Dual Regulation of Calcium Mobilization by Inositol 1,4,5-Trisphosphate in a Living Cell

Svetlana Tertyshnikova and Alan Fein

From the Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3505

abstract Changes in cytosolic free calcium $([Ca^{2+}]_i)$ often take the form of a sustained response or repetitive oscillations. The frequency and amplitude of $[Ca^{2+}]_i$ oscillations are essential for the selective stimulation of gene expression and for enzyme activation. However, the mechanism that determines whether $[Ca^{2+}]_i$ oscillates at a particular frequency or becomes a sustained response is poorly understood. We find that $[Ca^{2+}]_i$ oscillations in rat megakaryocytes, as in other cells, results from a Ca^{2+} -dependent inhibition of inositol 1,4,5-trisphosphate (IP₃)–induced Ca^{2+} release. Moreover, we find that this inhibition becomes progressively less effective with higher IP₃ concentrations. We suggest that disinhibition, by increasing IP₃ concentration, of Ca^{2+} -dependent inhibition is a common mechanism for the regulation of $[Ca^{2+}]_i$ oscillations in cells containing IP₃-sensitive Ca^{2+} stores.

key words: megakaryocyte • protein kinase C • pleckstrin • IP₃-5-phosphatase • platelets

INTRODUCTION

Calcium is a universal intracellular signaling agent involved in a myriad of processes from fertilization to cell death (Berridge et al., 1998). Changes in cytosolic free calcium ($[Ca^{2+}]_i$) are well documented for cells stimulated by many hormone and growth factor agonists that generate the second messenger inositol 1,4,5-trisphosphate (IP_3) .¹ $[Ca^{2+}]_i$ signals can be a single transient or a sustained increase, but very often take the form of repetitive spikes or oscillations. The frequency and amplitude of $[Ca^{2+}]_i$ oscillations are essential for initiating numerous cellular processes, including selective stimulation of gene expression (Dolmetsch et al., 1998; Li et al., 1998) and the activation of specific enzymes (De Koninck and Schulman, 1998). It has been observed that as the concentration of agonist is increased $[Ca^{2+}]_i$ oscillations increase in frequency, eventually becoming a sustained $[Ca^{2+}]_i$ elevation (Jacob et al., 1988; Wakui et al., 1989; Heemskerk et al., 1993). A similar phenomenon has also been seen when cells are dialyzed with increasing concentrations of the nonmetabolized IP₃ analogue, inositol 1,4,5 trisphosphorothioate (Petersen et al., 1991). However, the mechanism by which the $[Ca^{2+}]_i$ oscillation frequency increases and how the response changes into a sustained $[Ca^{2+}]_i$ elevation is not understood.

Many models of agonist-induced $[Ca^{2+}]_i$ oscillations in nonexcitable cells require some form of Ca^{2+} -depen-

dent inhibition of IP₃-induced Ca²⁺ release as a fundamental component (Fewtrell, 1993). In these models, released Ca²⁺ feeds back to inhibit further release of Ca²⁺ by IP₃ (Payne et al., 1988; Ogden et al., 1990; Ilyin and Parker, 1994; Oancea and Meyer, 1996; Carter and Ogden, 1997). However, it is not clear how these models could explain the increase in the $[Ca^{2+}]_i$ oscillation frequency with increased agonist concentration described above. Or for that matter how the $[Ca^{2+}]_i$ oscillation changes into a sustained $[Ca^{2+}]_i$ elevation. A possible answer might come from in vitro studies, which have shown that the extent of Ca2+-dependent inhibition may be regulated by the concentration IP₃. For example, the inhibition by Ca²⁺ of IP₃-induced Ca²⁺ release from cerebellar microsomes (Joseph et al., 1989; Combettes et al., 1994; Hannaert-Merah et al., 1995) and permeabilized A7r5 smooth muscle cells (Bootman et al., 1995) decreases as the IP₃ concentration is elevated. Likewise, a similar effect is seen at the level of the single IP₃-gated Ca²⁺ channel (Kaftan et al., 1997; Mak et al., 1998). Whether or not this decrease of Ca2+-dependent inhibition as the IP₃ concentration is elevated occurs in intact cells is not known. The experiments described herein were designed to extend these in vitro findings to an intact cell, the rat megakaryocyte. We show for the first time, in an intact cell, that Ca2+-dependent inhibition of IP₃-induced Ca²⁺ release becomes progressively less effective with higher IP₃ concentrations.

METHODS

The methods used in these experiments have been fully described in previous publications (Tertyshnikova and Fein, 1997, 1998; Tertyshnikova et al., 1998; Lu et al., 1999). They are described briefly below.

481

1 J. Gen. Physiol. © The Rockefeller University Press • 0022-1295/2000/04/481/9 \$5.00 Volume 115 April 2000 481–489 http://www.jgp.org/cgi/content/full/115/4/481

Dr. Tertyshnikova's present address is Bristol-Myers Squibb Co., Pharmaceutical Research Institute, Wallingford, CT 06492-7660.

Address correspondence to Dr. Alan Fein, Dept. of Physiology, University of Connecticut Health Center, Farmington CT, 06030-3505. Fax: 860-679-1269; E-mail: afein@neuron.uchc.edu

 $^{^1\!}Abbreviations$ used in this paper: $\rm IP_3,$ inositol 1,4,5-trisphosphate; $\rm IP_3\text{-}R,$ $\rm IP_3$ receptor.

Rat Megakaryocytes

Bone marrow is obtained from the tibial and femoral bones of adult Wistar rats. After filtration through a 75- μ m nylon mesh to eliminate large masses of cells, the bone marrow suspension is spun and washed twice before incubation in standard external solution containing (mM): 140 NaCl, 5 KCl, 1 MgCl₂, 2 CaCl₂, 10 glucose, 10 HEPES, pH 7.4, supplemented by 0.1% BSA. Mega-karyocytes are clearly distinguished from other bone marrow cells on the basis of their large size (25–50 μ m) and multilobular nucleus (Uneyama et al., 1993; Kapural and Fein, 1997). All experiments are done within 2–6 h after preparation at room temperature (23-25°C).

