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1  | INTRODUC TION

A major force likely to have affected population genetic structure 
of species is the effects of abiotic and biotic landscape features on 

gene flow. As an emerging discipline, landscape genetics combines 
population genetics and landscape ecology to assess the influence 
of landscape or environmental features on genetic variation in wild-
life populations, their dispersal, and connectivity of habitats (Manel 
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Abstract
The population genetic structure of free-ranging species is expected to reflect 
landscape-level effects. Quantifying the role of these factors and their relative con-
tribution often has important implications for wildlife management. The population 
genetics of the European badger (Meles meles) have received considerable attention, 
not least because the species acts as a potential wildlife reservoir for bovine tuber-
culosis (bTB) in Britain and Ireland. Herein, we detail the most comprehensive popu-
lation and landscape genetic study of the badger in Ireland to date—comprised of 454 
Irish badger samples, genotyped at 14 microsatellite loci. Bayesian and multivariate 
clustering methods demonstrated continuous clinal variation across the island, with 
potentially distinct differentiation observed in Northern Ireland. Landscape genetic 
analyses identified geographic distance and elevation as the primary drivers of ge-
netic differentiation, in keeping with badgers exhibiting high levels of philopatry. 
Other factors hypothesized to affect gene flow, including earth worm habitat suita-
bility, land cover type, and the River Shannon, had little to no detectable effect. By 
providing a more accurate picture of badger population structure and the factors 
effecting it, these data can guide current efforts to manage the species in Ireland and 
to better understand its role in bTB.
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& Holderegger, 2013). This can provide key information for wildlife 
management, including cases where species act as reservoirs or 
vectors of pathogen infection (Frantz, Pope, Etherington, Wilson, 
& Burke, 2010; Kierepka & Latch, 2016a,b; Pope, Domingo-Roura, 
Erven, & Burke, 2006).

The European badger (Meles meles) Figure 1 is the largest terres-
trial carnivore in Britain and Ireland, and is of significant ecological 
(e.g., ecosystem engineer) and economic importance (as a suspected 
reservoir of bovine tuberculosis, bTB) across this territory (Roper, 
2010). A significant body of work has been undertaken to eluci-
date the species’ role in cattle bTB epidemiology (Roper, 2010). The 
species’ genetic structure at continental scale has been studied ex-
tensively (Del Cerro, Fernando, Chaschin, Taberlet, & Bosch, 2010; 
Frantz et al., 2014; Marmi et al., 2006; O’Meara et al., 2012). In con-
trast, there is limited information available on badger population 
genetics at the national scale, which is likely to be the scale most rel-
evant to management. To date, there has been no large island-wide 
survey of the genetic structure of the badger in Ireland.

Previously, studies from across Europe have noted that badgers 
exhibit limited dispersal/philopatry (Pope et al., 2006). Dispersal 
distance seems to be inversely proportional to population density, 
with a large proportion of individuals exhibiting philopatry at high 
densities (Frantz, Cellina, Krier, Schley, & Burke, 2009). Although 
badger densities in Ireland are typically not as high as those in south-
ern Britain (e.g., Woodchester Park; 0.4 setts/km2 vs. 2.88 setts/
km2, respectively), they can still be considered relatively high com-
pared to other European populations (Byrne, Sleeman, O’Keefe, & 
Davenport, 2012; Pope et al., 2006). It is also noteworthy that in 
Ireland, whilst general philopatry appears to hold, mark–recapture 
studies of Irish badgers have documented rare long-distance disper-
sal of up to 22.1 km (Byrne, Quinn, et al., 2014).

Aside from geographic distance, other landscape features likely 
affect gene flow of badgers. Water bodies and motorways have been 
observed to hinder European badger gene flow (Frantz et al., 2010). 
Furthermore, badgers have generally been recorded at low altitudes 
(<200 m; Byrne et al., 2012), and their abundance, habitat selection, 
and foraging behavior are positively associated with land use cate-
gories such as pasture, forested areas, and grasslands—urban and 
arable land are generally avoided (Byrne et al., 2012; Hammond, 
McGrath, & Martin, 2001).

On the other hand, the effect of biotic interactions on the gene 
flow of organisms in general has been little studied (Hand, Lowe, 
Kovach, Muhlfeld, & Luikart, 2015) regardless of the crucial insights 
that such research could provide. In this sense, badgers are a par-
ticularly interesting system because they are generally assumed 
to be earthworm (Lumbricus terrestris) specialists (Kruuk & Parish, 
1981; Muldowney, Curry, O’Keefe, & Schmidt, 2003), which could 
result in gene flow being strongly affected by earthworm availability. 
Conversely, there is some indication that in Ireland, the diet of the 
badger varies seasonally and is less reliant on earthworms than ob-
served elsewhere (Cleary, Corner, O’Keefe, & Marples, 2009) which 
could result in little effect of prey availability on gene flow.

