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1  | INTRODUC TION

A major force likely to have affected population genetic structure 
of species is the effects of abiotic and biotic landscape features on 

gene flow. As an emerging discipline, landscape genetics combines 
population genetics and landscape ecology to assess the influence 
of landscape or environmental features on genetic variation in wild-
life populations, their dispersal, and connectivity of habitats (Manel 
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Abstract
The population genetic structure of free- ranging species is expected to reflect 
landscape- level effects. Quantifying the role of these factors and their relative con-
tribution often has important implications for wildlife management. The population 
genetics of the European badger (Meles meles) have received considerable attention, 
not least because the species acts as a potential wildlife reservoir for bovine tuber-
culosis (bTB) in Britain and Ireland. Herein, we detail the most comprehensive popu-
lation and landscape genetic study of the badger in Ireland to date—comprised of 454 
Irish badger samples, genotyped at 14 microsatellite loci. Bayesian and multivariate 
clustering methods demonstrated continuous clinal variation across the island, with 
potentially distinct differentiation observed in Northern Ireland. Landscape genetic 
analyses identified geographic distance and elevation as the primary drivers of ge-
netic differentiation, in keeping with badgers exhibiting high levels of philopatry. 
Other factors hypothesized to affect gene flow, including earth worm habitat suita-
bility,	land	cover	type,	and	the	River	Shannon,	had	little	to	no	detectable	effect.	By	
providing a more accurate picture of badger population structure and the factors 
effecting it, these data can guide current efforts to manage the species in Ireland and 
to better understand its role in bTB.
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&	Holderegger,	2013).	This	can	provide	key	information	for	wildlife	
management, including cases where species act as reservoirs or 
vectors	 of	 pathogen	 infection	 (Frantz,	 Pope,	 Etherington,	Wilson,	
&	Burke,	2010;	Kierepka	&	Latch,	2016a,b;	Pope,	Domingo-	Roura,	
Erven,	&	Burke,	2006).

The European badger (Meles meles) Figure 1 is the largest terres-
trial carnivore in Britain and Ireland, and is of significant ecological 
(e.g., ecosystem engineer) and economic importance (as a suspected 
reservoir of bovine tuberculosis, bTB) across this territory (Roper, 
2010). A significant body of work has been undertaken to eluci-
date the species’ role in cattle bTB epidemiology (Roper, 2010). The 
species’ genetic structure at continental scale has been studied ex-
tensively	(Del	Cerro,	Fernando,	Chaschin,	Taberlet,	&	Bosch,	2010;	
Frantz et al., 2014; Marmi et al., 2006; O’Meara et al., 2012). In con-
trast, there is limited information available on badger population 
genetics at the national scale, which is likely to be the scale most rel-
evant to management. To date, there has been no large island- wide 
survey of the genetic structure of the badger in Ireland.

Previously, studies from across Europe have noted that badgers 
exhibit limited dispersal/philopatry (Pope et al., 2006). Dispersal 
distance seems to be inversely proportional to population density, 
with a large proportion of individuals exhibiting philopatry at high 
densities	 (Frantz,	 Cellina,	 Krier,	 Schley,	 &	 Burke,	 2009).	 Although	
badger densities in Ireland are typically not as high as those in south-
ern	 Britain	 (e.g.,	Woodchester	 Park;	 0.4	setts/km2 vs. 2.88 setts/
km2, respectively), they can still be considered relatively high com-
pared	 to	other	European	populations	 (Byrne,	Sleeman,	O’Keefe,	&	
Davenport, 2012; Pope et al., 2006). It is also noteworthy that in 
Ireland, whilst general philopatry appears to hold, mark–recapture 
studies of Irish badgers have documented rare long- distance disper-
sal of up to 22.1 km (Byrne, Quinn, et al., 2014).

Aside from geographic distance, other landscape features likely 
affect	gene	flow	of	badgers.	Water	bodies	and	motorways	have	been	
observed to hinder European badger gene flow (Frantz et al., 2010). 
Furthermore, badgers have generally been recorded at low altitudes 
(<200 m; Byrne et al., 2012), and their abundance, habitat selection, 
and foraging behavior are positively associated with land use cate-
gories such as pasture, forested areas, and grasslands—urban and 
arable land are generally avoided (Byrne et al., 2012; Hammond, 
McGrath,	&	Martin,	2001).

On the other hand, the effect of biotic interactions on the gene 
flow of organisms in general has been little studied (Hand, Lowe, 
Kovach,	Muhlfeld,	&	Luikart,	2015)	regardless	of	the	crucial	insights	
that such research could provide. In this sense, badgers are a par-
ticularly interesting system because they are generally assumed 
to be earthworm (Lumbricus terrestris)	 specialists	 (Kruuk	&	 Parish,	
1981;	Muldowney,	Curry,	O’Keefe,	&	Schmidt,	2003),	which	could	
result in gene flow being strongly affected by earthworm availability. 
Conversely, there is some indication that in Ireland, the diet of the 
badger varies seasonally and is less reliant on earthworms than ob-
served	elsewhere	(Cleary,	Corner,	O’Keefe,	&	Marples,	2009)	which	
could result in little effect of prey availability on gene flow.

In light of the above, applying landscape genetics to study the 
effect of landscape features and biotic interactions on badger gene 
flow may help to inform more fully on the ecology of the species 
in Ireland. The latter could be of benefit in developing a better un-
derstanding of how/whether badger population structure influences 
bovine tuberculosis epidemiology. In this study, therefore, we aim to 
provide the first comprehensive, large scale assessment of genetic 
population structure of the badger across Ireland and to identify the 
landscape	features	which	have	likely	shaped	it.	Specifically,	we	stud-
ied the influence of geographic distance, landscape variables (eleva-
tion,	land	cover,	Ireland’s	only	continental	scale	river:	the	Shannon),	
and biotic interactions (earthworm availability), on badger gene flow.