Measurement of $[Ca^{2+}]_i$ and Photolysis of Caged Compounds

Megakaryocytes are viewed through a coverslip forming the bottom of the recording chamber using a Diaphot microscope equipped with a Fluor 100×1.3 NA oil immersion lens (Nikon Inc.). Single cell fluorometry is accomplished using an Ionoptix photon-counting fluorescence subsystem with a dual excitation light source (designed by Dr. D. Tillotson; Ionoptix) using Oregon Green 488 BAPTA-1 (OGB488) as the [Ca²⁺]_i indicator. Fluorescence intensity is measured on-line using the Ionwizard program (IonOptix). For photolysis of caged compounds, pulses of ultra violet light (290-370 nm) are applied to the cell through the second channel of the dual excitation light source. Calibration of photolysis in the microscope was by measurement of the fluorescence change produced in the pH dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein by protons released during the photolysis of NPE-caged ATP (Fink et al., 1999). A 50-s flash uncaged \sim 50% of the caged ATP.

Chemicals

The "cell-permeant" AM ester and the "cell-impermeable" hexapotassium salt of OGB488 are obtained from Molecular Probes, Inc. Caged IP_3 and caged $GPIP_2$ [1-(alpha-glycerophosphoryl)-myo-inositol 4,5-diphosphate, P4(5)-1-(2-nitrophenyl) ethyl ester] are from Calbiochem Corp. GF109203X is from Biomol and 2,3-diphosphoglycerate (2,3-DPG) is from Sigma Chemical Co.

Cell Loading of Caged Compounds

The cell-permeant AM ester of OGB488 is dissolved in DMSO and stored at -20° C. For the experiments not using patch clamping, cells are transferred onto glass coverslips and incubated with 2.5-5 µM OGB488/AM for 30 min. For the experiment with caged calcium, the cells are first incubated with 10-30 µM caged calcium for at least 2 h. The final concentration of DMSO is always <0.1%. The coverslips with adherent cells are then washed several times with the standard external solution, and kept in the dark until use. For the other experiments, caged IP₃ or caged GPIP₂ together with OGB488 hexapotassium salt are included in the intrapipette solution at 100 and 200 µM, respectively [composition (mM): 20 KCl, 120 K-glutamate, 1 MgCl, 2 Na-GTP, 10 HEPES, pH 7.3]. Standard whole-cell patch-clamp recording techniques are used to voltage clamp and internally dialyze single megakaryocytes. Membrane current is monitored using an Axopatch-1D patch clamp amplifier (Axon Instruments). For most cells, 5-6 min is required for the OGB488 fluorescence signal to equilibrate in the patch-clamped cell.

Agonist Application

ADP or the mixture of ADP with GF109203X are dissolved in the standard external solution and applied directly to single mega-

karyocytes using a DAD-6 computer-controlled local superfusion system (ALA Scientific Instruments, Inc.). The output tube of the micromanifold (100 μm inside diameter) is placed within ${\sim}200$ μm of the cell and the puff pressure is adjusted to achieve rapid agonist application while avoiding any mechanical disturbance of the cell.

RESULTS

To study Ca²⁺-dependent inhibition of IP₃-induced Ca²⁺ release, we performed paired-pulse experiments in rat megakaryocytes that are a convenient model for studying Ca²⁺ signaling in nonexcitable cells, because they express only an IP₃-sensitive Ca²⁺ store and lack a ryanodine-sensitive Ca²⁺ store (Uneyama et al., 1993). For the first pulse of IP_3 , in a paired-pulse experiment, the intracellular increase of IP₃, resulting from photorelease from caged IP₃, causes a transient release of Ca²⁺ lasting a few hundred milliseconds. After the response to the first pulse, there is a period of desensitization lasting several seconds, during which responses to a second pulse of IP₃ are diminished in amplitude (see Fig. 2 A). The available evidence indicates that this period of desensitization is due to Ca2+-dependent inhibition of IP₃-induced Ca²⁺ release (Ogden et al., 1990; Payne et al., 1988, 1990; Ilyin and Parker, 1994; Oancea and Meyer, 1996; Carter and Ogden, 1997).

In rat basophilic leukemia cells, maximal desensitization of the response to the second pulse of IP₃ is observed for a first pulse of IP₃ that produced a $[Ca^{2+}]_i$ response of near maximal amplitude (Oancea and Meyer, 1996). Therefore, we began our experiments by first measuring the power dependence of IP₃-induced Ca²⁺ release (Fig. 1). In Fig. 1, B and C, we plot the normalized peak amplitude (R/R_{max}) of the IP₃-mediated $[Ca^{2+}]_i$ response as a function of the flash duration, which is directly proportional to IP₃ concentration. As can be seen in Fig. 1 C, the data are well fit with the Hill equation with a coefficient of n = 7. For the 10 cells in Fig. 1 C, the flash duration that produced a response of half the maximal amplitude was 203 \pm 95 ms (mean \pm SD).

We found that maximal desensitization was observed when the flash duration in a paired-pulse experiment produced a response just below that which gives a response of saturating amplitude. An example of such an experiment can be seen in Fig. 2 A for which, after the release of Ca^{2+} produced by the photorelease of IP₃, there is a period of desensitization during which a subsequent increase in IP₃ releases less calcium. As the time interval between the pulses of IP₃ increases, the response to the second pulse recovers back to that of the first. The desensitization is not due to emptying of the Ca²⁺ stores, because desensitization of the second response disappears if the duration of the second flash is increased threefold, thereby saturating the amplitude of the second response (n = 6 cells, data not shown). The desensitization also disappears if the duration of