In light of the above, applying landscape genetics to study the 
effect of landscape features and biotic interactions on badger gene 
flow may help to inform more fully on the ecology of the species 
in Ireland. The latter could be of benefit in developing a better un-
derstanding of how/whether badger population structure influences 
bovine tuberculosis epidemiology. In this study, therefore, we aim to 
provide the first comprehensive, large scale assessment of genetic 
population structure of the badger across Ireland and to identify the 
landscape features which have likely shaped it. Specifically, we stud-
ied the influence of geographic distance, landscape variables (eleva-
tion, land cover, Ireland’s only continental scale river: the Shannon), 
and biotic interactions (earthworm availability), on badger gene flow.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

A total of 454 badger samples were collected from the Republic of 
Ireland (RoI) and Northern Ireland (NI; Supporting Information Table 
S1). Badger carcasses (n = 176) from an ongoing road traffic acci-
dent (RTA) survey were collected by the Department of Agriculture, 
Environment and Rural Affairs Northern Ireland (DAERA-NI) across 
all six counties of NI during the period from September 2011 to 
March 2013. GPS locations of all carcasses were logged and a tissue 
sample was stored for DNA extraction. In addition, badger carcasses 
(n = 278) from ongoing culling efforts in the RoI were collected by 
the Department of Agriculture, Food and the Marine (DAFM) during 
2014. These badger carcasses were collected from sites distributed 
across 23 of the 26 counties of RoI. The three counties excluded 
were Donegal, Dublin, and Louth on account of there being no 
badger carcases available during the time window described. GPS 

F IGURE  1 European badger (Meles meles) Photo © Mike 
Pennington (cc-by-sa/2.0)
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coordinates of locations of culled animals were collected and a tis-
sue sample stored for DNA extraction. For 21 samples across both 
territories, there were no geo-location data available. Samples were 
frozen at −20°C before DNA extraction.

For a full breakdown of numbers of animals submitted per county 
across Ireland, see Supporting Information Table S1. GPS locations 
for all animals are found in Supporting Information Data S1. The map 
in Figure 2a illustrates the position of all badgers sampled. A map de-
tailing the geographic position and names of all Irish counties and the 
position of the River Shannon is shown in Supporting Information 
Figure S1.

2.2 | DNA extraction

We extracted DNA from all tissue samples using a Qiagen DNeasy 
tissue mini kit (Qiagen, Crawley, West Sussex, United Kingdom). 
Extracted DNA was stored at −20°C until PCR amplification for ei-
ther microsatellite or mitochondrial DNA sequence analysis.

2.3 | Microsatellite genotyping

We genotyped all 454 samples at the following 14 microsatellite 
loci—Mel102, Mel103, Mel104, Mel105, Mel106, Mel109, Mel110, 
Mel111, Mel112, Mel113, Mel114, Mel115, Mel117, and Mel129 
(Carpenter et al., 2003). Forward primers were 5′ end-labeled 
with a fluorescent tag—6FAM (blue) for Mel104, Mel105, Mel106, 
Mel109, Mel117, and Mel129; Hex (green) for Mel102, Mel103, 
Mel110, Mel113, and Mel115; Cy3 (yellow) for Mel111, Mel112, and 
Mel114. All primers were supplied by Sigma-Aldrich (Dorset, United 
Kingdom).

The 14 primer pairs were arranged into three multiplex PCR. X10 
multi primer master mixes were constituted as follows: Mix 1 Mel106 
and Mel104—2 μM unlabeled primers, 1 μM labeled primers; Mel111 
and Mel112—8 μM unlabeled primers, 4 μM labeled primers; Mel109 
and Mel117—1 μM unlabeled primers, 0.5 μM labeled primers. Mix 2 

Mel105 and Mel129—4 μM unlabeled primers, 2 μM labeled prim-
ers; Mel102 and Mel115—1 μM unlabeled primers, 0.5 μM labeled 
primers; Mel113—2 μM unlabeled primer, 1 μM labeled primer. Mix 
3 Mel114 and Mel110—4 μM unlabeled primers, 2 μM labeled prim-
ers; Mel103—0.5 μM unlabeled primer, 0.25 μM labeled primer. 
PCRs were undertaken using the Qiagen Multiplex PCR kit. 1 μl of 
extracted DNA (~50 μg/ml) was used as the template. PCR condi-
tions for all three multiplex assays were as follows—96°C for 15 min, 
followed by 35 cycles of 96°C/30 s, 60°C/90 s, 72°C/90 s, followed 
by a final cycle of 72°C for 10 min.

Final PCR products were diluted 1:10 with double distilled water 
before electrophoresis on a Life Technologies ABI3130xl genetic 
analyzer (Life Technologies, Paisley, UK) using a GS500 Rox size 
standard. Allele calls were scored and manually checked using Life 
Technologies Gene-mapper 4.0 software.

2.4 | Genotyping quality control

We regenotyped a random selection of 5% of all extracted DNA 
samples tested. All microsatellite data were subjected to analysis by 
Microchecker v2.2.3 (van Oosterhout, Hutchinson, Wills, & Shipley, 
2004) for the presence of genotyping errors and null alleles.

2.5 | Population genetic clustering

We determined standard population genetic indices of diversity 
from the microsatellite data using GENEPOP v4.2 (Rousset, 2008), 
namely number of alleles (Na), observed (HO), and expected (HE) het-
erozygosity and the inbreeding/fixation coefficient (FIS). Deviations 
of allele frequencies from Hardy–Weinberg equilibrium (HWE) were 
also assessed by GENEPOP v4.2.

