results in large

amplitude outputs. It is reasonable to hypothesize that the

locations of these resonances play a large role in the dynamics of

the nonlinear network.

This motivates the following question: how do the eigenvalues of

the graph Laplacian influence the nonlinear network’s properties

of frequency upconversion and amplitude boosting? While it is

possible to alter the spectrum of the graph Laplacian by changing

the node-edge relationships in the graph, we can also change its

spectrum by keeping the topology fixed and manipulating the

network’s inductances. We formulate and solve the inverse

problem of finding the inductances such that the graph Laplacian

achieves a prescribed spectrum. The solution proceeds via a

Newton-type algorithm that takes the desired spectrum as input

and iteratively alters the inductances until a convergence criterion

is met.

For three types of random graphs, we find that the Newton-type

method effectively finds circuit inductances that close the gap

between the first two eigenvalues of the graph Laplacian. We

conduct a series of numerical experiments to examine the effect of

closing this eigenvalue gap on a given circuit’s ability (i) to transfer

energy from the fundamental driving frequency to higher

harmonics, and (ii) to generate high-amplitude output signals.

The results indicate that the two metrics (i-ii) can be improved

dramatically by closing the gap between the graph Laplacian’s first

two eigenvalues. Table 1 shows results we obtained for graphs with

N~175 nodes. Though this a small portion of the results we

describe later, this table already illustrates the effect of gap tuning

on network performance. Note that each pre and post circuit have

the same graph topology, differing only in their edge inductances.

Note that we have made available open-source Python

implementations of all algorithms described in this work. The

Python code, together with R code used for plotting, has been

posted on a public repository. This enables the reader to

reproduce all results in this paper. Instructions on how to

download this code is given below.

Connections to Other Systems
We can make several connections between the problem studied

in this paper and other problems of interest:

N Random elastic networks. Using a mechanical analogy

between inductorscapacitors and massessprings, the nonlinear

electronic network can be transformed into a mathematically

equivalent network of masses and anharmonic springs [19,

Appendix I]. Such random elastic networks have been of

recent interest as models of amorphous solids [20–22]. For

such networks, quartic spring potential energies have been

considered [23]. Nonlinear random elastic networks have also

been used to model molecular machines; in this context, tuning

the gap between the first two eigenvalues of the linearized

system enables the construction of networks with properties

similar to those of real proteins [24]. Despite this activity,

algorithms for computing and manipulating the frequency

response of nonlinear elastic networks have not been

developed. Our work addresses this issue directly.

N Nonlinear electromagnetic media. The circuit we

analyze, for particular values of the circuit parameters, arises

naturally as a finite volume discretization of Maxwell’s

equations for TE/TM modes in a nonlinear medium

[25,26]. The arbitrary connected graph topology of the circuit

corresponds to a finite volume discretization on an arbitrary

unstructured mesh. The algorithms developed here can be

used to compute and optimize the frequency response of

nonlinear electromagnetic media.

N Coupled phase oscillator networks. There has been

intense interest in nonlinear phase oscillator networks,

primarily due to the ability of such networks to model

biophysical systems featuring synchronization. Though syn-

chronization is not of primary interest in our system, we may

still draw parallels. The effect of network topology on the

properties of coupled phase oscillators has been studied

extensively [27–30]. Manipulating eigenvalues of the Lapla-

cian matrix enables one to enhance a network’s synchroniza-

tion properties [31]. More recently, several authors have

developed algorithms for optimizing the synchronization of

phase oscillator networks [32–37]. The questions considered in

this subset of the coupled phase oscillator literature are related

to the issues addressed in the present work.

Methods

Problem Formulation
Let H(N,e) be a connected, simple graph with N nodes and e

edges. Each edge corresponds to an inductor that physically

connects two nodes. Each node corresponds to a capacitor and

resistor, wired in parallel, that physically connect the node to a

common ground. Let f ƒN be the number of nodes that are

Figure 2. An example of a nonlinear transmission line. A nonlinear transmission line is a nonlinear electrical network on a one-dimensional
linear graph.
doi:10.1371/journal.pone.0078009.g002

Figure 1. Schematic of a single nonlinear oscillator. This
oscillator is the basic building block of the networks considered in
this paper. The circuit contains one inductor, one voltage-dependent
capacitor, one source, and one resistor.
doi:10.1371/journal.pone.0078009.g001
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driven by prescribed sources. Since the voltage at the prescribed

source is known, we do not model it using a node. The connection

between the source and the node that it drives is modeled by a

half-edge, also known as a dangling edge since one end is

connected to a driven node and the other end does not connect to

any node. We let H(N,e,f ) denote the graph together with the f

half-edges.

The capacitance and conductance (inverse resistance) at node j

are Cj and Gj , respectively. We let Vj(t) denote the voltage from

node j to ground at time t. The inductance of edge k is Lk, while

the current through edge k at time t is Ik(t). The exact dimensions

for each component of H , along with the currents and voltages,

are tabulated in Table 2.

In order to write down Kirchhoff’s laws, we must choose an

orientation of the edges. The orientation of an edge records the

direction of positive current flow through the edge. If we solve the

problem with opposite orientations, the only difference we will

notice is that the currents will pick up a factor of {1.

Consequently, the orientation we choose does not affect the

solution in any material way. In what follows, we will choose a

random orientation of the edges.

In Figure 4 we show an example graph corresponding to

H(6,9,2). The edges are oriented randomly. The inputs are

connected at nodes 1 and 6 through two inductors. These input

nodes correspond to half-edges in H. On the right we view node 3
in detail. Each of the two edges connected to this node correspond

Table 1. Portion of results for graphs with N~175 nodes.

% of energy in higher harmonics Maximum magnitude voltage

Pre Post Pre Post

Barabási-Albert (BA) 0.410 4.063 0.01548 0.31684

Watts-Strogatz (WS) 1.006 8.701 0.03399 0.51157

Erdös-Rényi (ER) 0.033 7.534 0.002956 0.78902

Simulation results for three different types of random graphs with N~175 nodes, averaged over 100 runs. ‘‘Pre’’ and ‘‘Post’’ stand for before and after circuit
inductances are changed to reduce the gap between the graph Laplacian’s first two eigenvalues. Note that pre and post circuits have the same graph topology and
differ only in their inductances.
doi:10.1371/journal.pone.0078009.t001

Figure 3. An example of a nonlinear lattice. A nonlinear lattice is a nonlinear electrical network on a two-dimensional rectangular grid graph.
doi:10.1371/journal.pone.0078009.g003

Frequency Response of Electrical Networks

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e78009



to an inductor. A capacitor with capacitance C3 and a resistor with

conductance G3 connect node 3 to ground.