Figure 1. Dose–response curve for IP₃-mediated Ca²⁺ release. (A) IP₃-mediated [Ca²⁺]_i response for UV flashes of increasing duration. Caged IP₃ (100 μ M) and OGB488 (200 μ M) were included in the patch pipette solution. (B) Normalized peak amplitude (R/R_{max}) of the IP₃-mediated [Ca²⁺]_i response for the data in A as a function of the flash duration, where R_{max} is the maximum peak amplitude observed. (C) Normalized peak amplitude (R/R_{max}) of the IP₃-mediated [Ca²⁺]_i response for 10 cells as a function of the normalized flash duration. The data in B and C are well fit with the Hill equation $R/R_{max} = 1/[1 + (d_{1/2}/d)^n]$, with n = 7, where $d_{1/2}$ is the flash duration that gives a peak response of 1/2 the maximum amplitude. (B) $d_{1/2} = 108$ ms, (C) $d_{1/2} = 1$.

both flashes is increased three- to fourfold, thereby saturating the response amplitude of the response to each flash (n = 3 cells, data not shown). These findings are similar to what was found for rat basophilic leukemia cells (Oancea and Meyer, 1996), for which it was concluded that a two- to threefold decrease in IP₃ sensitiv-

Figure 2. Paired pulse experiment to measure recovery from desensitization in rat megakaryocytes loaded with either caged-IP₃ or -GPIP₂. In each trace of A and B, the rise in $[Ca^{2+}]_i$ was monitored by measuring OGB488 fluorescence intensity and is expressed as ΔF (counts/millisecond). For each trace in A and B, the cell was stimulated by two flashes of UV light, which released IP₃ in A and GPIP₂ in B. For the cell in A, 100 μ M caged IP₃ and 200 μ M OGB488 were included in the patch pipette solution. For the cell in B, 100 μ M caged GPIP₂ and 200 μ M OGB488 were included in the patch pipette solution.

ity was sufficient to explain the reduced amplitude of the response to the second pulse of IP_3 , and we suggest that the same is true for rat megakaryocytes.

The experiments described above establish the basic conditions for measuring the time course of recovery in a paired-pulse experiment. Having established these conditions, we can now turn to the central question of this investigation, whether Ca2+-dependent inhibition of IP₃-induced Ca²⁺ release becomes progressively less effective with higher IP₃ concentrations. For this purpose, we used procedures that would increase the lifetime of IP_3 , by slowing down its hydrolysis. We began by comparing the time course for the recovery from desensitization produced by IP₃ injection with the time course for recovery from desensitization produced by injection of a hydrolysis-resistant analogue of IP₃, namely GPIP₂. GPIP₂ is a less potent but fully active analogue of IP₃ that is poorly metabolized, and the caged form of GPIP₂ has been used to mobilize Ca²⁺ from IP₃sensitive Ca²⁺ stores (Berven and Barritt, 1994). As with IP₃, the flash duration when using caged GPIP₂ is set to give a response just below that which gives a response of saturating amplitude. After the release of Ca²⁺ produced by the photorelease of GPIP₂ (Fig. 2 B), the cell recovers its sensitivity much faster than in Fig. 2 A. It would appear from the results in Fig. 2 that the recovery from desensitization accelerates when the rate of hydrolysis of IP₃ is slowed down. This is the opposite of what one would expect if the recovery from desensitization were following the time course for the hydrolysis of IP₃. We assume that the acceleration in the rate of recovery is due to the decreased rate of hydrolysis of GPIP₂ compared with IP₃. If this assumption is correct, then we should be able to accelerate the recovery from desensitization produced by photoreleased IP₃ to a time course similar to that produced by photoreleased GPIP₂ by inhibiting the IP₃-5-phosphatase, the enzyme which hydrolyses IP₃.

Accordingly, in Fig. 3, we compare the time course for recovery after photorelease of IP_3 , in the presence and absence of 2,3-DPG (2,3-diphosphoglycerate), an inhibitor of the IP_3 -5-phosphatase (Shears, 1989; Wood et al., 1990). In Fig. 3, we plot the ratio (A2/A1) as a function of the time interval between the pulses, where A2 is the peak amplitude of the response to the second pulse of IP_3 and A1 is the peak amplitude of the response to the first pulse of IP_3 (Fig. 2). Each group of recovery data in Fig. 3 was fit with Eq. 1 to obtain an estimate of the average time for recovery for each experimental condition.

$$y = (1 - e^{-(t - 1.5)/\tau}).$$
(1)

In Eq. 1, the 1.5-s time delay is the approximate time to peak for the response to IP₃ or GPIP₂. For IP₃ alone, $\tau = 15$ s (n = 8 cells) and for IP₃ with 2,3-DPG, $\tau = 4.2$ s (n = 6 cells). Also included in Fig. 3 are recovery data for GPIP₂ that were fit with $\tau = 2.6$ s (n = 5 cells) and data for IP₃ in the presence of GF109203X, which were fit with $\tau = 5.4$ s (n = 11 cells).

GF109203X is a cell-permeable inhibitor of PKC that has been used effectively to inhibit PKC in platelets (Toullec et al., 1991). Inhibition of PKC in platelets causes an approximately threefold increase in IP₃ levels in thrombin-activated platelets (King and Rittenhouse, 1989). This is thought to occur via the inhibition of the phosphorylation of pleckstrin, the major substrate of PKC in platelets, because phosphorylated pleckstrin has been shown to activate the IP₃-5-phosphatase (Auethavekiat et al., 1997). Therefore, inhibition of PKC by GF109203X should inhibit the hydrolysis of IP₃ by the 5-phosphatase and consequently prolong the lifetime of IP₃. The experimental data in Figs. 2 and 3 clearly suggest that the recovery from desensitization is accelerated when the rate of hydrolysis of IP₃ is slowed down. This suggests that the extent of Ca²⁺-dependent inhibition is diminished when the lifetime of IP₃ is increased.

To be certain that the findings in Fig. 3 are not somehow the result of an effect of GF109203X, 2,3-DPG, or

Figure 3. Time course of recovery from desensitization in rat megakaryocytes loaded with either caged IP₃ or GPIP₂. The data points were obtained from paired-pulse experiments similar to those in Fig. 2. Each data point represents the ratio (A2/A1) of the peak amplitude of the response to the second pulse of IP₃ (A2) to the peak amplitude of the response to the first pulse of IP₃ (A1) as a function of the time interval between the pulses (Fig. 2). We used 10 mM 2,3-DPG and 10 μ M GF109203X in these experiments. Although a concentration of 10 mM for 2,3-DPG may seem high, it is actually quite reasonable as the K_i for inhibition of IP₃-5-phosphatase is in the millimolar range (for example, the $K_i = 4$ mM in squid photoreceptors; Wood et al., 1990). See methods for further experimental details and the text for an explanation of the solid curves and the τ values associated with them.