To elucidate the genetic population structure of badgers across 
Ireland, we analyzed microsatellite data of all 454 badger samples in 
an admixture model in STRUCTURE v2.3.4 (Pritchard, Stephens, & 
Donnelly, 2000) without location prior. With so little known about 

F IGURE  2  (a) STRUCTURE 
microsatellite analysis K = 2 spatial 
distribution for all 454 Irish badgers. 
(b) STRUCTURE microsatellite analysis 
K = 5 spatial distribution for all Irish 
badgers
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any potential subpopulation’s history in Ireland, ancient or recent 
divergence of all subpopulations from a common ancestral popula-
tion were both plausible scenarios, as was the possibility of differ-
ent founding populations being translocated to Ireland by human 
agency, as has previously been inferred (Frantz et al., 2014; O’Meara 
et al., 2012).

All latter scenarios would have had consequences for heteroge-
neity in observed patterns of genetic relatedness and divergence 
among extant subpopulations; therefore, we ran STRUCTURE mod-
els accounting for both correlated and independent allele frequen-
cies and assessed which produced the highest log likelihood for the 
inferred best fitting values of K. To infer the best fitting number of 
subpopulations (K), we used the ΔK method of Evanno, Regnaut, and 
Goudet (2005) over consecutive values from K = 1 to K = 10 with a 
burn-in of 50,000 and a Markov chain length of 100,000, for 20 it-
erations per K value. Convergence of key statistics along the burn-in 
chain was assessed as per the STRUCTURE manual. We then ex-
tracted and analyzed the data using STRUCTURE Harvester (Earl 
& vonHoldt, 2012). Data for each K value (n = 20) were processed 
by the program CLUMPP (Jakobsson & Rosenberg, 2007), with final 
illustrations produced using DISTRUCT (Rosenberg, 2004). We as-
signed individual badgers which exhibited 85% of their genetic her-
itage, or greater, to specific STRUCTURE defined subpopulations. 
Assignment thresholds for other animal species have been set at a 
variety of other values—50% for the American badger (Kierepka & 
Latch., 2016b), 70% for red deer and jaguars (Dellicour et al., 2011; 
Wultsch et al., 2016), and up to 90% for other mustelids (Cegelski, 
Waits, & Anderson, 2003) and reptiles (Gaillard et al., 2017). Given 
the reduced genetic diversity of the European badger in Ireland and 
the general philopatry of the species (Pope et al., 2006), and the con-
tinuous sampling structure we employed, we decided it would be 
best to use a threshold of 85%.

We quantified genetic differentiation between inferred 
STRUCTURE populations by calculating pairwise FST values using 
FSTAT 2.9.3.2 (Goudet, 1995). Statistical significance of pairwise 
values was tested by permutation with corrections for multiple 
comparisons. Genetic differentiation between pairs of populations 
was also quantified using Jost’s D statistic (Jost, 2008) calculated 
by the mmod package (Winter, 2012) in the R environment v3.2.2 (R 
Development Core Team, 2008). All population data were mapped 
using ArcGIS ArcMAP 10 using latitude and longitude coordinates 
based on the Irish Grid (ESRI, 2011).

The STRUCTURE clustering algorithm works by maximizing 
linkage disequilibrium between markers and Hardy–Weinberg equi-
librium among individuals in assigned populations (Pritchard et al., 
2000; Wilkinson, Haley, Alderson, & Wiener, 2011). In continuously 
distributed species wherein there is clinal genetic differentiation, 
with isolation by distance, the algorithm can assign populations arbi-
trarily, so care must be taken in interpretation of data (Frantz et al., 
2009; Pritchard et al., 2000). In line with this concern, we opted to 
make use of an additional multivariate clustering algorithm (Frantz 
et al., 2009) that did not make assumptions about linkage disequi-
librium and Hardy–Weinberg equilibrium. Discriminant analysis of 

principal components (DAPC) is such a method, more suited to the 
investigation of population substructure in continuously distrib-
uted species that exhibit clinal genetic variation (Jombart, Devillard, 
& Balloux, 2010). We implemented the DAPC method in the ade-
genet package (Jombart, 2008) in the R environment v 3.2.2. We 
first used the find.clusters function to assign individual samples to 
proposed subpopulations, retaining all 70 principal components to 
infer a range of possible clusters. We then applied the DAPC anal-
ysis function to the upper and lower values of this range—in both 
cases retaining 30 principle components and all linear discriminants 
to produce scatterplots of both upper and lower values of K. As 
with STRUCTURE outputs, all population data were mapped using 
ArcGIS ArcMAP 10 using latitude and longitude coordinates based 
on the Irish Grid (ESRI, 2011).

2.6 | Landscape genetics analyses

In order to examine the influence of geographic distance, landscape 
variables, and biotic interactions on badger gene flow, we combined 
Mantel tests, multiple regression on distance matrices (MRM), and 
redundancy analysis (RDA). Analyses were conducted with the sub-
set of individuals for which precise coordinates of sampling were 
available (n = 433).