2  | MATERIAL S AND METHODS

2.1 | Sample collection

A total of 454 badger samples were collected from the Republic of 
Ireland	(RoI)	and	Northern	Ireland	(NI;	Supporting	Information	Table	
S1).	 Badger	 carcasses	 (n	=	176)	 from	 an	 ongoing	 road	 traffic	 acci-
dent (RTA) survey were collected by the Department of Agriculture, 
Environment and Rural Affairs Northern Ireland (DAERA- NI) across 
all	 six	 counties	 of	 NI	 during	 the	 period	 from	 September	 2011	 to	
March	2013.	GPS	locations	of	all	carcasses	were	logged	and	a	tissue	
sample was stored for DNA extraction. In addition, badger carcasses 
(n	=	278)	from	ongoing	culling	efforts	 in	the	RoI	were	collected	by	
the Department of Agriculture, Food and the Marine (DAFM) during 
2014. These badger carcasses were collected from sites distributed 
across 23 of the 26 counties of RoI. The three counties excluded 
were Donegal, Dublin, and Louth on account of there being no 
badger	 carcases	 available	during	 the	 time	window	described.	GPS	

F IGURE  1 European badger (Meles meles) Photo © Mike 
Pennington (cc- by- sa/2.0)
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coordinates of locations of culled animals were collected and a tis-
sue sample stored for DNA extraction. For 21 samples across both 
territories,	there	were	no	geo-	location	data	available.	Samples	were	
frozen	at	−20°C	before	DNA	extraction.

For a full breakdown of numbers of animals submitted per county 
across	Ireland,	see	Supporting	Information	Table	S1.	GPS	locations	
for	all	animals	are	found	in	Supporting	Information	Data	S1.	The	map	
in Figure 2a illustrates the position of all badgers sampled. A map de-
tailing the geographic position and names of all Irish counties and the 
position	of	 the	River	Shannon	 is	 shown	 in	Supporting	 Information	
Figure	S1.

2.2 | DNA extraction

We	extracted	DNA	from	all	tissue	samples	using	a	Qiagen	DNeasy	
tissue	 mini	 kit	 (Qiagen,	 Crawley,	 West	 Sussex,	 United	 Kingdom).	
Extracted	DNA	was	stored	at	−20°C	until	PCR	amplification	for	ei-
ther microsatellite or mitochondrial DNA sequence analysis.

2.3 | Microsatellite genotyping

We	 genotyped	 all	 454	 samples	 at	 the	 following	 14	 microsatellite	
loci—Mel102, Mel103, Mel104, Mel105, Mel106, Mel109, Mel110, 
Mel111,	 Mel112,	 Mel113,	 Mel114,	 Mel115,	 Mel117,	 and	 Mel129	
(Carpenter	 et	al.,	 2003).	 Forward	 primers	 were	 5′	 end-	labeled	
with a fluorescent tag—6FAM (blue) for Mel104, Mel105, Mel106, 
Mel109,	 Mel117,	 and	 Mel129;	 Hex	 (green)	 for	 Mel102,	 Mel103,	
Mel110, Mel113, and Mel115; Cy3 (yellow) for Mel111, Mel112, and 
Mel114.	All	primers	were	supplied	by	Sigma-	Aldrich	(Dorset,	United	
Kingdom).

The 14 primer pairs were arranged into three multiplex PCR. X10 
multi primer master mixes were constituted as follows: Mix 1 Mel106 
and Mel104—2 μM unlabeled primers, 1 μM labeled primers; Mel111 
and Mel112—8 μM unlabeled primers, 4 μM labeled primers; Mel109 
and	Mel117—1	μM unlabeled primers, 0.5 μM labeled primers. Mix 2 

Mel105 and Mel129—4 μM unlabeled primers, 2 μM labeled prim-
ers; Mel102 and Mel115—1 μM unlabeled primers, 0.5 μM labeled 
primers; Mel113—2 μM unlabeled primer, 1 μM labeled primer. Mix 
3 Mel114 and Mel110—4 μM unlabeled primers, 2 μM labeled prim-
ers; Mel103—0.5 μM unlabeled primer, 0.25 μM labeled primer. 
PCRs were undertaken using the Qiagen Multiplex PCR kit. 1 μl of 
extracted DNA (~50 μg/ml) was used as the template. PCR condi-
tions	for	all	three	multiplex	assays	were	as	follows—96°C	for	15	min,	
followed	by	35	cycles	of	96°C/30	s,	60°C/90	s,	72°C/90	s,	followed	
by	a	final	cycle	of	72°C	for	10	min.

Final PCR products were diluted 1:10 with double distilled water 
before electrophoresis on a Life Technologies ABI3130xl genetic 
analyzer	 (Life	 Technologies,	 Paisley,	 UK)	 using	 a	 GS500	 Rox	 size	
standard. Allele calls were scored and manually checked using Life 
Technologies Gene- mapper 4.0 software.

2.4 | Genotyping quality control

We	 regenotyped	 a	 random	 selection	 of	 5%	 of	 all	 extracted	 DNA	
samples tested. All microsatellite data were subjected to analysis by 
Microchecker	v2.2.3	(van	Oosterhout,	Hutchinson,	Wills,	&	Shipley,	
2004) for the presence of genotyping errors and null alleles.

2.5 | Population genetic clustering

We	 determined	 standard	 population	 genetic	 indices	 of	 diversity	
from the microsatellite data using GENEPOP v4.2 (Rousset, 2008), 
namely number of alleles (Na), observed (HO), and expected (HE) het-
erozygosity and the inbreeding/fixation coefficient (FIS). Deviations 
of	allele	frequencies	from	Hardy–Weinberg	equilibrium	(HWE)	were	
also assessed by GENEPOP v4.2.