GPIP₂ on the power dependence of IP₃-induced Ca²⁺ release, we carried out the experiment presented in Fig. 4. The data in Fig. 4 clearly show that the power dependence for GPIP₂- and IP₃-induced Ca²⁺ release in the presence of GF109203X or 2,3-DPG are no different than the power dependence of IP₃-induced Ca²⁺ release itself. The flash duration that produced a response of half the maximal amplitude was 108 \pm 39 ms (n = 8 cells) for GPIP₂, 155 ± 54 ms (n = 5 cells) for IP₃ in the presence of 2,3-DPG, and 121 \pm 44 ms (n = 8cells) for IP₃ in the presence of GF109203X. The flash duration for half-maximal amplitude for GPIP₂ and IP₃ in the presence of GF109203X are significantly different than that for IP₃ at the P = 0.05 level using the unpaired Student's t test. However, the flash duration for half-maximal amplitude for IP_3 in the presence of 2,3-DPG is not significantly different than that for IP₃. Hence the findings in Fig. 3 are consistent with our suggestion that the extent of Ca²⁺-dependent inhibition is diminished when the lifetime of IP₃ is increased.

Based on the data in Figs. 2 and 3, we predict that the falling phase of the response to the uncaging of GPIP_2 should be dominated by the inhibitory effect of elevated $[\text{Ca}^{2+}]_i$ on further Ca^{2+} release and the removal of Ca^{2+} from the cytoplasm. That is, the hydrolysis of

Figure 4. Dose–response curve for GPIP₂-mediated Ca²⁺ release and IP3-mediated Ca2+ release in the presence of 2,3-DPG or GF109203X. OGB488 (200 μ M) together with either caged IP₃ (100 μ M) or GPIP₂ (100 μ M) were included in the patch pipette solution. We used 10 mM 2,3-DPG and 10 µM GF109203X in these experiments. As in Fig. 1 C, we plot the normalized peak amplitude (R/R_{max}) of the IP₃- or GPIP₂-mediated $[Ca^{2+}]_i$ response as a function of the normalized flash duration, where R_{max} is the maximum peak amplitude of the $[\mathsf{Ca}^{2+}]_i$ response. Also included in this figure is the data from Fig. 1 C. The data are well fit with the Hill equation $R/R_{\text{max}} = 1/[1 + (d_{1/2}/d)^n]$, with n = 7 and $d_{1/2} = 1$.

GPIP₂ by the 5-phosphatase should have minimal effect on the falling phase of the response. Accordingly, the falling phase of the response to the uncaging of GPIP₂ should be greatly prolonged when compared with that for the uncaging of IP_3 , especially as the amount of IP_3 or GPIP₂ uncaged is increased. In Fig. 5, we compare the time course of the $[Ca^{2+}]_i$ response to the uncaging of IP₃ with that for the uncaging of GPIP₂. As the duration of the uncaging flash is increased from 150 to 2,000 ms, it can be seen that the falling phase of the response to GPIP₂ is greatly prolonged when compared with that for IP₃. Results similar to those in Fig. 5 were seen in two additional cells each.

As mentioned above, Ca²⁺-dependent inhibition of IP₃-mediated Ca²⁺ release is thought to play a central role in the generation of $[Ca^{2+}]_i$ oscillations. Also, megakaryocytes exhibit $[Ca^{2+}]_i$ oscillations when exposed to ADP (Tertyshnikova and Fein, 1997; Uneyama et al., 1993). To examine how the lessening of Ca^{2+} dependent inhibition will affect an agonist-induced $[Ca^{2+}]_i$ oscillation, we examined the effect of GF109203X on ADP-induced $[Ca^{2+}]_i$ oscillations. As shown in Fig. 6, in the presence of GF109203X, ADP causes a plateau-like rise in $[Ca^{2+}]_i$ (n = 3 cells). The experiment in Fig. 6 was carried out in a Ca²⁺-free external solution in presence of 1 mM BAPTA, to rule out the possibility that the effect of GF109203X was on Ca²⁺ influx. Results similar to those in Fig. 6 were obtained when the experiment was performed in stan-

cells each.

GF109203X on rat megakaryocytes is entirely different from what we have found when inhibiting cAMP-PK in these cells (Tertyshnikova and Fein, 1998). The results in Fig. 6 are very similar to those obtained by examining the effect of another PKC inhibitor, staurosporine, on ATP-induced [Ca²⁺]_i oscillations monitored as a calcium-activated potassium current oscillation (Uneyama et al., 1993). These workers (Uneyama et al., 1993) speculated that the effect on $[Ca^{2+}]_i$ oscil-

2000 counts/ms

10 s

Figure 5. Comparison of the time course of the $[Ca^{2+}]_i$ response

to the uncaging of IP3 or GPIP2 in rat megakaryocytes. Flashes of

150-, 300-, 1,000-, and 2,000-ms duration were used for uncaging

with each cell. Changes in [Ca2+]i were monitored by measuring

OGB488 fluorescence intensity and are expressed as ΔF (counts/

millisecond). Results similar to those shown were seen in two other

dard external solution that contains 2 mM calcium (n =

4 cells, data not shown). GF109203X is also a less po-

tent inhibitor of cAMP-PK; however, the effect of

IP.