2.7 | Mantel tests and Multiple regression on 
distance matrices (MRM)

As a first step, we estimated interindividual genetic distances 
(Smouse & Peakall, 1999) using the R package PopGenReport 
(Adamack & Gruber, 2014). Next, we used ArcGIS to generate resist-
ance surfaces (rasters) representing the hypothesized resistance a 
particular environmental feature poses to badger gene flow (McRae, 
2006). These surfaces were generated for land cover, elevation, 
earthworm availability, and geographic distance.

To generate land cover surfaces, we used the CORINE land cover 
data set (EEA, 1995) and generated two types of resistance surfaces: 
(a) based on broad land cover categories (CORINE Level 1), we as-
signed low resistance to forest and seminatural areas, intermediate 
resistance to agricultural areas, and high resistance to artificial sur-
faces; (b) within said categories (CORINE Level 2), we made further 
distinctions: within artificial surfaces, we lowered resistance for 
artificial, nonagricultural vegetated areas; within agricultural areas, 
we assigned low resistance to pastures and high resistance to arable 
lands and within forest and seminatural areas, we assigned highest 
resistance to open spaces with no vegetation.

Overall, taking into account general observations on badger 
ecology (Byrne et al., 2012; Hammond et al., 2001), we assumed that 
open areas (whether artificial or natural) posed higher resistance to 
gene flow than areas with vegetation cover. Resistance ratios for 
land cover surfaces were varied (1:10:100 vs. 1:100:1,000 vs. 1: 100: 
10,000), thus generating six surfaces in total. Details on these sur-
faces and ratios are available in Supporting Information Data S2. We 
obtained a digital elevation model from CGIAR (http://srtm.csi.cgiar.

http://srtm.csi.cgiar.org/
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org/), and two surfaces were generated, one maintaining raw ele-
vation (masl) and one using a threshold of 200 m above sea level to 
assign low vs. high resistance (1:100) because badgers tend to avoid 
elevations beyond this threshold (Byrne et al., 2012).

To obtain a resistance surface related to earthworm availability, 
we used MaxEnt (Phillips, Anderson, & Schapire, 2006) to generate a 
raster of earthworm relative habitat suitability (EHS; Merow, Smith, & 
Silander, 2013). We obtained available records of the species (n = 30) 
from the Global Biodiversity Information Facility, GBIF (http://
www.gbif.org/), and reviewed relevant literature on the ecology of 
Lumbricus terrestris and related taxa (Marchán et al., 2015; Rutgers 
et al., 2016) in order to select environmental variables to use as input 
in MaxEnt analyses. Coordinates for all L. terrestris records used in 
the MaxEnt analysis are shown in Supporting Information Table S2.

As a result, we selected five environmental variables, including 
three bioclimatic variables: temperature seasonality (BIO4), maximum 
temperature of the warmest month (BIO5), annual precipitation (BIO12; 
http://www.worldclim.org/bioclim), and two soil variables: pH and silt % 
(http://www.isric.org/data/isric-wise-global-soil-profile-data-ver-31).

Environmental variable rasters were tested for correlation using 
ArcGIS v 10.2 to avoid redundancy. Because no rasters were highly 
correlated (r < 0.80), they were used together as input in MaxEnt 
software, where analyses were run with default settings. Results 
of analyses showed the area under the curve (AUC) = 0.791 for the 
MaxEnt output model, which is considered an acceptable predictive 
accuracy (Araújo, Pearson, Thuiller, & Erhard, 2005). The variables 
with the highest percent contribution to the model were BIO 5 
(31.3%) and BIO 12 (30.2%), followed by pH (20.2%), BIO 4 (9.8%), 
and silt (8.6%). Overall, there is an increase in habitat suitability with 
increasing values of BIO5 (max. temperature of warmest month), 
whilst the opposite was true for BIO12 (annual precipitation), 
where at values beyond ~770 mm, habitat suitability decreases, see 
Supporting Information Figure S2. The output habitat suitability ras-
ter is shown in Figure 3.

To test for isolation by distance (IBD), we generated a “flat” re-
sistance surface in which all cells had the same value (=1). This is an 
alternative to using Euclidean distance that accounts for the finite 
size of the landscape (Dudaniec, Spear, Richardson, & Storfer, 2012).

From the generated resistance surfaces, we obtained resis-
tance–distance matrices using the software Circuitscape 4.0 
(McRae, Dickson, Keitt, & Shah, 2008). For land cover, elevation, 
and “flat” surfaces, we used default settings, which assume that 
these factors inhibit badger gene flow (i.e., raster values = resis-
tance). For EHS, settings were modified so that raster values rep-
resented “conductance” (i.e., habitat suitability ranging from 0.001 
to 0.950) because we expected high EHS to facilitate badger gene 
flow. Finally, to test whether the River Shannon acts as a barrier 
to gene flow, we used individual badger locations to generate a 
“barrier matrix” in which values indicated whether individuals had 
been sampled on the same side of the river (=1) or on opposite sides 
(=100). Once we obtained the resistance matrices, we used the 
package Ecodist (Goslee & Urban, 2007) in R, to conduct Mantel 
tests and MRM. Although the use of Mantel (and related) tests in 

landscape genetics has been criticized (Legendre & Fortín, 2010), 
recent simulations have shown that they are highly effective at de-
tecting Isolation by distance (Kierepka & Latch, 2014). Hence, we 
performed a simple Mantel test between badger genetic distance 
and the “flat” matrix to test for IBD. Next, we performed partial 
Mantel tests on genetic and landscape resistance matrices, whilst 
controlling for “flat” distance. For both simple and partial Mantel 
tests, the significance of correlations (Spearman) was determined 
from 10,000 permutations. Partial Mantel tests identified the re-
sistance matrices that showed significant correlation (p < 0.05) 
with genetic distance matrices. These were checked for correla-
tion using the “cor” function in R, and only those without strong 
correlation (r < 0.8) were retained for MRM analyses. In MRM 
models, matrices were used as predictors of genetic distance. 
Model selection was done using a backward elimination approach, 
with a “threshold” p < 0.05. Significance of regression coefficients 
and R-square values was assessed from 10,000 permutations.