To arrange Kirchhoff’s laws compactly, we use the N|(ezf )
incidence matrix of H(N,e,f ), denoted by B. Let j be an edge

connecting the nodes i0 and i. If j is oriented such that positive

current starts at node i0 and flows to node i, we write j~(i0,i). If j is

a half-edge attached to node i, we write j~(1,i), leaving the first

slot empty and orienting the half-edge so it always points toward

the forced node. The entries of the incidence matrix B are

Bi,j~

1 if j~(i0,i) for some node i0 or i0~1

{1 if j~(i,i0) for some node i0

0 otherwise:

8><>:
This paper will only consider single frequency time-harmonic

forcing of the form aeivtzae{ivt where a[ N . Let P be an

N|(ezf ) matrix with entries Pi,j~1 if node i is connected to an

input edge j and 0 otherwise. Using the projection matrix P we

define the forcing

W (t)~PT(aeivtzae{ivt): ð1Þ

Using the notation summarized in Table 2, Kirchhoff’s laws for

the nonlinear circuit on the graph H(N,e,f ) can now be written

compactly as

L
dI

dt
~{BTVzW ð2Þ

C
dV

dt
~ BI{GV : ð3Þ

Here L(dI=dt), C(dV=dt), and GV are examples of compo-

nent-wise multiplication of vectors. For a,b[ m, we define

c~ab[ m by cj~ajbj for 1ƒjƒm. Note that in this case, we

can also write c~diag(a)b. Here diag(a) is the m|m matrix that

contains the vector a along its diagonal (½diag(a)�ii~ai) and is zero

elsewhere.

The formulation (2–3) generalizes previous formulations [25,38]

in which the capacitors were constant and the systems considered

were linear.

By differentiating (3) and inserting it into (2), we obtain a

second-order system for the voltages:

d

dt
C

dV

dt

� �
zG

dV

dt
zDV~Vin: ð4Þ

Here

Vin(t)~B½diag(L)�{1
W (t) ð5Þ

D~B½diag(L)�{1
BT: ð6Þ

Note that D is the weighted Laplacian for the network with edge

weights given by reciprocal inductance.

We assume that the capacitance at node i depends on the

voltage at node i:

Ci(Vi)~C0(1{EVi), ð7Þ

where C0[R is a constant. Note that this choice of capacitance

function means that (4) features a quadratic nonlinearity.

We can then formulate the frequency response problem for the

nonlinear electrical network: given the amplitude vector a and

frequency v for the forcing function (1), determine the steady-state

solution V (t) of (4).

Perturbative Algorithm
We first solve the frequency response problem using a

perturbative expansion in powers of ". We use dots to denote

differentiation with respect to time. Substituting the capacitance

function (7) in (4) and rearranging, we obtain

C0 €VVzG _VVzDV~Vinz
"C0

2

d2

dt2
V2
� �

: ð8Þ

Table 2. Summary of the notation used in the paper.

Notation Significance Size

C Capacitance at node N|1

L Inductance of edge (ezf )|1

G Conductance at node N|1

V Voltage at node N|1

I Current through edge (ezf )|1

W Input forcing N|1

B Signed incidence matrix N|(ezf )

doi:10.1371/journal.pone.0078009.t002

Figure 4. An example of a nonlinear electrical network. In the
graph on the left, the numbered circles are nodes, the solid arrows are
edges, and the dashed arrows are half-edges. Orientation of the arrows
indicates the direction of positive current flow. Each node corresponds
to a voltage-dependent capacitor to ground, wired in parallel with a
resistor to ground, as depicted in the zoomed-in schematic for node 3.
Each edge corresponds to an inductor. Each half-edge connects one
prescribed voltage source to one given node. In this paper, all methods
that are developed are valid for connected graphs with at least one
half-edge. Note that the circuits in Figures 1–3 can all be represented
using this graph formalism.
doi:10.1371/journal.pone.0078009.g004
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We expand

V (t)~V0(t)z"V1(t)z"2V2(t)z � � � ð9Þ

Inserting (9) into (8), we obtain equations for each order of ". At

zeroth order, we obtain

C0 €VV0zG _VV0zDV0~Vin: ð10Þ

For k§1, the k-th order equation is

C0 €VVkzG _VVkzDVk~C0 d

dt

Xk{1

m~0

Vk{1{m
_VVm

" #
: ð11Þ

We now solve (10–11). Let us introduce the Fourier transform in

time,

ŷy(a)~

ð?
{?

e{iaty(t)dt, ð12Þ

with inverse Fourier transform

y(t)~
1

2p

ð?
{?

eiatŷy(a)da: ð13Þ

Note that with these definitions,

_̂yy_yy(a)~iaŷy(a):

This implies that the Fourier transforms of both sides of (10–11)

can be summarized by writing

L(a)V̂Vk(a)~
V̂Vin k~0

{(a2=2)C0ŵwk(a) k§1,

(
ð14Þ

where L(a) is the linear operator

L(a)~{a2diag(C0)zia diag(G)zD, ð15Þ

and

wk(t)~
Xk{1

m~0

Vk{1{mVm: ð16Þ

By (5) and (1), we see that

V̂Vin~2pB½diag(L)�{1
PT ad(a{v)zad(azv)ð Þ, ð17Þ

where d is the Dirac delta. Then the k~0 branch of (14) yields

V̂V0(a)~2p a0,1(a)d(a{v)za0,{1(a)d(azv)½ � ð18aÞ

a0,1(a)~½L(a)�{1
B½diag(L)�{1

PTa ð18bÞ

a0,{1(a)~½L(a)�{1
B½diag(L)�{1

PTa: ð18cÞ

Using the inverse Fourier transform, we have

V0(t)~a0,1(v)eivtza0,{1({v)e{ivt

~a0,1(v)eivtzc:c:,

where ‘‘c.c.’’ stands for the complex conjugate of the previous

terms. Here we have used the property that L({a)~L(a).

Once we have computed V0(t), we can insert it into (16) to

compute w1(t). We will find that w1(t) is a linear combination of

e{2ivt, e0ivt, and e2ivt. Using this fact in the k~1 branch of (14),

we can solve for V̂V1(a) and then apply the inverse Fourier

transform to compute V1(t). We will find that V1(t) contains the

same modes as w1(t).

The above shows how we get the perturbative solution

algorithm started. Now let us move to the more general case

where we seek Vk(t) for any k§1. Assume that we have already

computed Vj(t) for 0ƒjƒk{1, and that the solution takes the

following form:

V2m(t)~
Xm

‘~0

a2m,2‘z1e(2‘z1)ivtzc:c: ð19aÞ

V2mz1(t)~
Xmz1

‘~0

a2mz1,2‘e
(2‘)ivtzc:c: ð19bÞ

In words, V2m contains odd modes 1,3, . . . ,2mz1, and V2mz1

contains even modes 0,2, . . . ,2mz2. Here we assume that

0ƒ2mv2mz1ƒk{1, and that the ai,j[ N coefficients are

known.