GPIP,

lations, of inhibiting PKC with staurosporine, resulted from an inhibition of the Ca^{2+} pump. To investigate whether GF109203X affects Ca²⁺ uptake and/or extrusion, we used caged Ca^{2+} for the experiment in Fig. 7. The time course of the fall in $[Ca^{2+}]_i$ after the flashinduced rise in $[Ca^{2+}]_i$ should reflect the activity of Ca^{2+} sequestration and/or extrusion mechanisms (see Tertyshnikova and Fein, 1998; Tertyshnikova et al., 1998). As can be seen in Fig. 7, photoreleased $[Ca^{2+}]_i$ declined at the same rate in the presence and absence of GF109203X. In the experiment shown in Fig. 7, cyclopiazonic acid, an inhibitor of the smooth endoplasmic reticulum calcium ATPase in platelets (Papp et al., 1993), was used as a positive control for inhibition of Ca²⁺ sequestration. Similar results as those in Fig. 7 were seen in two other cells. The results in Fig. 7 appear to convincingly rule out inhibition of the Ca²⁺ pump as an explanation for the findings in Fig. 6.

Figure 6. Effect of the PKC inhibitor, GF109203X, on ADPinduced $[Ca^{2+}]_i$ oscillations in a rat megakaryocyte. Changes in $[Ca^{2+}]_i$ were monitored by measuring OGB488 fluorescence intensity and are expressed as ΔF (counts/millisecond). GF109203X (15 μ M) and ADP (100 μ M) were applied to the cell via the local superfusion system. The cell was loaded with OGB488 using the cell permeable AM ester of OGB488. Similar results were seen in five other cells. See methods for further experimental details.

Based on the data of Figs. 2, 3, and 6, we would expect that in response to multiple injections of IP₃, the rise in $[Ca^{2+}]_i$ would become plateau-like when the hydrolysis of IP₃ is slowed down. Accordingly, in Fig. 8, we compare the responses to multiple flashes, which photorelease IP_3 , in the presence and absence of 2,3-DPG. As can be seen in Fig. 8 A, the response to the first flash that photoreleases IP₃ is large, and the responses to subsequent flashes are greatly reduced in amplitude. Based on the results presented in Figs. 2 and 3, the finding in Fig. 8 A is as expected. In contrast, in the experiment of Fig. 8 B, in which 10 mM 2,3-DPG was included in the patch pipette to inhibit the IP₃-5-phosphatase, a series of flashes that photorelease IP₃ produce a sustained elevation of $[Ca^{2+}]_i$. Likewise a series of flashes that photorelease IP₃ produce a sustained elevation of $[Ca^{2+}]_i$ in the presence of GF109203X (Fig. 8 D). Furthermore, a train of flashes that photorelease the hydrolysis-resistant IP₃-analogue GPIP₂ also produce a sustained elevation of $[Ca^{2+}]_i$ (Fig. 8 C).

The simplified diagram in Fig. 9 summarizes our findings, emphasizing the dual regulation of calcium mobilization by IP₃. For the sake of simplicity, GPIP₂ has been left out of the figure. The heavy lines in Fig. 9 are meant to represent the release of Ca^{2+} by IP₃ and the disinhibition of Ca^{2+} -dependent inhibition of IP₃-mediated Ca^{2+} release by increasing IP₃ concentration. We show this disinhibition as acting via calmodulin because recently published experiments have indicated that Ca^{2+} -dependent inhibition of IP₃-mediated Ca^{2+} -dependent inhibition of IP₃-mediated Ca^{2+} -dependent inhibition of IP₃-mediated that Ca^{2+} -dependent inhibition of IP₃-mediated Ca^{2+} release for the type 1 IP₃ receptor (IP₃-R) is mediated by calmodulin (Michikawa et al., 1999) (see discussion).

Figure 7. The PKC inhibitor GF109203X does not affect the rate of calcium removal from the cytoplasm. The cell was loaded with caged Ca²⁺ and OGB488 using the cell-permeant forms of each molecule as described in methods. $[Ca^{2+}]_i$ spikes resulting from photorelease of caged Ca²⁺ are shown superimposed for the purpose of comparison. GF 109203X had no effect on the time course of the fall in $[Ca^{2+}]_i$ after photolysis of caged-Ca²⁺. Cyclopiazonic acid (CPA) was applied to the cell to serve as a positive control for inhibition of Ca²⁺ sequestration. GF109203X (30 μ M) and CPA (5 μ M) were applied to the cell via the local superfusion system as described in methods.

DISCUSSION

Our results demonstrate for the first time an important property of $[Ca^{2+}]_i$ signaling in intact cells: an increase in the lifetime of IP_3 brings about a decrease in Ca^{2+} dependent inhibition. These findings suggest a mechanism by which high concentrations of intracellular IP₃ can cause cells to maintain an elevated level of $[Ca^{2+}]_i$. Indeed, this may explain the occurrence of sustained $[Ca^{2+}]_i$ elevations at high agonist concentrations (Jacob et al., 1988; Wakui et al., 1989; Heemskerk et al., 1993) and when cells are dialyzed with high concentrations of the nonmetabolized IP₃ analogue inositol 1,4,5 trisphosphorothioate (Petersen et al., 1991). Our findings also suggest a possible mechanism for the regulation of the frequency of $[Ca^{2+}]_i$ oscillations in cells containing IP₃sensitive Ca²⁺ stores. One test of the value of our findings will come from future studies that extend these observations to other cell types and incorporate these mechanisms into mathematical models of $[Ca^{2+}]_i$ signaling.