To elucidate the genetic population structure of badgers across 
Ireland, we analyzed microsatellite data of all 454 badger samples in 
an	admixture	model	 in	STRUCTURE	v2.3.4	(Pritchard,	Stephens,	&	
Donnelly,	2000)	without	location	prior.	With	so	little	known	about	

F IGURE  2  (a)	STRUCTURE	
microsatellite analysis K = 2 spatial 
distribution for all 454 Irish badgers. 
(b)	STRUCTURE	microsatellite	analysis	
K = 5 spatial distribution for all Irish 
badgers
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any potential subpopulation’s history in Ireland, ancient or recent 
divergence of all subpopulations from a common ancestral popula-
tion were both plausible scenarios, as was the possibility of differ-
ent founding populations being translocated to Ireland by human 
agency, as has previously been inferred (Frantz et al., 2014; O’Meara 
et al., 2012).

All latter scenarios would have had consequences for heteroge-
neity in observed patterns of genetic relatedness and divergence 
among	extant	subpopulations;	therefore,	we	ran	STRUCTURE	mod-
els accounting for both correlated and independent allele frequen-
cies and assessed which produced the highest log likelihood for the 
inferred best fitting values of K. To infer the best fitting number of 
subpopulations (K), we used the ΔK method of Evanno, Regnaut, and 
Goudet (2005) over consecutive values from K = 1 to K = 10 with a 
burn- in of 50,000 and a Markov chain length of 100,000, for 20 it-
erations per K value. Convergence of key statistics along the burn- in 
chain	was	 assessed	 as	 per	 the	 STRUCTURE	manual.	We	 then	 ex-
tracted	 and	 analyzed	 the	 data	 using	 STRUCTURE	Harvester	 (Earl	
&	vonHoldt,	2012).	Data	for	each	K value (n = 20) were processed 
by	the	program	CLUMPP	(Jakobsson	&	Rosenberg,	2007),	with	final	
illustrations	produced	using	DISTRUCT	(Rosenberg,	2004).	We	as-
signed	individual	badgers	which	exhibited	85%	of	their	genetic	her-
itage,	 or	 greater,	 to	 specific	 STRUCTURE	 defined	 subpopulations.	
Assignment thresholds for other animal species have been set at a 
variety	of	other	values—50%	for	the	American	badger	(Kierepka	&	
Latch.,	2016b),	70%	for	red	deer	and	jaguars	(Dellicour	et	al.,	2011;	
Wultsch	et	al.,	2016),	and	up	to	90%	for	other	mustelids	(Cegelski,	
Waits,	&	Anderson,	2003)	and	reptiles	(Gaillard	et	al.,	2017).	Given	
the reduced genetic diversity of the European badger in Ireland and 
the general philopatry of the species (Pope et al., 2006), and the con-
tinuous sampling structure we employed, we decided it would be 
best	to	use	a	threshold	of	85%.

We	 quantified	 genetic	 differentiation	 between	 inferred	
STRUCTURE	 populations	 by	 calculating	 pairwise	 FST values using 
FSTAT	 2.9.3.2	 (Goudet,	 1995).	 Statistical	 significance	 of	 pairwise	
values was tested by permutation with corrections for multiple 
comparisons. Genetic differentiation between pairs of populations 
was	 also	 quantified	 using	 Jost’s	D	 statistic	 (Jost,	 2008)	 calculated	
by	the	mmod	package	(Winter,	2012)	in	the	R	environment	v3.2.2	(R	
Development Core Team, 2008). All population data were mapped 
using	ArcGIS	ArcMAP	10	using	 latitude	and	 longitude	coordinates	
based	on	the	Irish	Grid	(ESRI,	2011).

The	 STRUCTURE	 clustering	 algorithm	 works	 by	 maximizing	
linkage	disequilibrium	between	markers	and	Hardy–Weinberg	equi-
librium among individuals in assigned populations (Pritchard et al., 
2000;	Wilkinson,	Haley,	Alderson,	&	Wiener,	2011).	In	continuously	
distributed species wherein there is clinal genetic differentiation, 
with isolation by distance, the algorithm can assign populations arbi-
trarily, so care must be taken in interpretation of data (Frantz et al., 
2009; Pritchard et al., 2000). In line with this concern, we opted to 
make use of an additional multivariate clustering algorithm (Frantz 
et al., 2009) that did not make assumptions about linkage disequi-
librium	 and	Hardy–Weinberg	 equilibrium.	 Discriminant	 analysis	 of	

principal components (DAPC) is such a method, more suited to the 
investigation of population substructure in continuously distrib-
uted	species	that	exhibit	clinal	genetic	variation	(Jombart,	Devillard,	
&	Balloux,	2010).	We	 implemented	 the	DAPC	method	 in	 the	ade-
genet	 package	 (Jombart,	 2008)	 in	 the	R	 environment	 v	3.2.2.	We	
first used the find.clusters function to assign individual samples to 
proposed	subpopulations,	 retaining	all	70	principal	components	 to	
infer	a	range	of	possible	clusters.	We	then	applied	the	DAPC	anal-
ysis function to the upper and lower values of this range—in both 
cases retaining 30 principle components and all linear discriminants 
to produce scatterplots of both upper and lower values of K. As 
with	STRUCTURE	outputs,	all	population	data	were	mapped	using	
ArcGIS	ArcMAP	10	using	latitude	and	longitude	coordinates	based	
on	the	Irish	Grid	(ESRI,	2011).

2.6 | Landscape genetics analyses

In order to examine the influence of geographic distance, landscape 
variables, and biotic interactions on badger gene flow, we combined 
Mantel tests, multiple regression on distance matrices (MRM), and 
redundancy analysis (RDA). Analyses were conducted with the sub-
set of individuals for which precise coordinates of sampling were 
available (n = 433).