In order to solve for Vk(t), we use the k§1 branch of (14),

which requires us to compute (16). We have two cases, when k is

odd and when k is even. In both cases, it is a simple (if tedious)

algebraic exercise to show that wk(t) yields:

N when k i s odd, a sum of even Fourier modes

{(kz1), . . . ,{2,0,2, . . . ,(kz1), and

N when k i s even, a sum of odd Fourier modes

{(kz1), . . . ,{3,{1,1,3, . . . ,(kz1).

In both cases, it is clear that using (14) to solve for V̂Vk(a) results

in a sum of Dirac delta’s. Applying the inverse Fourier transform

yields Vk(t), which will be a sum of Fourier modes. One can check

that Vk(t) will have precisely the form (19a) or (19b) depending on

whether k is even or odd, respectively.

The algorithm is then clear. Starting with (19), we apply

component-wise multiplication to particular pairs of the ai,j vectors

in order to compute the coefficients of the Fourier modes of wk(t)

defined in (16). Next, we combine the step of solving for V̂Vk(a)
using the k§1 branch of (14) together with the step of computing

Frequency Response of Electrical Networks
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the inverse Fourier transform. After component-wise multiplica-

tion of the Fourier coefficients of wk by {(a2=2)C0, we multiply

each coefficient on the left by ½L(a)�{1
with a set to match the

frequency of the corresponding Fourier mode. Dividing these

coefficients by 2p yields the Fourier coefficients of Vk(t), as

desired.

While we have presented the algorithm in an intuitive way, the

statements made above can be made rigorous, and a convergence

theory for the perturbative expansion (9) can be established. This is

the subject of ongoing work.

There are a few brief remarks to make about the algorithm

presented above:

N As described above, we consider only those networks that

contain resistance at all nodes, i.e., Giw0 for all nodes i. Such

an assumption is not only physically realistic; it also guarantees

that for all a[R, the matrix L(a) is invertible. The invertibility

for the a~0 case is a consequence of Corollary 1 proved

below.

N In this work, we are interested in the weakly nonlinear regime

where "EaE is sufficiently small such that the perturbative

method converges. As the nondimensional constant "EaE is

increased beyond the breakdown point of the perturbative

method, direct numerical solutions of the equations of motion

reveal subharmonic oscillations, and eventually, chaotic

oscillations.

N The fact that the Fourier transform yields the steady-state

solution has been explained in our earlier work [7]. By fixing

an arbitrary set of initial conditions and using the Laplace

transform to derive the full solution, one can show that after

the decay of transients, the part of the solution that remains is

precisely what we obtain using the Fourier transform. This also

explains why it was not necessary for us to specify initial

conditions for (4) in our derivation above—the initial

conditions only influence the decaying transient part of the

solution.

Iterative Algorithm
The perturbative method developed above shows us that the

solution V (t) is a sum of harmonics where the fundamental

frequency is given by the input frequency v. This implies that the

steady-state solution V (t) is periodic with period T~2p=v. This

observation leads us to ask whether it is possible to directly solve

for the Fourier coefficients of V (t) without first expanding in

powers of E. In this section, we develop a fixed point iteration

scheme that accomplishes this task.

First, we integrate both sides of (8) from t~0 to t~T to derive

D

ðT

0

V (t)dt~0: ð20Þ

We show below that as long as the network contains at least one

half-edge, D is invertible. Hence (20) implies

ðT

0

V (t)dt~0: ð21Þ

This means there is no zero/DC mode present in V (t),
motivating the Fourier series expansion

V(t)~
X?
k~1

akeikvtzc:c: ð22Þ

In order to compute the solution, we truncate at k~M, leading

to an approximation V&V :

V(t)~
XM
k~1

akeikvtzc:c: ð23Þ

Using orthogonality we derive

ak~
1

T

ðT

0

e{ikvtV (t)dt:

Using the T-periodicity of V and integration by parts, we have

1

T

ðT

0

e{ikvt _VV (t)dt~ikvak:

To simplify notation, we combine (1) and (5) and write

Vin~weivtzc:c: where

w~B½diag(L)�{1
PTa: ð24Þ

Now let dm,n denote the Kronecker delta function which equals

1 if m~n, and 0 otherwise. We multiply both sides of (8) by e{ikvt,

integrate from t~0 to t~T , and finally divide by T to obtain

L(kv)ak~wdk,1zwdk,{1z
"C0(ikv)2

2
fV2V2

k, ð25Þ

where L was defined in (15) and

fV2V2
k~

1

T

ðT

0

e{ikvtV2 dt: ð26Þ

Because the form of the nonlinearity is simple, we can insert (23)

into (26) and derive

fV2V2
k~

XM
‘~{M

a‘ak{‘, ð27Þ

with the understanding that a0~0, a{j~aj for jw0, and aj~0

for jjjwM. We insert (27) into (25) and obtain

L(kv)ak~wdk,1zwdk,{1{
"C0k2v2

2

XM
‘~{M

a‘ak{‘:

We convert this into an iterative scheme in a natural way. Let

a
(j)
k denote the j-th iterate, and assume that ak terms appearing on

Frequency Response of Electrical Networks
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the left-hand side are at iteration jz1, while those appearing on

the right-hand side are at iteration j. Let A(j) denote the N|M

complex matrix whose k-th column is a(j)
k . Then the scheme is

A(jz1)~FM (A(j)) ð28Þ

where the k-th column of the matrix FM (A(j)) is

FM
k (A(j))~½L(kv)�{1

wdk,1{
"C0k2v2

2

XM
‘~{M

a(j)
‘ a(j)

k{‘

 !
: ð29Þ

Here we assume 1ƒkƒM, which is also why we have deleted the

second Kronecker delta from the right-hand side.

Starting at A(0), we iterate forward using (28), stopping the

computation when EF(A(j)){A(j)E is below a specified tolerance.

Note that in our implementation of F , we precompute and store

the LU factorization for the M matrices fL(kv)gM
k~1, since this

part of the computation of the right-hand side of (29) does not

change from one iteration to the next.

Again, we have derived the algorithm but have not proven its

convergence. Instead, we will demonstrate empirically that the

algorithm converges using several numerical tests.

Inverse Problem
In this section, we consider the inverse problem of finding a set

of inductances such that D, the Laplacian defined by (6), achieves a

desired spectrum. Before describing an algorithm to solve this

inverse problem, we review basic spectral properties of D.

Lemma 1. Assume all inductances are positive. Then D as defined in (6)

is symmetric positive semidefinite, and all its eigenvalues must be nonnegative.