Since platelets express primarily the type 1 isoform of the IP₃-R (O'Rourke et al., 1995; Quinton and Dean, 1996) and megakaryocytes are the precursors of platelets, our findings may directly reflect properties of the type 1 IP₃-R. Remember that, as mentioned in the introduction, cerebellar microsomes (Joseph et al., 1989; Combettes et al., 1994; Hannaert-Merah et al., 1995) and permeabilized A7r5 smooth muscle cells (Bootman et al., 1995), which contain primarily the type 1 isoform of the IP₃-R, exhibit decreased Ca²⁺-dependent inhibition at elevated IP₃ concentrations. Moreover, single channel recordings from the cerebellar type 1 IP₃-R (Kaftan et al., 1997) and a similar receptor found

Figure 8. Elevation of $[Ca^{2+}]_i$ resulting from multiple flashes that photorelease caged IP₃ or GPIP₂. (A) Caged IP₃, (B) caged IP₃ in the presence of 10 mM 2,3-DPG, (C) caged GPIP₂, and (D) caged IP₃ in the presence of 5 μ M GF109203X. Either caged IP₃ (100 μ M) and OGB488 (200 μ M), or caged GPIP₂ (100 μ M) and OGB488 (200 μ M) were included in the patch-pipette solution. The cell in A was stimulated with 11 flashes spaced 1.8-s apart, the cell in B was stimulated with 6 flashes spaced 3.6-s apart, the cell in C was stimulated with 16 flashes spaced 1.2-s apart, and the cell in D was stimulated with 11 flashes spaced 1.2-s apart. Similar results as those in A–D were seen in at least three to five other cells each.

in *Xenopus* oocytes (Mak et al., 1998) indicate that the open probability remains high in the presence of a saturating level of IP₃, even if $[Ca^{2+}]_i$ is raised to high concentrations. It should be kept in mind that IP₃ binding to the purified cerebellar type 1 IP₃-R is not inhibited by Ca^{2+} and it was proposed that inhibition by Ca^{2+} required an accessory protein (Supattapone et al., 1988; Benevolensky et al., 1994), which was recently shown to be calmodulin (Michikawa et al., 1999) (Fig. 9).

The observation that Ca^{2+} -dependent inhibition of the type 1 IP₃-R is mediated by calmodulin implies that inhibition of calmodulin should disinhibit Ca^{2+} -dependent inhibition of IP₃-mediated Ca^{2+} release (Michikawa et al., 1999). Based on our findings, we would predict that such a disinhibition would transform a $[Ca^{2+}]_i$ oscillation into a more sustained $[Ca^{2+}]_i$ elevation (for

Figure 9. Simplified diagram illustrating disinhibition of Ca^{2+} dependent inhibition of IP₃-mediated Ca^{2+} release with higher IP₃ concentrations (heavy arrow). ADP is shown as activating phospholipase C (Pl-C) via the GTP-binding protein (G_q) to form diacylglycerol (DAG) and IP₃. IP₃ is shown as causing the release of Ca^{2+} (heavy arrow) and DAG is shown as activating PKC, which in turn phosphorylates pleckstrin (pleck). Phosphorylated pleckstrin is shown as activating the IP₃-5 phosphatase (IP₃ase), which inactivates IP₃ by hydrolyzing it to inositol 1,4-bisphosphate (IP₂). GF109203X and 2,3DPG are shown as inhibiting PKC and the IP₃ase, respectively. Released Ca^{2+} is shown as feeding back via calmodulin (CaM) to inhibit further release of Ca^{2+} by the IP₃-R.

example, see Fig. 6). This experiment has in fact already been done in rat megakaryocytes, where it was found that the calmodulin inhibitors W-7 and trifluoperazine caused the agonist-induced $[Ca^{2+}]_i$ oscillation to become a more sustained $[Ca^{2+}]_i$ elevation (Uneyama et al., 1993). Note that W-7 is the same calmodulin inhibitor used in the study of Michikawa et al. (1999). One test of the worthiness of our interpretation of these findings will come from the extension of these observations to other cell types.

Whether or not these properties of the type I receptor also belong to the type II and III IP3-Rs is problematic. Recent single-channel bilayer recordings from the type II and III receptors indicate that they do not exhibit Ca²⁺-dependent inhibition (Hagar et al., 1998; Ramos-Franco et al., 1998); however, in bilayer recordings, essential accessory proteins may have been lost. On the other hand, Ca²⁺-dependent inhibition has been observed, using other techniques, in some cell types that contain primarily the type II and III receptors (Taylor, 1998); however, these studies are complicated by the presence of other receptor subtypes. Further experimental work will be needed to determine the extent to which the findings presented here are exemplary of cells that contain primarily the type II and III IP₃-Rs. It may be that cells contain mixtures of the different isoforms of the IP₃-R to combine properties specific to each type of receptor.

One of the striking features of IP_3 -mediated Ca^{2+} release in megakaryocytes is the highly nonlinear depen-

dence between IP_3 and peak Ca^{2+} (Figs. 1 and 4). In other cell types, the dependence is not as steep (Khodakhah and Ogden, 1995; Oancea and Meyer, 1996; Carter and Ogden, 1997; Ogden and Capiod, 1997); for example, in rat basophilic leukemia cells, the Hill coefficient is 3.2, as compared with 7 for megakaryocytes. There are two factors that would be expected to contribute to the nonlinear dependence between IP₃ and peak Ca²⁺. First is a requirement for the binding of several IP₃ molecules to the IP₃-receptor before the channel can open, and second is an amplification of Ca^{2+} release by positive feedback mediated by Ca^{2+} (for example, see Iino, 1990; Bezprozvanny et al., 1991). It may be that there are additional unknown factors at work in megakaryocytes, which are responsible for the exceptionally steep dependence found in these cells.

It might be argued that as the result of inhibition of the 5-phosphatase by 2,3-DPG, more IP_3 is converted by the IP₃-3-kinase to inositol 1,3,4,5-tetrakisphosphate (IP_4) . IP_4 has been shown to enhance the amount of Ca^{2+} mobilized by submaximal concentrations of IP₃ in the L1210 cell line (Loomis-Husselbee et al., 1996, 1998). If such a phenomenon were to occur in megakaryocytes, it could possibly explain our findings with 2,3-DPG; however, to our knowledge, it is not known whether such a phenomenon occurs in megakaryocytes or for that matter in cells other than L1210 cells. Furthermore, such a mechanism would not be able to explain our findings with GPIP₂. Moreover, it should be kept in mind that it is still controversial whether or not IP₄ plays any role in Ca²⁺ signaling (Irvine, 1992; Putney and Bird, 1993).

Although the findings reported here were obtained in megakaryocytes, they should be relevant to calcium mobilization in platelets also; in as much as megakaryocytes are the precursors of platelets. Specifically, we speculate that our findings suggest a role for pleckstrin, which is a major substrate for PKC in platelets, in regulating $[Ca^{2+}]_i$ oscillations by regulating the lifetime of IP₃.