2.7 | Mantel tests and Multiple regression on 
distance matrices (MRM)

As a first step, we estimated interindividual genetic distances 
(Smouse	 &	 Peakall,	 1999)	 using	 the	 R	 package	 PopGenReport	
(Adamack	&	Gruber,	2014).	Next,	we	used	ArcGIS	to	generate	resist-
ance surfaces (rasters) representing the hypothesized resistance a 
particular environmental feature poses to badger gene flow (McRae, 
2006). These surfaces were generated for land cover, elevation, 
earthworm availability, and geographic distance.

To generate land cover surfaces, we used the CORINE land cover 
data set (EEA, 1995) and generated two types of resistance surfaces: 
(a) based on broad land cover categories (CORINE Level 1), we as-
signed low resistance to forest and seminatural areas, intermediate 
resistance to agricultural areas, and high resistance to artificial sur-
faces; (b) within said categories (CORINE Level 2), we made further 
distinctions: within artificial surfaces, we lowered resistance for 
artificial, nonagricultural vegetated areas; within agricultural areas, 
we assigned low resistance to pastures and high resistance to arable 
lands and within forest and seminatural areas, we assigned highest 
resistance to open spaces with no vegetation.

Overall, taking into account general observations on badger 
ecology (Byrne et al., 2012; Hammond et al., 2001), we assumed that 
open areas (whether artificial or natural) posed higher resistance to 
gene flow than areas with vegetation cover. Resistance ratios for 
land cover surfaces were varied (1:10:100 vs. 1:100:1,000 vs. 1: 100: 
10,000), thus generating six surfaces in total. Details on these sur-
faces	and	ratios	are	available	in	Supporting	Information	Data	S2.	We	
obtained a digital elevation model from CGIAR (http://srtm.csi.cgiar.

http://srtm.csi.cgiar.org/
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org/), and two surfaces were generated, one maintaining raw ele-
vation (masl) and one using a threshold of 200 m above sea level to 
assign low vs. high resistance (1:100) because badgers tend to avoid 
elevations beyond this threshold (Byrne et al., 2012).

To obtain a resistance surface related to earthworm availability, 
we	used	MaxEnt	(Phillips,	Anderson,	&	Schapire,	2006)	to	generate	a	
raster	of	earthworm	relative	habitat	suitability	(EHS;	Merow,	Smith,	&	
Silander,	2013).	We	obtained	available	records	of	the	species	(n = 30) 
from the Global Biodiversity Information Facility, GBIF (http://
www.gbif.org/), and reviewed relevant literature on the ecology of 
Lumbricus terrestris and related taxa (Marchán et al., 2015; Rutgers 
et al., 2016) in order to select environmental variables to use as input 
in MaxEnt analyses. Coordinates for all L. terrestris records used in 
the	MaxEnt	analysis	are	shown	in	Supporting	Information	Table	S2.

As a result, we selected five environmental variables, including 
three bioclimatic variables: temperature seasonality (BIO4), maximum 
temperature of the warmest month (BIO5), annual precipitation (BIO12; 
http://www.worldclim.org/bioclim),	and	two	soil	variables:	pH	and	silt	%	
(http://www.isric.org/data/isric-wise-global-soil-profile-data-ver-31).

Environmental variable rasters were tested for correlation using 
ArcGIS	v	10.2	to	avoid	redundancy.	Because	no	rasters	were	highly	
correlated (r < 0.80), they were used together as input in MaxEnt 
software, where analyses were run with default settings. Results 
of	analyses	showed	the	area	under	the	curve	(AUC)	=	0.791	for	the	
MaxEnt output model, which is considered an acceptable predictive 
accuracy	 (Araújo,	Pearson,	Thuiller,	&	Erhard,	2005).	The	variables	
with the highest percent contribution to the model were BIO 5 
(31.3%)	and	BIO	12	(30.2%),	followed	by	pH	(20.2%),	BIO	4	(9.8%),	
and	silt	(8.6%).	Overall,	there	is	an	increase	in	habitat	suitability	with	
increasing values of BIO5 (max. temperature of warmest month), 
whilst the opposite was true for BIO12 (annual precipitation), 
where	at	values	beyond	~770	mm,	habitat	suitability	decreases,	see	
Supporting	Information	Figure	S2.	The	output	habitat	suitability	ras-
ter is shown in Figure 3.

To test for isolation by distance (IBD), we generated a “flat” re-
sistance surface in which all cells had the same value (=1). This is an 
alternative to using Euclidean distance that accounts for the finite 
size	of	the	landscape	(Dudaniec,	Spear,	Richardson,	&	Storfer,	2012).

From the generated resistance surfaces, we obtained resis-
tance–distance matrices using the software Circuitscape 4.0 
(McRae,	Dickson,	Keitt,	&	Shah,	2008).	For	land	cover,	elevation,	
and “flat” surfaces, we used default settings, which assume that 
these factors inhibit badger gene flow (i.e., raster values = resis-
tance).	For	EHS,	settings	were	modified	so	that	raster	values	rep-
resented “conductance” (i.e., habitat suitability ranging from 0.001 
to	0.950)	because	we	expected	high	EHS	to	facilitate	badger	gene	
flow.	Finally,	to	test	whether	the	River	Shannon	acts	as	a	barrier	
to gene flow, we used individual badger locations to generate a 
“barrier matrix” in which values indicated whether individuals had 
been sampled on the same side of the river (=1) or on opposite sides 
(=100). Once we obtained the resistance matrices, we used the 
package	Ecodist	 (Goslee	&	Urban,	2007)	 in	R,	to	conduct	Mantel	
tests and MRM. Although the use of Mantel (and related) tests in 