Proof. Let ½diag(L)�{1=2
be the diagonal matrix whose (i,i)-th

element on the diagonal is L
{1=2
i , for 1ƒiƒe. Since Liw0, the

matrix D1=2~B½diag(L)�{1=2
is real. Then D~D1=2 D1=2

� �T

, and

for any v[RN , we have vTDv = D1=2
� �T

v

� �T

D1=2
� �T

v§0.

Let fligN
i~1 denote the spectrum of D, with eigenvalues

arranged in nondecreasing order: l1ƒl2ƒ � � �ƒlN . The above

argument shows that l1§0. We can be more precise about this: if

there are no half-edges, then l1~0, while the presence of at least

one half-edge causes l1w0.

Lemma 2. Let H~H(N,e) be a connected graph with N nodes, e

edges, and zero half-edges. For a particular orientation of the graph, let B
denote the signed incidence matrix. Then rank(B)~N{1.

Proof. Let r be any integer from 1 to N{1. Consider any subset

S of r vertices of the graph. Take the sum of the rows of the

incidence matrix corresponding to the elements of S. This sum

cannot be zero; if it were, there would be no path connecting S to

the complement Sc and the resulting graph would not be

connected. Hence the sum of these rows must contain a nonzero

entry. As the same would be true if we considered linear

combinations of the rows corresponding to S, we conclude that

any subset of at most N{1 rows must be linearly independent. At

the same time, if we take the sum of all the rows we get a zero row,

because each column contains precisely one z1 and one {1.

Lemma 3. Let H0~H(N,e,f ) be a connected graph with N nodes, e

edges, and f w0 half-edges. For a particular orientation of the graph, let B0
denote the signed incidence matrix. Then rank(B0)~N.

Proof. Without loss of generality, we can assume that the

N|(ezf ) incidence matrix B0 is organized such that the first e
columns correspond to full edges, while columns ez1, . . . ,ezf
correspond to half-edges. Now choose any j such that 1ƒjƒf ,

and examine column ezj of B. Let k be the unique row in which

this column contains +1. Since row k of B is the only row that

contains an entry in column ezj, row k is linearly independent

from the other N{1 rows of B. By Lemma 2, the submatrix of B
consisting of all rows other than row k has rank N{1. Including

row k increases the rank by one, yielding a rank N matrix.

Lemma 4. For a connected graph H0~H(N,e,f ) with N nodes, e
edges, and f w0 half-edges, let D be the edge-weighted graph Laplacian

defined in (6). Assume all inductances are positive. Then rank(D)~N.

Proof. The (ezf )|(ezf ) diagonal matrix ½diag(L)�{1
has

rank ezf wN. Let B be the signed incidence matrix for a

particular orientation of H0. By Lemma 3, rank(B)~N,

implying rank(B½diag(L)�{1=2
)~N, which implies rank(D)~

rank (B½diag(L)�{1=2
)(B½diag(L)�{1=2

)T
h i

~N.

Corollary 1. Let H0, D and the inductances satisfy the hypotheses of

Lemma 4. Then D is symmetric positive definite and all eigenvalues of D are

positive, i.e., 0vl1ƒl2ƒ � � �ƒlN .

Proof. Combine Lemmas 1 and 4.

We now describe an algorithm that quantifies how we must

change the vector of inductances L in order to make D have a

desired set of eigenvalues. In what follows, we assume we work

with a system that satisfies the hypotheses of Corollary 1.

For nƒN, let l�~(l�1, . . . ,l�n)T denote a vector of desired

eigenvalues satisfying

0vl�1ƒl�2ƒ � � �ƒl�n:

We treat the vector of inductances L as a variable, and let l(L)
denote the sorted vector of eigenvalues of the graph Laplacian D
defined in (6). Since D is symmetric, it possesses an orthonormal

basis of eigenvectors. We assume that vj(L) is the normalized

eigenvector corresponding to lj(L).

Now let F : Rezf ?Rn be the function

F (L)~

l1(L)

l2(L)

..

.

ln(L)

266664
377775{

l�1
l�2

..

.

l�n

266664
377775: ð30Þ

We now apply a version of Newton’s method to find a zero of

this function. To use Newton’s method we will need to compute

Table 3. Eigenvalue gaps for random graphs.

N~25 N~75 N~125 N~175

Barabási-Albert (BA) 0.6408 0.3561 0.3155 0.2850

Watts-Strogatz (WS) 1.4180 1.3255 1.2970 1.2758

Erdös-Rényi (ER) 1.5469 8.6936 17.7061 26.5297

For each of three types of random graphs, we vary the number of nodes N and
record the first eigenvalue gap l2{l1 . The displayed results have been
averaged over 200 realizations.
doi:10.1371/journal.pone.0078009.t003
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the Jacobian J(F (L)). Let primes denote differentiation with

respect to Lk. To form the Jacobian we need to find

l0j : ~
L

LLk

lj(L):

We proceed by implicit differentiation, starting from the

eigenvector equation

Dvj(L)~B½diag(L)�{1
BTvj(L)~lj(L)vj(L):

Differentiating both sides with respect to Lk, and omitting the

dependence on L, we obtain

B(½diag(L)�{1
)0BTvjzB½diag(L)�{1

BTv0j~l0jvjzljv
0
j : ð31Þ

Since D is symmetric,

vT
j B½diag(L)�{1

BT~(B½diag(L)�{1
BTvj)

T~(ljvj)
T~vT

j lj : ð32Þ

Multiplying (34) on the left by vT
j and using (35) together with

(vj)
Tvj~1, we obtain

vT
j B(½diag(L)�{1

)0BTvj~l0j , ð33Þ

where

(½diag(L)�{1
)0 : ~

L
LLk

(½diag(L)�{1
)~ 0,0, � � � ,{ 1

L2
k

, � � � ,0
� �T

:

Using l0j we can compute the entries of the Jacobian matrix and

the corresponding Newton’s method with pseudoinverse becomes

L(iz1)~L(i){ J(F (L))½ �{F (L) ð34Þ

where { denotes the Moore-Penrose pseudoinverse.

Using (34) as shown might produce inductances such that the

ratio of the largest to smallest inductance is too large. In order to

avoid these large variations, we constrain E{1
ƒLiƒE. We

incorporate these constraints using an active set approach,

replacing F by the function Gi : Rezf zm?Rnzm, where i denotes

the iteration number and m denotes the number of constraints

violated by L(i). Let Q+ denote the functions

Qz(x)~
1
2

x2 xw0

0 xƒ0,

(
and Q{(x)~

0 x§0
1
2

x2 xv0:

�
ð35Þ

For every constraint p violated from below, we set

Gi
p(L)~Q{(Lp{E{1). For every constraint q violated from

above, we set Gi
q(L)~Qz(Lq{E). Since the Q+ functions are

continuously differentiable, it is easy to compute the Jacobian

J(Gi(L)) and then apply the algorithm

L(iz1)~L(i){ J(Gi(L))
� �{

(Gi(L)): ð36Þ

Algorithm (36) can be used to alter all the eigenvalues of the

system if n~N and l�[RN . Alternatively, one can set n~2 and

only request the two smallest eigenvalues to be changed to l�1 and

l�2, respectively.