2.8 | Redundancy analysis

Ordination techniques, such as redundancy analysis (RDA), are in-
creasingly used in landscape genetics studies given their power to 

F IGURE  3 Habitat suitability map of Earthworm (Lumbricus 
terrestris) based on MaxEnt model. Map generated using MaxEnt 
logistic output; the values range from 0.001 to 0.950, where 
warmer colors indicate higher probability of presence and cooler 
colors indicate lower probability

http://srtm.csi.cgiar.org/
http://www.gbif.org/
http://www.gbif.org/
http://www.worldclim.org/bioclim
http://www.isric.org/data/isric-wise-global-soil-profile-data-ver-31
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detect effects of landscape resistance and barriers on gene flow 
(Kierepka & Latch, 2014). To apply RDA, we initially conducted a 
principal components analysis on genotypic data with the R package 
“adegenet” and retrieved the two-first principal components to use 
as response variables. Predictors were point estimates of the land-
scape/biotic variables at the sampling site of individuals; to test for 
an effect of geography on gene flow, we used coordinates of sam-
pling (latitude/longitude).

We conducted RDA in the R package vegan (Oksanen, Kindt, 
Legendre, & O’Hara, 2008). We first built a “full” model using all 
predictors together and checked for multicollinearity among them 
with the function “vif.cca.” Because all variance inflation factors 
were low (<5), we retained all predictors. Next, we used the func-
tion “ordistep” to conduct (backward) stepwise model selection 
and thus identify a “minimal” model. Having identified the min-
imal model, we conducted partial RDAs to estimate the amount 
of genetic variance explained solely by landscape/biotic variables 
controlling for geographic location (latitude/longitude) and that 
explained solely by geographic location controlling for landscape/
biotic variables. All models were tested for significance using the 
function “anova.cca.”

3  | RESULTS

3.1 | Data quality assurance

Microsatellite retyping produced results identical to those initially 
obtained. Microchecker detected no evidence for genotyping errors 
or null alleles. Microsatellite allele calls for all samples are found in 
Supporting Information Data S1.

3.2 | General population genetic indices

Indices of diversity, inbreeding fixation (Fis) and tests for Hardy–
Weinberg equilibrium (HWE) across all of Ireland, NI, RoI, and 
the five Irish populations identified by STRUCTURE (see below) 
are shown in Table 1. Across all of Ireland, deviations from HWE 
were observed across 12 of the 14 loci genotyped (Table 1A). 
Within the NI and RoI populations, seven and nine loci were out 
of HWE, respectively (Table 1B and C). Across the five subpopu-
lations identified by STRUCTURE, between 1 and 2 loci devi-
ated from HWE (Table 1D, E, F, G, and H). General population 
genetic indices of diversity across all of Ireland (see Table 1A) 
were similar to those described before by (O’Meara et al., 
2012). More alleles per locus were observed in this study, 5.90 
vs. 4.20, perhaps as a result of this study having surveyed with 
more microsatellite loci and across a wider geographic area, 
however, observed mean heterozygosity was similar—0.48 vs. 
0.50. Observed diversity across NI and RoI was very similar (see 
Table 1B and C) with numbers of alleles per locus being 5.10 and 
5.40, respectively, and observed mean heterozygosity 0.49 and 
0.48, respectively.

The fact that Northern Irish badgers were sampled after road 
traffic accident whilst their southern contemporaries were sampled 
after sett side trapping raises the possibility that behavioral differ-
ences potentially related to ranging may make direct comparison 
inappropriate. To address this, we compared allele frequency data 
between the Co. Down RTA population and another Co. Down pop-
ulation sampled sett side (Data not shown). Z tests corrected for 
multiple comparisons indicated there were no significant allele fre-
quency differences.

F IGURE  4  (a) STRUCTURE microsatellite admixture plot K = 2 for all Irish badgers. (b) STRUCTURE microsatellite admixture plot K = 5 for 
all Irish badgers
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3.3 | Clustering and assignment methods

The independent allele frequencies STRUCTURE model outputs 
indicated a plateauing of log likelihood of K (L(K)) around K = 4 
or 5 (Supporting Information Figure S3A). The Evanno ΔK plot 
showed two peaks, the highest at K = 2 and a lower one at K = 4 
(Supporting Information Figure S3B). The correlated allele frequen-
cies STRUCTURE model outputs indicated a plateauing of the log 
likelihood of K (L(K)) around K = 5 (Supporting Information Figure 
S4A). The Evanno ΔK plot showed two peaks, the largest at K = 2 
and a smaller one at K = 5 (Supporting Information Figure S4B). The 
correlated allele frequency STRUCTURE model exhibited the high-
est mean log likelihood at all inferred values of K for 20 replicates 
compared to the independent allele frequencies model (Supporting 
Information Table S3). Consequently, we focused our efforts on the 

data from the correlated allele frequencies model. It has been noted 
before that the Evanno method can underestimate the true value of 
K when genetic differentiation is minimal between subpopulations, 
thereby preferentially finding the highest clustering hierarchy in a 
dataset (Waples & Gaggiotti, 2006).