landscape	genetics	has	been	criticized	(Legendre	&	Fortín,	2010),	
recent simulations have shown that they are highly effective at de-
tecting	Isolation	by	distance	(Kierepka	&	Latch,	2014).	Hence,	we	
performed a simple Mantel test between badger genetic distance 
and the “flat” matrix to test for IBD. Next, we performed partial 
Mantel tests on genetic and landscape resistance matrices, whilst 
controlling for “flat” distance. For both simple and partial Mantel 
tests,	the	significance	of	correlations	(Spearman)	was	determined	
from 10,000 permutations. Partial Mantel tests identified the re-
sistance matrices that showed significant correlation (p < 0.05) 
with genetic distance matrices. These were checked for correla-
tion using the “cor” function in R, and only those without strong 
correlation (r < 0.8) were retained for MRM analyses. In MRM 
models, matrices were used as predictors of genetic distance. 
Model selection was done using a backward elimination approach, 
with a “threshold” p	<	0.05.	Significance	of	regression	coefficients	
and R- square values was assessed from 10,000 permutations.

2.8 | Redundancy analysis

Ordination techniques, such as redundancy analysis (RDA), are in-
creasingly used in landscape genetics studies given their power to 

F IGURE  3 Habitat suitability map of Earthworm (Lumbricus 
terrestris) based on MaxEnt model. Map generated using MaxEnt 
logistic output; the values range from 0.001 to 0.950, where 
warmer colors indicate higher probability of presence and cooler 
colors indicate lower probability

http://srtm.csi.cgiar.org/
http://www.gbif.org/
http://www.gbif.org/
http://www.worldclim.org/bioclim
http://www.isric.org/data/isric-wise-global-soil-profile-data-ver-31
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detect effects of landscape resistance and barriers on gene flow 
(Kierepka	&	 Latch,	 2014).	 To	 apply	 RDA,	we	 initially	 conducted	 a	
principal components analysis on genotypic data with the R package 
“adegenet” and retrieved the two- first principal components to use 
as response variables. Predictors were point estimates of the land-
scape/biotic variables at the sampling site of individuals; to test for 
an effect of geography on gene flow, we used coordinates of sam-
pling (latitude/longitude).

We	conducted	RDA	 in	 the	R	package	vegan	 (Oksanen,	Kindt,	
Legendre,	&	O’Hara,	2008).	We	 first	built	 a	 “full”	model	using	all	
predictors together and checked for multicollinearity among them 
with the function “vif.cca.” Because all variance inflation factors 
were low (<5), we retained all predictors. Next, we used the func-
tion “ordistep” to conduct (backward) stepwise model selection 
and thus identify a “minimal” model. Having identified the min-
imal model, we conducted partial RDAs to estimate the amount 
of genetic variance explained solely by landscape/biotic variables 
controlling for geographic location (latitude/longitude) and that 
explained solely by geographic location controlling for landscape/
biotic variables. All models were tested for significance using the 
function “anova.cca.”

3  | RESULTS

3.1 | Data quality assurance

Microsatellite retyping produced results identical to those initially 
obtained. Microchecker detected no evidence for genotyping errors 
or null alleles. Microsatellite allele calls for all samples are found in 
Supporting	Information	Data	S1.

3.2 | General population genetic indices

Indices of diversity, inbreeding fixation (Fis) and tests for Hardy–
Weinberg	equilibrium	 (HWE)	across	all	 of	 Ireland,	NI,	RoI,	 and	
the	five	Irish	populations	identified	by	STRUCTURE	(see	below)	
are	shown	in	Table	1.	Across	all	of	Ireland,	deviations	from	HWE	
were observed across 12 of the 14 loci genotyped (Table 1A). 
Within	the	NI	and	RoI	populations,	seven	and	nine	loci	were	out	
of	HWE,	respectively	(Table	1B	and	C).	Across	the	five	subpopu-
lations	 identified	 by	 STRUCTURE,	 between	 1	 and	 2	 loci	 devi-
ated	 from	HWE	 (Table	1D,	E,	 F,	G,	 and	H).	General	 population	
genetic indices of diversity across all of Ireland (see Table 1A) 
were similar to those described before by (O’Meara et al., 
2012). More alleles per locus were observed in this study, 5.90 
vs. 4.20, perhaps as a result of this study having surveyed with 
more microsatellite loci and across a wider geographic area, 
however, observed mean heterozygosity was similar—0.48 vs. 
0.50. Observed diversity across NI and RoI was very similar (see 
Table 1B and C) with numbers of alleles per locus being 5.10 and 
5.40, respectively, and observed mean heterozygosity 0.49 and 
0.48, respectively.

The fact that Northern Irish badgers were sampled after road 
traffic accident whilst their southern contemporaries were sampled 
after sett side trapping raises the possibility that behavioral differ-
ences potentially related to ranging may make direct comparison 
inappropriate. To address this, we compared allele frequency data 
between the Co. Down RTA population and another Co. Down pop-
ulation sampled sett side (Data not shown). Z tests corrected for 
multiple comparisons indicated there were no significant allele fre-
quency differences.