In the next section we show that altering the lowest eigenvalue

l1 is enough to cause higher energy transfer to the higher modes.

To show, we will use (39) to change l1 to some desired value,

keeping l2 constant. We note that since we do not constrain

l3, � � � ,lN , they can change as a result of altering L, but l2ƒlj for

j[f3, � � � ,Ng will be maintained.

Figure 5. Error between perturbative/iterative solutions and
reference solution. The reference solution has been computed via
numerical time integration. We plot the log of the error as a function of
the number of iterations. As shown in Figures 6 and 7 together with
Tables 4 and 5, the perturbative/iterative solutions are more accurate
than the reference solution. This explains why, in the above plot, the
perturbative and iterative solutions do not converge to the reference
solution.
doi:10.1371/journal.pone.0078009.g005

Table 4. Comparison of the three solutions using the fixed
point error metric (40).

Scheme max1ƒkƒM ak{FM
k (A)

		 		
?

Numerical 2:035|10{11

Perturbative 3:4321|10{16

Iterative 2:7144|10{16

doi:10.1371/journal.pone.0078009.t004
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For all applications of this inverse problem algorithm described

in the next section, we use (36) with the initial conditions

L(0)~½1,1, . . . ,1�T and the constraint violation parameter E~103.

Gap Tuning: Methodology
How does the steady-state voltage in the nonlinear circuit

change as a function of the gap between the first two eigenvalues

of the graph Laplacian D? In this section, we address this question

by combining the perturbative/iterative algorithms with the

inverse problem algorithm. We describe numerical experiments

designed to test the effect of closing the graph Laplacian’s first

eigenvalue gap on the circuit’s ability to (a) transfer more energy to

higher harmonics, and (b) generate higher-amplitude output

signals.

We conduct our numerical experiments on three types of

random graphs, all generated using the NetworkX package [39]:

N Barabási-Albert (BA), a preferential attachment model with

one parameter, m, the number of edges to draw between each

new node and existing nodes [40]. We set m~3 in our

experiments.

N Watts-Strogatz (WS), a small world model with two param-

eters, k, the number of nearest neighbor nodes to which each

node is initially connected, and p, the probability of rewiring

each edge [41]. In our experiments, we set k~5 and p~0:3.

N Erdös-Rényi (ER), a classical model in which edges are drawn

independently with uniform probability p [42]. In our

experiments, we set p~0:25.

When we produce realizations of any of these graphs, we accept

only those graphs that are connected. Suppose we have used one

of these three models to generate a connected, random graph with

N nodes. To make this a concrete circuit problem, we set C0
i ~1

for all nodes i, and Lj~1 for all edges j. We fix the nonlinearity

parameter E~0:5. We select N=10 nodes uniformly at random,

and attach half-edges to these nodes with inductance Lj~1. For

each node i, we set the conductance Gi~0:15 for the BA and WS

graphs, and Gi~0:5 for the ER graphs. This selection will be

explained in more detail below.

With these parameters set, we have enough information to

compute the graph Laplacian D defined by (6). As we did before,

let l1, . . . ,lN denote the eigenvalues of D sorted in increasing

order. We set the forcing frequency v~
ffiffiffiffiffi
l2

p
. Since this value is a

resonant frequency of the linear, undamped system we expect it

lies close to a resonance for the nonlinear, damped system. The

type of forcing we consider is A sin vt, a special case of (1) with

a~A=(2i).

With this setup, we use both the perturbative method and the

iterative method to compute the steady-state solution V (t). For the

perturbative method, we solve up to order 9, and for the iterative

method, we solve using 20 modes. This means that the iterative

scheme captures ten modes—11v through 20v—that are not

captured by the perturbative scheme. We compare the two

solutions as a check for whether the number of modes we have

considered is sufficient. In all tests, we find that there is no

significant difference between the solutions, implying that the first

10 harmonics—v through 10v—are sufficient to resolve the

solution.

Since E~0:5, the capacitance model (7) is valid only for Viv2.

For all computed solutions, we check that the maximum voltage

across all nodes in one cycle satisfies this constraint.

One quantity of interest in our simulations is the amount of

energy in the higher harmonics. Let Y be an N|M complex

matrix such that the j-th column of Y contains the Fourier

coefficients of the zjv mode over all N nodes. Here j goes from 1
to M, the maximum mode to which the solution is computed. We

then define

kpre~
1

N

XN

n~1

Yn2,Yn3, . . . ,YnMð ÞT
			 			

2

Yn1,Yn2, . . . ,YnMð ÞT
			 			

2

, ð37Þ

the fraction of energy in modes z2v and higher, averaged over

all nodes. We also compute

Vpre~ max
1ƒiƒN

max
0ƒtƒT

jVi(t)j, ð38Þ

the maximum magnitude voltage produced anywhere in the

circuit during one period. For both k and V, the subscript ‘‘pre’’

denotes that these quantities have been computed before we

change L to manipulate the eigenvalues of D.

Having computed kpre, we now study how this fraction changes

when we reduce the gap between the first two eigenvalues of D.

For a fixed d[(0,1), we set l�1~dl2 and l�2~l2, and then apply

the inverse problem algorithm.

Using (36), we solve for a vector of inductances L� such that the

first two eigenvalues of D are given by l�1 and l�2. When we iterate

forward using (36), if we find that jjGi(L)jj2§10{12 after 200

iterations, we generate a new random graph and restart the

experiment.

We recompute the graph Laplacian D using the new vector

inductances L�, and again apply the perturbative and iterative

algorithms to solve for the steady-state solution V (t). Using this

Figure 6. Log of the fixed point error (40) of the perturbative/
iterative solutions after i iterations. Up to iteration 16, both curves
are close to linear with slopes of {2:1407 (perturbative) and {2:2326
(iterative), indicating exponential convergence of both methods. Note
that only 10 iterations are required to reach error values corresponding
to that of the numerical integrator’s solution.
doi:10.1371/journal.pone.0078009.g006
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solution, we compute the energy in the higher harmonics using the

right-hand side of (37), now labeling this average fraction as kpost.

We also compute the right-hand side of (38) and label this quantity

as Vpost.