In another study involving the American badger, Taxidea taxus, 
two peaks have been observed using the Evanno method (Kierepka 
& Latch, 2016a), with the second being suggestive of further sub-
structure (Evanno et al., 2005; Kierepka & Latch, 2016a). We chose 
therefore to investigate both K = 2 and K = 5 for the British and 
Irish data. DISTRUCT admixture plots of the K = 2 and K = 5 badger 
populations are shown in Figures 3a,b, respectively. At K = 2, Irish 
badgers separated into two distinct geographically distributed sub-
populations (Figures 2a and 4a). In the northeast of the island, the 
Counties of Down, Antrim, and Armagh were home to most of this 

TABLE  2 Pairwise Fst and Jost’s between K = 5 Structure subpopulations—5 Irish subpopulations

IR1 IR2 IR3 IR4 IR5

IR1 0 0.1489*/0.1850 0.1820*/0.2329 0.1597*/0.2480 0.1867*/0.2659

IR2 0.1489*/0.1850 0 0.2349*/0.2353 0.1927*/0.2362 0.2276*/0.2733

IR3 0.1820*/0.2329 0.2349*/0.2353 0 0.1243*/0.1375 0.1920*/0.2154

IR4 0.1597*/0.2480 0.1927*/0.2362 0.1243*/0.1375 0 0.1186*/0.1506

IR5 0.1867*/0.2659 0.2276*/0.2733 0.1920*/0.2154 0.1186*/0.1506 0

Note. For Fst, significance was tested by 200 permutations in FSTAT.
*p < 0.05. 

F IGURE  5 DAPC multivariate analysis of Irish badger genotype data. (a) DAPC K = 7 scatterplot of all individual badgers assigned to 
inferred seven subpopulation clusters; (b) DAPC K = 7 geo-locations of all individual badgers and assigned subpopulation clusters
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cluster (Figures 2a and 4a). The second subpopulation identified by 
the K = 2 analysis was distributed more widely, occupying the ma-
jority of the landmass of Ireland, being found primarily in western 
regions and the midlands. Admixed animals which could not be de-
finitively assigned to either of the subpopulations were distributed 
across the midlands, and northwestern counties. A map of K = 2 
population membership across Ireland indicating this distribution is 
presented in Figure 2. A distinct northeastern to southwestern cline 
in genetic differentiation appears to be a feature at this hierarchical 
level of clustering.

At K = 5, five Irish subpopulations (IR1-IR5) were observed 
(Figure 4b). A map indicating spatial distribution of all five subpop-
ulations is presented in Figure 2b. A total of 107 of the 454 animals 
genotyped were unambiguously allocated as belonging to one sub-
population on the basis of 85% of their genetic makeup having been 
assigned to a single subpopulation by the STRUCTURE admixture 
analysis. The remaining 347 genotyped animals did not meet these 
criteria and are represented as admixed animals in Figure 2b.

Subpopulation IR1 was primarily located in the northeastern 
County of Down, (Figures 2b and 4b). Subpopulation IR2 was largely 
localized to the northern Counties of Antrim and Derry (Figures 2b 
and 4b). Subpopulation IR3 was made up of few badgers and spo-
radically distributed Counties Monaghan, Fermanagh, Leitrim, Sligo, 
and Roscommon (Figures 2b and 4b). Subpopulation IR4 was distrib-
uted in the southeast, principally in Counties Wicklow, Kildare, and 
Wexford (Figures 2b and 4b). Subpopulation IR5 was primarily lo-
cated in the southwestern Counties of Clare, Cork, Kerry, Limerick, 

and Waterford. Pairwise Fst and Jost’s D statistics on subpopulation 
genetic differentiation for the K = 5 STRUCTURE analysis are shown 
in Table 2. All pairwise between subpopulation Fst calculations were 
observed to be significantly greater than zero. Admixed animals, 
which could not be definitively assigned to any of the five identified 
subpopulations, were distributed across the midlands and north-
western counties (Figures 2b and 4b).

Supporting Information Figure S5 shows the curve of values of 
Bayesian information criterion (BIC) for each of the simulated values 
of K derived by find.clusters. The decreasing values of BIC begin to 
plateau at K = 7, reaching their lowest value at K = 10, before begin-
ning to rise again (Supporting Information Figure S5). This type of 
pattern, with multiple possible values of K, is typical of “real world” 
scenarios involving continuously distributed species (Jombart, 
2008). We therefore chose to apply the DAPC method to both the 
K = 7 and K = 10 assigned clusters. Scatterplots and associated geo-
locations for all subpopulations under both the K = 7 and K = 10 
scenarios are illustrated in Figures 5 and 6, respectively. At K = 7, 
linear discriminant axis 1 (LD1) accounted for 30.4% of the observed 
genetic variance, whilst linear discriminant axis 2 (LD2) accounted 
for 17.4% of observed genetic variance (Figure 5a). At K = 10, LD1 
accounted for 26.6% of the observed genetic variance, whilst (LD2) 
accounted for 16.0% of observed genetic variance (Figure 6a).