F IGURE  4  (a)	STRUCTURE	microsatellite	admixture	plot	K	=	2	for	all	Irish	badgers.	(b)	STRUCTURE	microsatellite	admixture	plot	K = 5 for 
all Irish badgers
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3.3 | Clustering and assignment methods

The	 independent	 allele	 frequencies	 STRUCTURE	 model	 outputs	
indicated a plateauing of log likelihood of K (L(K)) around K = 4 
or	 5	 (Supporting	 Information	 Figure	 S3A).	 The	 Evanno	 ΔK plot 
showed two peaks, the highest at K = 2 and a lower one at K = 4 
(Supporting	Information	Figure	S3B).	The	correlated	allele	frequen-
cies	STRUCTURE	model	outputs	 indicated	a	plateauing	of	 the	 log	
likelihood of K (L(K)) around K	=	5	 (Supporting	 Information	 Figure	
S4A).	The	Evanno	ΔK plot showed two peaks, the largest at K = 2 
and a smaller one at K	=	5	(Supporting	Information	Figure	S4B).	The	
correlated	allele	frequency	STRUCTURE	model	exhibited	the	high-
est mean log likelihood at all inferred values of K for 20 replicates 
compared	to	the	independent	allele	frequencies	model	(Supporting	
Information	Table	S3).	Consequently,	we	focused	our	efforts	on	the	

data from the correlated allele frequencies model. It has been noted 
before that the Evanno method can underestimate the true value of 
K when genetic differentiation is minimal between subpopulations, 
thereby preferentially finding the highest clustering hierarchy in a 
dataset	(Waples	&	Gaggiotti,	2006).

In another study involving the American badger, Taxidea taxus, 
two peaks have been observed using the Evanno method (Kierepka 
&	Latch,	2016a),	with	 the	second	being	suggestive	of	 further	sub-
structure	(Evanno	et	al.,	2005;	Kierepka	&	Latch,	2016a).	We	chose	
therefore to investigate both K = 2 and K = 5 for the British and 
Irish	data.	DISTRUCT	admixture	plots	of	the	K = 2 and K = 5 badger 
populations are shown in Figures 3a,b, respectively. At K = 2, Irish 
badgers separated into two distinct geographically distributed sub-
populations (Figures 2a and 4a). In the northeast of the island, the 
Counties of Down, Antrim, and Armagh were home to most of this 

TABLE  2 Pairwise Fst	and	Jost’s	between	K	=	5	Structure	subpopulations—5	Irish	subpopulations

IR1 IR2 IR3 IR4 IR5

IR1 0 0.1489*/0.1850 0.1820*/0.2329 0.1597*/0.2480 0.1867*/0.2659

IR2 0.1489*/0.1850 0 0.2349*/0.2353 0.1927*/0.2362 0.2276*/0.2733

IR3 0.1820*/0.2329 0.2349*/0.2353 0 0.1243*/0.1375 0.1920*/0.2154

IR4 0.1597*/0.2480 0.1927*/0.2362 0.1243*/0.1375 0 0.1186*/0.1506

IR5 0.1867*/0.2659 0.2276*/0.2733 0.1920*/0.2154 0.1186*/0.1506 0

Note. For Fst,	significance	was	tested	by	200	permutations	in	FSTAT.
*p < 0.05. 

F IGURE  5 DAPC multivariate analysis of Irish badger genotype data. (a) DAPC K	=	7	scatterplot	of	all	individual	badgers	assigned	to	
inferred seven subpopulation clusters; (b) DAPC K	=	7	geo-	locations	of	all	individual	badgers	and	assigned	subpopulation	clusters
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cluster (Figures 2a and 4a). The second subpopulation identified by 
the K = 2 analysis was distributed more widely, occupying the ma-
jority of the landmass of Ireland, being found primarily in western 
regions and the midlands. Admixed animals which could not be de-
finitively assigned to either of the subpopulations were distributed 
across the midlands, and northwestern counties. A map of K = 2 
population membership across Ireland indicating this distribution is 
presented in Figure 2. A distinct northeastern to southwestern cline 
in genetic differentiation appears to be a feature at this hierarchical 
level of clustering.

At K = 5, five Irish subpopulations (IR1- IR5) were observed 
(Figure 4b). A map indicating spatial distribution of all five subpop-
ulations	is	presented	in	Figure	2b.	A	total	of	107	of	the	454	animals	
genotyped were unambiguously allocated as belonging to one sub-
population	on	the	basis	of	85%	of	their	genetic	makeup	having	been	
assigned	 to	 a	 single	 subpopulation	by	 the	STRUCTURE	admixture	
analysis.	The	remaining	347	genotyped	animals	did	not	meet	these	
criteria and are represented as admixed animals in Figure 2b.

Subpopulation	 IR1	 was	 primarily	 located	 in	 the	 northeastern	
County	of	Down,	(Figures	2b	and	4b).	Subpopulation	IR2	was	largely	
localized to the northern Counties of Antrim and Derry (Figures 2b 
and	4b).	Subpopulation	 IR3	was	made	up	of	few	badgers	and	spo-
radically	distributed	Counties	Monaghan,	Fermanagh,	Leitrim,	Sligo,	
and	Roscommon	(Figures	2b	and	4b).	Subpopulation	IR4	was	distrib-
uted	in	the	southeast,	principally	in	Counties	Wicklow,	Kildare,	and	
Wexford	 (Figures	2b	 and	4b).	 Subpopulation	 IR5	was	 primarily	 lo-
cated in the southwestern Counties of Clare, Cork, Kerry, Limerick, 

and	Waterford.	Pairwise	Fst	and	Jost’s	D statistics on subpopulation 
genetic differentiation for the K	=	5	STRUCTURE	analysis	are	shown	
in Table 2. All pairwise between subpopulation Fst calculations were 
observed to be significantly greater than zero. Admixed animals, 
which could not be definitively assigned to any of the five identified 
subpopulations, were distributed across the midlands and north-
western counties (Figures 2b and 4b).