Let us now describe how we choose the particular values of the

conductance Gi and the eigenvalue fraction d. In Table 3, we

tabulate l2{l1, the gap between the second and first eigenvalue

for each of the three types of random graphs described above. The

eigenvalue gaps we present are averaged over 200 simulations for

each of four graph sizes: N[f25,75,125,175g.
We observe that the eigenvalue gaps for the BA and WS graphs

do not change appreciably as a function of N, while for ER

graphs, the gaps grow quickly as a function of N. Our choice of d
is guided by these results. For BA and WS graphs, we choose

d[½0:5,0:99�. For ER graphs, we choose d[½0:25,0:75�.
When we solve for the steady-state voltages on these three types

of graphs, we also notice a difference. For ER graphs, the

maximum voltage grows quickly as a function of N, while for BA

and WS graphs, the same phenomenon does not occur. To

counteract the large growth of maximum voltages for large graph

sizes, we set the conductance Gi to the larger value of 0:5 for ER

graphs, causing more energy to dissipate through resistors. For BA

and WS graphs, we set Gi to 0:15.

Results and Discussion

Comparison of Steady-State Algorithms
In this section, we compare steady-state solutions computed by

numerical integration against the solutions computed using the

perturbative and iterative methods derived earlier.

For the tests described in this section, the domain is a 20|20
square lattice with N~400 nodes. Nodes along the left and

bottom boundaries of the lattice are driven by input forcing. The

input provided is 0:03 sin (vt) with v~1. For the capacitance

model (7), we set C0~1 and E~0:5. For each edge j, we set Lj~1.

The conductance Gi is set to 0:01 at all points except for the top-

right corner, where it is set to 1:0.

To compare the results of the perturbative and iterative

methods against the numerical integrator, we will need to obtain

the steady-state solution using the numerical integrator. To do

this, we start at t~0 and numerically integrate the first-order

system (2–3) forward in time for 1500 cycles. The ODE solver uses

the Dormand-Prince (dopri5) method with relative and absolute

tolerances equal to 10{10 and 10{12, respectively. For the

parameters given above, this number of cycles is sufficient so

that, from one cycle to the next, the change in the solution is on

the order of the relative tolerance of the numerical integrator.

Hence we take the solution over the last cycle to be the steady-state

solution.

As a preliminary check, we directly compare the three steady-

state solutions. We treat the solution obtained from numerical time

integration as a reference solution zref (t). Let z(i)(t) denote either

the perturbative or iterative solution after i iterations—for the

perturbative method, the iteration count is defined as the largest

mode number present in the solution. Let T be the period of the

steady-state solution, and for an integer tw0, consider the

equispaced discretization of the interval ½0,T � given by

ftk~kT=tgk~t
k~1. For each iteration i, we evaluate both the the

perturbative/iterative and reference solution on this equispaced

grid with t~64 points, and we compute the error

E(i)~
1

t

XN

j~1

Xt

k~1

z
(i)
j (tk){zref

j (tk)
� �2

" #1=2

: ð39Þ

In Figure 5 we have plotted log10 E(i) as a function of the

iteration i. While both methods initially tend towards the reference

solution, we see from Figure 5 that the error does not drop below

10{9. In the following subsections, we provide evidence that the

reference solution is less accurate than the solutions computed

using the perturbative/iterative methods. This explains why the

error in Figure 5 does not go to zero, i.e., why the perturbative/

iterative methods will not converge to the solution produced by

time integration.

Our first tests concern the Fourier coefficients of the computed

solutions. In what follows, we use A to denote the vector of Fourier

series coefficients associated with a steady-state solution computed

using any of the three methods discussed above.
Fixed Point Error. Suppose that V (t) is an exact T-periodic

steady-state solution of (4). If we were to expand this solution in a

Fourier series as in (22), the resulting (infinite) coefficient vector A
would satisfy A~F?

k (A) for all k, with F as in (29).

Figure 7. Decay of Fourier coefficients. We plot log EakE versus k
to illustrate the decay of Fourier coefficients for the three methods. The
iterative and perturbative curves coincide and are nearly linear with
slope {2:8004; the exponential decay of these Fourier coefficients is
consistent with theory. The time integrator’s Fourier coefficients do not
decay after mode 10, violating the theoretical decay rate.
doi:10.1371/journal.pone.0078009.g007

Table 5. Comparison of the three solutions’ preservation of
the energy balance (44).

Scheme
Ð T

0 ITWdt{
Ð T

0 VTGVdt
��� ���

Numerical 5:7841|10{12

Perturbative 2:1684|10{18

Iterative 1:2576|10{18

doi:10.1371/journal.pone.0078009.t005
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In both the perturbative and iterative methods, what we seek is

a finite-mode truncation of the exact solution. For the iterative

method we fix M~20 so that the highest mode has frequency

20v. In the perturbative method we solve, we solve up to order 19,

which implies that the highest mode in the solution has frequency

20v.

Combining the ideas of the last two paragraphs, it is natural to

use

EM (A)~ max
1ƒkƒM

Eak{FM
k (A)E? ð40Þ

as an error metric for the M-mode truncation of the exact

solution. In Table 4, we record (40) for solutions computed using

the perturbative, iterative, and numerical integration methods.

Note that the iterative and perturbative methods directly provide

us with the Fourier coefficients necessary for this calculation. We

compute the Fourier coefficients of the numerical integrator’s

solution using the FFT. Table 4 shows that the perturbative and

iterative solutions are about five orders of magnitude closer to

being fixed points of FM
k than the solution obtained from

numerical integration.

For the perturbative and iterative methods, let us examine how

the fixed point error (40) decreases as a function of iteration count.

In Figure 6, we plot log EM (A(i)) versus the iteration number i.

Here A(i) is the vector of Fourier coefficients for the solution

computed after only i iterations. The plot shows that, for both the

perturbative and iterative methods, approximately 10 iterations

are required to match the fixed point error of the solution

computed using time integration. The error of this latter solution,

taken from Table 4, is represented on Figure 6 by a horizontal

black line.

Figure 6 also shows that the perturbative and iterative methods

converge exponentially in the number of iterations. From iteration

1 until iteration 16, fitting lines of best fit to the perturbative and

iterative error curves results in slopes of {2:1407 and {2:2326,

respectively. For both methods, this can be approximated by

Table 6. Timing results for three frequency response algorithms.