At K = 7, the DAPC scatterplot and geo-location plot (Figure 5a,b) 
suggested that badgers from counties in the Republic of Ireland 
(Clusters 1–5) were more genetically homogeneous, exhibiting con-
siderable overlap in both genetic and physical space. Conversely, 

F IGURE  6  (a) DAPC K = 10 scatterplot of individual badgers assigned to inferred 10 subpopulation clusters; (b) DAPC K = 10 geo-
locations of all individual badgers and assigned subpopulation clusters
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Clusters 6 and 7 were primarily located in Northern Ireland and 
formed more distinct clusters in genetic space (Figure 5a,b). At 
K = 10, a similar pattern was observed with badgers from the 
Republic of Ireland exhibiting less genetic differentiation from 
each other than when compared to those from Northern Ireland 
(Figure 6a,b). However, in comparison with the K = 7 scenario, the 
K = 10 clusters exhibited a pattern more in keeping with a gradual 
cline in genetic variance both in genetic and physical space across 
the island.

3.4 | Landscape genetic analyses

The simple Mantel test showed a significant correlation between 
genetic distance and the flat resistance surface (r = 0.24; p < 0.05), 
confirming IBD. When controlling for flat resistance–distance in 
partial Mantel tests, genetic distance showed significant positive 
correlation with raw elevation (r = 0.09; p < 0.05) suggesting that 
elevation inhibits gene flow.

No significant correlation was found with any land cover surface, 
the barrier matrix (River Shannon), or EHS. The results of the partial 
Mantel tests and correlations for all landscape factors are presented 
in Supporting Information Table S4. The final MRM model included 
only elevation and (flat) geographic distance and explained 7% of 
the variation in genetic distance (backward elimination was not per-
formed as both predictors had p-values <0.05; Table 3).

After model selection in RDA, the minimal model included the 
variables: elevation, EHS, geographic location (latitude/longitude) 
and explained 40% of genetic variance (F = 72.235, p = 0.001). 
When controlling for geographic location with partial RDA, EHS and 
elevation only explained 2% of variance (F = 7.851, p = 0.001). In 
contrast, when controlling for EHS and elevation, geographic loca-
tion explained 27% of variance (F = 97.135, p = 0.001).

4  | DISCUSSION

In this study, we sought to better understand the population struc-
ture of the Irish badger and to determine how abiotic and biotic fea-
tures of the Irish landscape affected gene flow and contributed to 
the extant population structure. Standard population genetic indices 
revealed island-wide evidence of population substructure. The num-
ber of loci observed to be out of Hardy–Weinberg Equilibrium, and 
the higher values of the fixation index Fis across the whole island as a 

single unit, and when split into its two political units, indicated a lack 
of panmixia over large distances (Table 1A, B, and C). Indeed these 
data are consistent with a Wahlund effect and there being some sub-
population differentiation with limited connectivity. Similar findings 
have been noted before in badgers across Europe (Pope et al., 2006). 
Interestingly, RoI and NI exhibited very similar levels of heterozy-
gosity and allelic diversity (Table 1A and B). RoI occupies approxi-
mately five times the landmass of NI, and whilst there are regional 
differences in land type and suitability for badgers (Byrne, Acevedo, 
Green, & O’Keeffe, 2014; Reid, Etherington, Wilson, Montgomery, 
& McDonald, 2012), one may have expected to see a more diverse 
RoI badger population. That this is not the case may be a result of 
the ongoing culling efforts in RoI (Sheridan, 2011). However, with-
out baseline precull data, it is difficult to be certain this is the case. 
Wide scale culling has not been a feature of TB control schemes in 
Northern Ireland where badger populations have remained stable 
over many years (Reid et al., 2012).

Regarding the inferred population differentiation, STRUCTURE 
analysis indicated two levels of hierarchical clustering in the micro-
satellite data. At K = 2, there was an apparent northeastern to south-
western cline in badger genetic differentiation. From the data we 
present in this study, the reason for such structuring is not apparent. 
It may however have something to do with the way in which Ireland 
was populated by badgers in the past. The DAPC data for both K = 7 
and K = 10 scenarios, particularly as pertaining to Northern Irish 
badgers being more genetically distinct than their southern contem-
poraries, support the STRUCTURE K = 2 inference that there is po-
tentially something of interest about badger populations in Northern 
Ireland. Human-aided transport of badgers from various distinct 
geographic locales into Ireland has been implied in wider European 
phylo-geographic studies (Frantz et al., 2014; O’Meara et al., 2012). 
Such introductions may have left a lasting genetic signal within Irish 
badgers that still results in geographic structure.