Supporting	Information	Figure	S5	shows	the	curve	of	values	of	
Bayesian information criterion (BIC) for each of the simulated values 
of K derived by find.clusters. The decreasing values of BIC begin to 
plateau at K	=	7,	reaching	their	lowest	value	at	K = 10, before begin-
ning	 to	 rise	again	 (Supporting	 Information	Figure	S5).	This	 type	of	
pattern, with multiple possible values of K, is typical of “real world” 
scenarios	 involving	 continuously	 distributed	 species	 (Jombart,	
2008).	We	therefore	chose	to	apply	the	DAPC	method	to	both	the	
K	=	7	and	K	=	10	assigned	clusters.	Scatterplots	and	associated	geo-	
locations for all subpopulations under both the K	=	7	 and	 K = 10 
scenarios are illustrated in Figures 5 and 6, respectively. At K	=	7,	
linear	discriminant	axis	1	(LD1)	accounted	for	30.4%	of	the	observed	
genetic variance, whilst linear discriminant axis 2 (LD2) accounted 
for	17.4%	of	observed	genetic	variance	 (Figure	5a).	At	K = 10, LD1 
accounted	for	26.6%	of	the	observed	genetic	variance,	whilst	(LD2)	
accounted	for	16.0%	of	observed	genetic	variance	(Figure	6a).

At K	=	7,	the	DAPC	scatterplot	and	geo-	location	plot	(Figure	5a,b)	
suggested that badgers from counties in the Republic of Ireland 
(Clusters 1–5) were more genetically homogeneous, exhibiting con-
siderable overlap in both genetic and physical space. Conversely, 

F IGURE  6  (a) DAPC K = 10 scatterplot of individual badgers assigned to inferred 10 subpopulation clusters; (b) DAPC K = 10 geo- 
locations of all individual badgers and assigned subpopulation clusters
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Clusters	 6	 and	 7	 were	 primarily	 located	 in	 Northern	 Ireland	 and	
formed more distinct clusters in genetic space (Figure 5a,b). At 
K = 10, a similar pattern was observed with badgers from the 
Republic of Ireland exhibiting less genetic differentiation from 
each other than when compared to those from Northern Ireland 
(Figure 6a,b). However, in comparison with the K	=	7	 scenario,	 the	
K = 10 clusters exhibited a pattern more in keeping with a gradual 
cline in genetic variance both in genetic and physical space across 
the island.

3.4 | Landscape genetic analyses

The simple Mantel test showed a significant correlation between 
genetic distance and the flat resistance surface (r = 0.24; p < 0.05), 
confirming	 IBD.	 When	 controlling	 for	 flat	 resistance–distance	 in	
partial Mantel tests, genetic distance showed significant positive 
correlation with raw elevation (r = 0.09; p < 0.05) suggesting that 
elevation inhibits gene flow.

No significant correlation was found with any land cover surface, 
the	barrier	matrix	(River	Shannon),	or	EHS.	The	results	of	the	partial	
Mantel tests and correlations for all landscape factors are presented 
in	Supporting	Information	Table	S4.	The	final	MRM	model	included	
only	 elevation	 and	 (flat)	 geographic	 distance	 and	 explained	 7%	of	
the variation in genetic distance (backward elimination was not per-
formed as both predictors had p- values <0.05; Table 3).

After model selection in RDA, the minimal model included the 
variables:	 elevation,	 EHS,	 geographic	 location	 (latitude/longitude)	
and	 explained	 40%	 of	 genetic	 variance	 (F	=	72.235,	 p = 0.001). 
When	controlling	for	geographic	location	with	partial	RDA,	EHS	and	
elevation	 only	 explained	 2%	 of	 variance	 (F	=	7.851,	 p = 0.001). In 
contrast,	when	controlling	for	EHS	and	elevation,	geographic	loca-
tion	explained	27%	of	variance	(F	=	97.135,	p = 0.001).

4  | DISCUSSION

In this study, we sought to better understand the population struc-
ture of the Irish badger and to determine how abiotic and biotic fea-
tures of the Irish landscape affected gene flow and contributed to 
the	extant	population	structure.	Standard	population	genetic	indices	
revealed island- wide evidence of population substructure. The num-
ber	of	loci	observed	to	be	out	of	Hardy–Weinberg	Equilibrium,	and	
the higher values of the fixation index Fis across the whole island as a 

single unit, and when split into its two political units, indicated a lack 
of panmixia over large distances (Table 1A, B, and C). Indeed these 
data	are	consistent	with	a	Wahlund	effect	and	there	being	some	sub-
population	differentiation	with	limited	connectivity.	Similar	findings	
have been noted before in badgers across Europe (Pope et al., 2006). 
Interestingly, RoI and NI exhibited very similar levels of heterozy-
gosity and allelic diversity (Table 1A and B). RoI occupies approxi-
mately five times the landmass of NI, and whilst there are regional 
differences in land type and suitability for badgers (Byrne, Acevedo, 
Green,	&	O’Keeffe,	2014;	Reid,	Etherington,	Wilson,	Montgomery,	
&	McDonald,	2012),	one	may	have	expected	to	see	a	more	diverse	
RoI badger population. That this is not the case may be a result of 
the	ongoing	culling	efforts	 in	RoI	(Sheridan,	2011).	However,	with-
out baseline precull data, it is difficult to be certain this is the case. 
Wide	scale	culling	has	not	been	a	feature	of	TB	control	schemes	in	
Northern Ireland where badger populations have remained stable 
over many years (Reid et al., 2012).

Regarding	the	 inferred	population	differentiation,	STRUCTURE	
analysis indicated two levels of hierarchical clustering in the micro-
satellite data. At K = 2, there was an apparent northeastern to south-
western cline in badger genetic differentiation. From the data we 
present in this study, the reason for such structuring is not apparent. 
It may however have something to do with the way in which Ireland 
was populated by badgers in the past. The DAPC data for both K	=	7	
and K = 10 scenarios, particularly as pertaining to Northern Irish 
badgers being more genetically distinct than their southern contem-
poraries,	support	the	STRUCTURE	K = 2 inference that there is po-
tentially something of interest about badger populations in Northern 
Ireland. Human- aided transport of badgers from various distinct 
geographic locales into Ireland has been implied in wider European 
phylo- geographic studies (Frantz et al., 2014; O’Meara et al., 2012). 
Such	introductions	may	have	left	a	lasting	genetic	signal	within	Irish	
badgers that still results in geographic structure.