We thank Drs. L. Jaffe, R. Shaafi, M. Terasaki, and J. Watras for their constructive criticisms of an earlier version of this manuscript.

Submitted: 29 September 1999 Revised: 22 February 2000 Accepted: 28 February 2000

REFERENCES

- Auethavekiat, V., C.S. Abrams, and P.W. Majerus. 1997. Phosphorylation of platelet pleckstrin activates inositol polyphosphate 5-phosphatase I. J. Biol. Chem. 272:1786–1790.
- Benevolensky, D., I.I. Moraru, and J. Watras. 1994. Micromolar calcium decreases affinity of inositol trisphosphate receptor in vascular smooth muscle. *Biochem. J.* 299:631–636.
- Berridge, M.J., M.D. Bootman, and P. Lipp. 1998. Calcium—a life and death signal. *Nature*. 395:645–648.
- Berven, L.A., and G.J. Barritt. 1994. A role for a pertussis toxin-sensitive trimeric G-protein in store-operated Ca²⁺ inflow in hepato-

cytes. FEBS Lett. 346:235-240.

- Bezprozvanny, I., J. Watras, and B.E. Ehrlich. 1991. Bell-shaped calcium-response curves of $Ins(1,4,5)P_{3}$ - and calcium-gated channels from endoplasmic reticulum of cerebellum. *Nature*. 351: 751–754.
- Bootman, M.D., L. Missiaen, J.B. Parys, H. De Smedt, and R. Casteels. 1995. Control of inositol 1,4,5-trisphosphate–induced Ca²⁺ release by cytosolic Ca²⁺. *Biochem. J.* 306:445–451.
- Carter, T.D., and D. Ogden. 1997. Kinetics of Ca^{2+} release by $InsP_3$ in pig single aortic endothelial cells: evidence for an inhibitory role of cytosolic Ca^{2+} in regulating hormonally evoked Ca^{2+} spikes. *J. Physiol.* 504:17–33.
- Combettes, L., Z. Hannaert-Merah, J.F. Coquil, C. Rousseau, M. Claret, S. Swillens, and P. Champeil. 1994. Rapid filtration studies of the effect of cytosolic Ca²⁺ on inositol 1,4,5-trisphosphate-induced ⁴⁵Ca²⁺ release from cerebellar microsomes. *J. Biol. Chem.* 269:17561–17571.
- De Koninck, P., and H. Schulman. 1998. Sensitivity of CaM kinase II to the frequency of Ca^{2+} oscillations. *Science*. 279:227–230.
- Dolmetsch, R.E., K. Xu, and R.S. Lewis. 1998. Calcium oscillations increase the efficiency and specificity of gene expression. *Nature*. 392:933–936.
- Fewtrell, C. 1993. Ca²⁺ oscillations in non-excitable cells. *Annu. Rev. Physiol.* 55:427–454.
- Fink, C.C., B. Slepchenko, and L.M. Loew. 1999. Determination of time-dependent inositol-1,4,5-trisphosphate concentrations during calcium release in a smooth muscle cell. *Biophys. J.* 77:617– 628.
- Hagar, R.E., A.D. Burgstahler, M.H. Nathanson, and B.E. Ehrlich. 1998. Type III InsP₃ receptor channel stays open in the presence of increased calcium. *Nature*. 396:81–84.
- Hannaert-Merah, Z., L. Combettes, J.F. Coquil, S. Swillens, J.P. Mauger, M. Claret, and P. Champeil. 1995. Characterization of the co-agonist effects of strontium and calcium on myo-inositol trisphosphate-dependent ion fluxes in cerebellar microsomes. *Cell Calc.* 18:390–399.
- Heemskerk, J.W., P. Vis, M.A. Feijge, J. Hoyland, W.T. Mason, and S.O. Sage. 1993. Roles of phospholipase C and Ca⁽²⁺⁾-ATPase in calcium responses of single, fibrinogen-bound platelets. J. Biol. Chem. 268:356–363.
- Iino, M. 1990. Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig *taenia caeci. J. Gen. Physiol.* 95:1103–1122.
- Ilyin, V., and I. Parker. 1994. Role of cytosolic Ca²⁺ in inhibition of InsP₃-evoked Ca²⁺ release in *Xenopus* oocytes. *J. Physiol.* 477:503– 509.
- Irvine, R.F. 1992. Is inositol tetrakisphosphate the second messenger that controls Ca²⁺ entry into cells? Adv. Second Messenger Phosphoprotein Res. 26:161–185.
- Jacob, R., J.E. Merritt, T.J. Hallam, and T.J. Rink. 1988. Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. *Nature*. 335:40–45.
- Joseph, S.K., H.L. Rice, and J.R. Williamson. 1989. The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. *Biochem. J.* 258:261–265.
- Kaftan, E.J., B.E. Ehrlich, and J. Watras. 1997. Inositol 1,4,5-trisphosphate (InsP₃) and calcium interact to increase the dynamic range of InsP₃ receptor-dependent calcium signaling. *J. Gen. Physiol.* 110:529–538.
- Kapural, L., and A. Fein. 1997. Changes in the expression of voltage-gated K⁺ currents during development of human megakaryocytic cells. *Biochim. Biophys. Acta.* 1326:319–328.
- Khodakhah, K., and D. Ogden. 1995. Fast activation and inactivation of inositol trisphosphate-evoked Ca^{2+} release in rat cerebel-

lar Purkinje neurones. J. Physiol. 487:343-358.