Scheme Time I (to achieve comparable error) Time II (to achieve O(10{16) error)

Numerical 483:2126 s N/A

Perturbative 1:71024 s 7:29115 s

Iterative 0:68374 s 0:89012 s

For the numerical method, Time I records the time required to integrate forward by 1500 cycles and obtain a solution with fixed point error &2|10{11 as in Table 4.
For the perturbative/iterative methods, Time I records the time required to compute 10 iterations, resulting in a fixed point error comparable to that of the numerical
method—see the crossing of the curves with the black horizontal line in Figure 6. For the perturbative/iterative methods, we also record under Time II the time required

to achieve the O(10{16) errors as in Table 4. All times are averaged over 10 runs.
doi:10.1371/journal.pone.0078009.t006

Figure 8. Barabási-Albert random graph results. From left to right, we present results for Barabási-Albert random graphs with N~25, 75, 125,
and 175 nodes. For each graph, we use algorithm (36) to modify the inductances L such that the ratio of the smallest to the second smallest
eigenvalue is d. We use pre and post to denote, respectively, the graphs before and after algorithm (36) is applied. By shrinking the gap between the
first two eigenvalues, the energy transferred to higher harmonics (37) can be increased from approximately kpre&0:5% to kpost&5% (for all graph
sizes), and the maximum voltage (38) can be increased from Vprev0:05 volts to Vpost[½0:3,0:5� volts (depending on the graph size). We also note that
for larger graphs, choosing d~1 (i.e., no gap between the first two eigenvalues) does not yield optimal behavior.
doi:10.1371/journal.pone.0078009.g008
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Figure 9. Watts-Strogatz random graph results. From left to right, we present results for Watts-Strogatz random graphs with N~25, 75, 125,
and 175 nodes. For each graph, we use algorithm (36) to modify the inductances L such that the ratio of the smallest to the second smallest
eigenvalue is d. We use pre and post to denote, respectively, the graphs before and after algorithm (36) is applied. By shrinking the gap between the
first two eigenvalues, the energy transferred to higher harmonics (37) can be increased from kpre&1% to kpost§8:75% (for all graph sizes), and the
maximum voltage (38) can be increased from Vpre&0:05 volts to Vpost&0:5 volts (for all graph sizes). The values of kpost for Watts-Strogatz graphs are
about twice as large as the values of kpost for Barabási-Albert graphs in Figure 8.
doi:10.1371/journal.pone.0078009.g009

Figure 10. Erdös-Rényi random graph results. From left to right, we present results for Erdös-Rényi random graphs with N~25, 75, 125, and
175 nodes. For each graph, we use algorithm (36) to modify the inductances L such that the ratio of the smallest to the second smallest eigenvalue is
d. We use pre and post to denote, respectively, the graphs before and after algorithm (36) is applied. By shrinking the gap between the first two
eigenvalues, the energy transferred to higher harmonics (37) can be increased to kpost[½1,8�% (depending on the graph size), and the maximum
voltage (38) can be increased to Vpost[½0:1,0:8� (depending on the graph size). The results for Erdös-Rényi graphs are much more strongly dependent
on the number of nodes N than the results shown in Figures 8 or 9. Note that the peak voltages for the N~175 graphs with forcing amplitude 0:01
are the largest voltages for any graphs considered in this paper. We can increase the peak voltages for smaller graphs by choosing a smaller value of
the conductance than Gi~0:5 (for all nodes i), the value used to compute the results in this figure.
doi:10.1371/journal.pone.0078009.g010
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writing EM (A(i))*e{2i. After 16 iterations, the error has

approached machine epsilon, and both curves level off before

reaching the final values shown in Table 4.

Decay Rate. Suppose we write the first-order system (2–3) in

the form _zz~F(z,t), with z~(I ,V )T. Then on the open set

D~fI[Rezf ,V[RN ,t[R j jVijvE{1, 1ƒiƒNg, the vector field

F : D?Rezf zN is C?, i.e., F is j times continuously differentiable

for any integer j§1. By the standard existence/uniqueness

theorem for ordinary differential equations, it follows that

wherever the solution z(t)~(I(t),V (t))T exists, it must also be

C? in t.

The above observation enables us to test the decay of the

Fourier coefficients of all three solutions. For if the steady-state

solution V (t) is C? in t, then the Fourier series coefficients of V

must satisfy the following decay property:

For all ‘§1,there exists C‘ such that EakEƒC‘k
{‘: ð41Þ

To examine the decay of the Fourier coefficients for the three

computed solutions, we plot log EakE versus k in Figure 7. For the

perturbative and iterative solutions, the curves on the plot coincide

and are nearly linear with slope {2:8004. This implies that

EakE*e{2:8k, which is sufficient to satisfy the theoretical decay

rate given by (41).

The Fourier coefficients obtained from the numerical integra-

tor’s solution, on the other hand, do not decay at all beyond mode

10. This violates the theoretical decay rate (41) even for ‘~1.

Energy Conservation. Next we test the energy conservation

properties of the three computed solutions. We proceed to derive

an energy balance equation. Because our capacitors are voltage-

dependent, the charge Q and voltage V are related via

dQ~C(V )dV , which implies

dQ

dt
~C(V )

dV

dt
:

Using this in (3) together with (2), we obtain

ITL
dI

dt
zVT dQ

dt
~ITW{VTGV : ð42Þ

Let M(t) be the total energy stored in the magnetic fields of all

inductors at time t. Then

dM

dt
: ~

d

dt

1

2

Xezf

i~1

LiI
2
i

" #
~
Xezf

i~1

IiLi
dIi

dt
~ITL

dI

dt
,

the first term on the left-hand side of (42). Let E(t) be the total

energy stored in the electric fields of all capacitors at time t. Then

dE

dt
: ~

d

dt

XN

i~1

ðQi (t)

0

Vi(q)dq

" #
~
XN

i~1

Vi
dQi

dt
~VT dQ

dt
,

the second term on the left hand side of (42). Hence (42) reads:

d

dt
M(t)zE(t)ð Þ~ITW{VTGV : ð43Þ

If the system has reached a T -periodic steady state, then I(t), V (t),
M(t), and E(t) will all be T-periodic. Therefore, integrating (43) in

t from t~0 to t~T , we find that the left-hand side vanishes. The

remaining terms yield the following energy balance equation:

ðT

0

ITWdt~

ðT

0

VTGVdt: ð44Þ

The left-hand side is the energy pumped into the system over

one cycle, while the right-hand side denotes the energy dissipated

through resistors, again over one cycle.

Table 5 shows the absolute difference between the left- and

right-hand sides of (44), computed for each of the three methods.

We find that for the perturbative and iterative methods’ energy

balance errors are below machine epsilon. The numerical

integrator yields an error approximately five orders of magnitude

larger than that of the two other methods.

Computational Time. The results presented thus far indi-

cate that whether we measure error using the fixed point error (40)

or the violation of the energy balance (44), the solution obtained

via numerical integration has errors that are approximately five

orders of magnitude larger than that of the perturbative/iterative

methods. The actual values of the errors committed by the

numerical integrator in Tables 4 and 5, as well as the final error

values for the curves in Figure 5, are close to the numerical

integration relative and absolute tolerances of 10{10 and 10{12,

respectively. We hypothesize that, if computational time were not

an issue, we could run the numerical integrator with smaller

tolerances and obtain steady-state solutions that more closely

match, in the same error metrics described above, the perturbative

and iterative solutions.