At K = 5, we detected the presence of five Irish badger subpop-
ulations occupying distinct geographic regions in Ireland. All five 
subpopulations exhibited significant levels of pairwise genetic differ-
entiation, with IR1 and IR2 in Northern Ireland exhibiting the most 
differentiation from other subpopulations (Table 2). Subpopulation 
IR3 is very small and sporadically distributed across a wide range 
of Irish counties. The latter may be a STRUCTURE artifact that has 
arisen from the effects of IBD as previously discussed and described 
by Frantz et al. (2009). Given these problems, discussed above, 
with inference of clusters by STRUCTURE in continuously distrib-
uted species, it is pertinent to contrast our findings with those from 
the DAPC analyses. In both the K = 7 and K = 10 DAPC scenarios, 
we found evidence of a more gradual, clinal genetic differentiation 
across the island, which was particularly pronounced in the best sup-
ported (lowest BIC) K = 10 scenario. Such clinal variation would be 
in keeping with a species experiencing IBD across its range and is 
likely a more appropriate model of badger genetic variance than the 
one inferred by the K = 5 hierarchical STRUCTURE model. Indeed, 
the large numbers of animals that were found to exhibit admixed ge-
netic heritage and no defined subpopulation membership in both the 

TABLE  3 Multiple regression on distance matrices (MRM)

Model Variable β p-Value

GD ~ GEO + ELV* Geographic distance 1.631e−01 1e−04

Elevation 1.278e−01 6e−04

R2 = 0.070 1e−04

Notes. The model represents badger interindividual genetic distance as a 
function of geographic distance and elevation-based resistance.
ELV: elevation; GD: Genetic distance; GEO: geographic distance.
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STRUCTURE K = 2 and K = 5 analyses lend credence to the DAPC 
supported clinal nature of badger genetic variation in Ireland.

Landscape genetics analyses showed an effect of geographic 
location/distance on genetic differentiation (i.e., IBD). This could 
indicate that Irish badgers are philopatric. Nevertheless, whilst IBD 
is consistent with, on average, limited dispersal, mark–recapture 
studies of Irish badgers have documented rare long-distance dis-
persal of up to 22.1 km (Byrne, Quinn, et al., 2014). Both MRM and 
RDA models showed that elevation is related to genetic variation in 
badgers, which could indicate that gene flow is hindered by upland 
habitat. This is in accordance with data on badger habitat selection, 
with setts less commonly found in upland vegetation types (Byrne, 
Acevedo, et al., 2014; Hammond et al., 2001; Reid et al., 2012).

In terms of other environmental variables, only EHS appeared 
to affect genetic variance in badgers, but its influence was only de-
tected through RDA and the variance explained was rather low (up 
to 2% combined with elevation). This pattern indicates that earth-
worm availability has a low influence on badger dispersal/gene flow, 
consistent with previous suggestions that Irish badgers have less-
specialized diets than populations elsewhere (Cleary et al., 2009). 
No other landscape features seemed to affect badger gene flow in 
Ireland, including the River Shannon. Although the River Shannon is 
a sizeable waterway, depth varies along its course and there are nu-
merous man-made structures such as bridges and canals that could 
allow badgers to cross. Indeed, it has been previously shown that 
rivers do not always represent impermeable barriers to badger gene 
flow (Frantz et al., 2010) or dispersal (Sleeman et al., 2009).

For a species with strict habitat requirements and limited dispersal 
ability, strong associations among habitats and genetic differentiation 
are expected (Kierepka & Latch, 2016b). However, despite evidence 
for limited dispersal in Irish badgers (i.e., IBD), and indications that 
aspects of badger ecology are affected by land cover (Byrne et al., 
2012; Hammond et al., 2001), the latter was not related to badger 
genetic variation in landscape genetic analyses. Previous research 
has suggested that badgers in Ireland are less ecologically specialized 
than badgers in other parts of their range. For instance, several stud-
ies within Ireland have recorded setts in the vicinity of seemingly “un-
suitable” habitats such as roadways, graveyards, and railways (Byrne 
et al., 2012), indicating the species is tolerant of human disturbance 
and can make use of a number of land cover types.

Our overall findings thus highlight the importance of spatial 
replication in landscape genetics studies (Castillo et al., 2016), as 
populations across species range may differ in their ecological in-
teractions and requirements. Furthermore, the effect of particular 
landscape features on gene flow can strongly depend on the degree 
of landscape heterogeneity (Bull et al., 2011), which for Ireland could 
be classified as low.

5  | CONCLUDING REMARKS

Our data demonstrate that geographic distance and elevation are pre-
eminent drivers of continuous, clinal, genetic variation in contemporary 

Irish badgers. These data can guide management of the species in 
Ireland, particularly in the context of controlling bovine tuberculosis in 
cattle. Knowledge of genetic population structure allows us to formu-
late testable hypotheses about how this level of partitioning might af-
fect spatial disease patterns in the pathogen (Biek & Real, 2010).

Additionally, whilst philopatry appears to be the norm in the Irish 
badger and may contribute to maintenance of local M. bovis clusters, 
a small proportion of dispersers have been observed to move larger 
distances (Byrne, Quinn, et al., 2014). Given that there appear to be 
no major physical barriers to gene flow for badgers in Ireland, infected 
animals dispersing over a wider scale may therefore be a risk for dis-
ease spread. Our data and findings represent a strong foundation and 
timely opportunity to address these pertinent issues in the future.
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