At K = 5, we detected the presence of five Irish badger subpop-
ulations occupying distinct geographic regions in Ireland. All five 
subpopulations exhibited significant levels of pairwise genetic differ-
entiation, with IR1 and IR2 in Northern Ireland exhibiting the most 
differentiation	 from	other	 subpopulations	 (Table	2).	Subpopulation	
IR3 is very small and sporadically distributed across a wide range 
of	Irish	counties.	The	latter	may	be	a	STRUCTURE	artifact	that	has	
arisen from the effects of IBD as previously discussed and described 
by Frantz et al. (2009). Given these problems, discussed above, 
with	 inference	of	 clusters	by	STRUCTURE	 in	continuously	distrib-
uted species, it is pertinent to contrast our findings with those from 
the DAPC analyses. In both the K	=	7	and	K = 10 DAPC scenarios, 
we found evidence of a more gradual, clinal genetic differentiation 
across the island, which was particularly pronounced in the best sup-
ported (lowest BIC) K	=	10	scenario.	Such	clinal	variation	would	be	
in keeping with a species experiencing IBD across its range and is 
likely a more appropriate model of badger genetic variance than the 
one inferred by the K	=	5	hierarchical	STRUCTURE	model.	 Indeed,	
the large numbers of animals that were found to exhibit admixed ge-
netic heritage and no defined subpopulation membership in both the 

TABLE  3 Multiple regression on distance matrices (MRM)

Model Variable β p- Value

GD ~ GEO + ELV* Geographic distance 1.631e−01 1e−04

Elevation 1.278e−01 6e−04

R2	=	0.070 1e−04

Notes. The model represents badger interindividual genetic distance as a 
function of geographic distance and elevation- based resistance.
ELV: elevation; GD: Genetic distance; GEO: geographic distance.
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STRUCTURE	K = 2 and K = 5 analyses lend credence to the DAPC 
supported clinal nature of badger genetic variation in Ireland.

Landscape genetics analyses showed an effect of geographic 
location/distance on genetic differentiation (i.e., IBD). This could 
indicate that Irish badgers are philopatric. Nevertheless, whilst IBD 
is consistent with, on average, limited dispersal, mark–recapture 
studies of Irish badgers have documented rare long- distance dis-
persal of up to 22.1 km (Byrne, Quinn, et al., 2014). Both MRM and 
RDA models showed that elevation is related to genetic variation in 
badgers, which could indicate that gene flow is hindered by upland 
habitat. This is in accordance with data on badger habitat selection, 
with setts less commonly found in upland vegetation types (Byrne, 
Acevedo, et al., 2014; Hammond et al., 2001; Reid et al., 2012).

In	 terms	of	other	environmental	 variables,	only	EHS	appeared	
to affect genetic variance in badgers, but its influence was only de-
tected through RDA and the variance explained was rather low (up 
to	2%	combined	with	elevation).	This	pattern	indicates	that	earth-
worm availability has a low influence on badger dispersal/gene flow, 
consistent with previous suggestions that Irish badgers have less- 
specialized diets than populations elsewhere (Cleary et al., 2009). 
No other landscape features seemed to affect badger gene flow in 
Ireland,	including	the	River	Shannon.	Although	the	River	Shannon	is	
a sizeable waterway, depth varies along its course and there are nu-
merous man- made structures such as bridges and canals that could 
allow badgers to cross. Indeed, it has been previously shown that 
rivers do not always represent impermeable barriers to badger gene 
flow	(Frantz	et	al.,	2010)	or	dispersal	(Sleeman	et	al.,	2009).

For a species with strict habitat requirements and limited dispersal 
ability, strong associations among habitats and genetic differentiation 
are	expected	(Kierepka	&	Latch,	2016b).	However,	despite	evidence	
for limited dispersal in Irish badgers (i.e., IBD), and indications that 
aspects of badger ecology are affected by land cover (Byrne et al., 
2012; Hammond et al., 2001), the latter was not related to badger 
genetic variation in landscape genetic analyses. Previous research 
has suggested that badgers in Ireland are less ecologically specialized 
than badgers in other parts of their range. For instance, several stud-
ies within Ireland have recorded setts in the vicinity of seemingly “un-
suitable” habitats such as roadways, graveyards, and railways (Byrne 
et al., 2012), indicating the species is tolerant of human disturbance 
and can make use of a number of land cover types.

Our overall findings thus highlight the importance of spatial 
replication in landscape genetics studies (Castillo et al., 2016), as 
populations across species range may differ in their ecological in-
teractions and requirements. Furthermore, the effect of particular 
landscape features on gene flow can strongly depend on the degree 
of landscape heterogeneity (Bull et al., 2011), which for Ireland could 
be classified as low.

5  | CONCLUDING REMARKS

Our data demonstrate that geographic distance and elevation are pre- 
eminent drivers of continuous, clinal, genetic variation in contemporary 

Irish badgers. These data can guide management of the species in 
Ireland, particularly in the context of controlling bovine tuberculosis in 
cattle. Knowledge of genetic population structure allows us to formu-
late testable hypotheses about how this level of partitioning might af-
fect	spatial	disease	patterns	in	the	pathogen	(Biek	&	Real,	2010).

Additionally, whilst philopatry appears to be the norm in the Irish 
badger and may contribute to maintenance of local M. bovis clusters, 
a small proportion of dispersers have been observed to move larger 
distances (Byrne, Quinn, et al., 2014). Given that there appear to be 
no major physical barriers to gene flow for badgers in Ireland, infected 
animals dispersing over a wider scale may therefore be a risk for dis-
ease spread. Our data and findings represent a strong foundation and 
timely opportunity to address these pertinent issues in the future.
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