As we now proceed to show, computational time is a major issue

for the time integration method. In Table 6, we record the time

required to compute steady-state solutions using the three

methods. We see from the Time I column that to achieve the

error of &2|10{11 in Table 4, the numerical integrator requires

over 483 seconds. We know from Figure 6 that the perturbative/

iterative methods require 10 iterations to achieve approximately

the same error as the time integrator; the remaining entries in the

Time I column show that both the perturbative and iterative

algorithms compute such a solution hundreds of times faster than

the time integrator.

The Time II column in Table 6 records how long it takes the

perturbative/iterative algorithms to achieve the errors recorded in

Table 4. Observe that even if we run the perturbative/iterative

algorithms all the way to full convergence, they are much faster

than time integration. In this case, the time integrator is 542
(respectively, 66) times slower than the iterative (respectively,

perturbative) algorithm.

Note that the perturbative and iterative algorithms were

implemented in Python using the Numpy/Scipy packages. The

dopri5 implementation used for numerical time integration is the

implementation provided by the scipy.integrate.ode module. All

times reported are average times across 10 runs on the same

machine.
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Gap Tuning
For each N[f25,75,125,175g, and for each of 10 values d

chosen in an equispaced fashion from the intervals given above, we

compute 100 runs of the complete procedure described above—

see Gap Tuning: Methodology. For each such run, we compute

pre/post values of k and V for three values of the input forcing

amplitude, which we take to be the same at all input nodes k:

Ak[f0:001,0:005,0:01g. These results for k and V, averaged over

the 100 runs, are plotted in Figures 8, 9, and 10.

Figure 8 shows the results for Barabási-Albert (BA) graphs. By

shrinking the gap between the first two eigenvalues, the percentage

of energy transferred to higher harmonics (37) can be increased by

approximately one order of magnitude, for all graph sizes, while

the maximum magnitude voltage (38) can be increased by a factor

of 6 to 20, depending on the graph size. Note that for larger

graphs, choosing d~1, i.e., forcing the first two eigenvalues to

coincide, does not yield optimal energy transfer to higher

harmonics.

The results in Figure 9 for Watts-Strogatz (WS) graphs are

similar to those for BA graphs. We again find that by shrinking the

gap between the first two eigenvalues, the energy transferred to

higher harmonics (37) can be increased. However, the values of

kpost for Watts-Strogatz graphs are about twice as large as the

values of kpost for Barabási-Albert graphs in Figure 8. For all

graph sizes, tuning the eigenvalue gap can increase the percentage

of energy transferred to higher harmonics by a factor of up to 8,

while the maximum magnitude voltage can be increased by

approximately one order of magnitude.

In Figure 10, we present the results for Erdös-Rényi graphs.

The results again support the finding that by shrinking the gap

between the first two eigenvalues, the circuit can transfer more

energy to higher harmonics and boost the peak magnitude of

output signals. Specifically, we see that the energy transferred to

higher harmonics (37) can be increased to kpost[½1,8�%, and the

maximum voltage (38) can be increased to Vpost[½0:1,0:8�.
The results for Erdös-Rényi graphs are much more strongly

dependent on the number of nodes N than the results shown in

Figures 8 or 9. Note that the peak voltages for the N~175 graphs

with forcing amplitude 0:01 are the largest voltages for any graphs

considered in this paper. We can increase the peak voltages for

smaller graphs by choosing a smaller value of the conductance

than Gi~0:5 (for all nodes i), the value used to compute the results

in Figure 10.

For all three types of graphs, both pre and post values of k and V
increase as a function of the input forcing amplitude.

Code
All code necessary to reproduce the above results have been posted

as a public repository on GitHub, accessible at the following URL:

https://github.com/GarnetVaz/Nonlinear-electrical-oscillators

We use Python together with the numpy, scipy, matplotlib, and

networkx modules for all numerical computing. The code that

generates Figures 8, 9, and 10 is set to utilize 10 processors using

the open-source multiprocessing module. For plotting, we use R

together with the ggplot2, plyr, and reshape packages. All

languages, packages and modules used are open source.

Assuming all packages and modules have been correctly

installed, one can reproduce all results by running the Python

codes numerical_comparison.py and graphmulti.py. The latter

code may require several hours to run. The Python codes will

generate figures using R; the R codes we provide need not be run

independently.

Further details on how to run the codes, including the specific

versions of required packages and modules, are given in the

README.md file at the URL given above.

The code that we provide can easily be modified to run

simulations not described here. For example, one can compare the

perturbative/iterative algorithms against numerical integration

using graphs other than the 20|20 grid graph used above. One

can also explore gap tuning results for random graphs with

different parameters than the ones we have chosen.

Conclusion

For nonlinear electrical circuits on arbitrary connected graphs,

we have developed two numerical methods to compute the steady-

state voltage. Using both absolute metrics and relative compar-

isons with a solution obtained via direct numerical integration, we

validated the new algorithms. The results show that for the same

error tolerance, both the perturbative and iterative methods are

orders of magnitude faster than the solution obtained by time

stepping. Moreover, these methods are able to capture the

behavior in high Fourier modes and converge to machine

precision in a fixed point error metric.

In future work, we plan to apply the steady-state algorithms

developed above to solve Maxwell’s equations in nonlinear

electromagnetic media [26]. This application makes use of the

correspondence between the nonlinear electrical network and a

finite volume discretization of Maxwell’s equations on an

unstructured mesh.

In order to enhance the nonlinearity-driven features of these

circuits, we developed a Newton-like algorithm that alters the

eigenvalues of a network’s graph Laplacian. The algorithm leaves

the topology of the network untouched, changing only the

inductances, i.e., the edge weights. By applying the Newton-like

algorithm to three types of random graphs, we showed that

reducing the gap between the graph Laplacian’s first two

eigenvalues leads to enhanced nonlinear behavior. Comparing

pre- and post-optimized circuits, it is evident that optimizing the

eigenvalue gap significantly increases (i) energy transfer from the

fundamental driving frequency to higher harmonics, and (ii) the

maximum magnitude output voltage.

In both the perturbative and iterative algorithm, the only way in

which the network’s structure influences its frequency response is

through the graph Laplacian matrix. In our experiments, we have

tuned this graph Laplacian’s first eigenvalue gap by holding the

topology of the graph constant and altering the edge weights, i.e.,

inductances. What if we had instead tuned the gap by holding the

edge weights constant and altering the topology of the graph? This

would amount to altering the incidence matrix B instead of the

inductance vector L. So long as both types of alterations result in

the same graph Laplacian D, our results indicate that the nonlinear

electrical network’s functionality should be enhanced significantly.

This, of course, leads to the question of whether it is possible to

algorithmically alter the network topology to achieve a particular

graph Laplacian matrix, an interesting avenue for further work.
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