- King, W.G., and S.E. Rittenhouse. 1989. Inhibition of protein kinase C by staurosporine promotes elevated accumulations of inositol trisphosphates and tetrakisphosphate in human platelets exposed to thrombin. J. Biol. Chem. 264:6070–6074.
- Li, W., J. Llopis, M. Whitney, G. Zlokarnik, and R.Y. Tsien. 1998. Cell-permeant caged InsP₃ ester shows that Ca²⁺ spike frequency can optimize gene expression. *Nature*. 392:936–941.
- Loomis-Husselbee, J.W., P.J. Cullen, U.E. Dreikausen, R.F. Irvine, and A.P. Dawson. 1996. Synergistic effects of inositol 1,3,4,5-tetrakisphosphate on inositol 2,4,5-triphosphate-stimulated Ca²⁺ release do not involve direct interaction of inositol 1,3,4,5-tetrakisphosphate with inositol triphosphate-binding sites. *Biochem. J.* 314:811–816.
- Loomis-Husselbee, J.W., C.D. Walker, J.R. Bottomley, P.J. Cullen, R.F. Irvine, and A.P. Dawson. 1998. Modulation of $Ins(2,4,5)P_3$ stimulated Ca^{2+} mobilization by $Ins(1,3,4,5)P_4$: enhancement by activated G-proteins, and evidence for the involvement of a GAP1 protein, a putative $Ins(1,3,4,5)P_4$ receptor. *Biochem. J.* 331: 947–952.
- Lu, X., A. Fein, M.B. Feinstein, and F.A. O'Rourke. 1999. Antisense knock out of the inositol 1,3,4,5-tetrakisphosphate receptor GAP1^(IP4BP) in the human erythroleukemia cell line leads to the appearance of intermediate conductance K(Ca) channels that hyperpolarize the membrane and enhance calcium influx. *J. Gen. Physiol.* 113:81–96.
- Mak, D.O.D., S. McBride, and J.K. Foskett. 1998. Inositol 1,4,5-trisphosphate activation of inositol tris-phosphate receptor Ca²⁺ channel by ligand tuning of Ca²⁺ inhibition. *Proc. Natl. Acad. Sci. USA*. 95:15821–15825.
- Michikawa, T., J. Hirota, S. Kawano, M. Hiraoka, M. Yamada, T. Furuichi, and K. Mikoshiba. 1999. Calmodulin mediates calciumdependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. *Neuron.* 23:799–808.
- Oancea, E., and T. Meyer. 1996. Reversible desensitization of inositol trisphosphate-induced calcium release provides a mechanism for repetitive calcium spikes. *J. Biol. Chem.* 271:17253–17260.
- Ogden, D., and T. Capiod. 1997. Regulation of Ca²⁺ release by InsP₃ in single guinea pig hepatocytes and rat Purkinje neurons. *J. Gen. Physiol.* 109:741–756.
- Ogden, D.C., T. Capiod, J.W. Walker, and D.R. Trentham. 1990. Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca²⁺ in guinea-pig isolated hepatocytes. *J. Physiol.* 422:585–602.
- O'Rourke, F., E. Matthews, and M.B. Feinstein. 1995. Purification and characterization of the human type 1 $Ins(1,4,5)P_3$ receptor from platelets and comparison with receptor subtypes in other normal and transformed blood cells. *Biochem. J.* 312:499–503.
- Papp, B., K. Paszty, T. Kovacs, B. Sarkadi, G. Gardos, J. Enouf, and A. Enyedi. 1993. Characterization of the inositol trisphosphate– sensitive and insensitive calcium stores by selective inhibition of the endoplasmic reticulum-type calcium pump isoforms in iso-

lated platelet membrane vesicles. Cell Calc. 14:531-538.

- Payne, R., T.M. Flores, and A. Fein. 1990. Feedback inhibition by calcium limits the release of calcium by inositol trisphosphate in *Limulus* ventral photoreceptors. *Neuron.* 4:547–555.
- Payne, R., B. Walz, S. Levy, and A. Fein. 1988. The localization of calcium release by inositol trisphosphate in *Limulus* photoreceptors and its control by negative feedback. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 320:359–379.
- Petersen, C.C., E.C. Toescu, B.V. Potter, and O.H. Petersen. 1991. Inositol triphosphate produces different patterns of cytoplasmic Ca²⁺ spiking depending on its concentration. *FEBS Lett.* 293:179– 182.
- Putney, J.W., Jr., and G.S. Bird. 1993. The inositol phosphate-calcium signaling system in nonexcitable cells. *Endocr. Rev.* 14:610– 631.
- Quinton, T.M., and W.L. Dean. 1996. Multiple inositol 1,4,5-trisphosphate receptor isoforms are present in platelets. *Biochem. Biophys. Res. Commun.* 224:740–746.
- Ramos-Franco, J., M. Fill, and G.A. Mignery. 1998. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. *Biophys. J.* 75:834–839.
- Shears, S.B. 1989. Metabolism of the inositol phosphates produced upon receptor activation. *Biochem. J.* 260:313–324.
- Supattapone, S., P.F. Worley, J.M. Baraban, and S.H. Snyder. 1988. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 263:1530–1534.
- Taylor, C.W. 1998. Inositol trisphosphate receptors: Ca²⁺-modulated intracellular Ca²⁺ channels. *Biochim. Biophys. Acta.* 1436:19– 33.
- Tertyshnikova, S., and A. Fein. 1997. $[Ca^{2+}]_i$ oscillations and $[Ca^{2+}]_i$ waves in rat megakaryocytes. *Cell Calc.* 21:331–344.
- Tertyshnikova, S., and A. Fein. 1998. Inhibition of inositol 1,4,5-trisphosphate-induced Ca²⁺ release by cAMP-dependent protein kinase in a living cell. *Proc. Natl. Acad. Sci. USA*. 95:1613–1617.
- Tertyshnikova, S., X. Yan, and A. Fein. 1998. cGMP inhibits IP₃induced Ca²⁺ release in intact rat megakaryocytes via cGMP- and cAMP-dependent protein kinases. *J. Physiol.* 512:89–96.
- Toullec, D., P. Pianetti, H. Coste, P. Bellevergue, T. Grand-Perret, M. Ajakane, V. Baudet, P. Boissin, E. Boursier, F. Loriolle, et al. 1991. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem. 266:15771– 15781.
- Uneyama, H., C. Uneyama, and N. Akaike. 1993. Intracellular mechanisms of cytoplasmic Ca²⁺ oscillation in rat megakaryocyte. *J. Biol. Chem.* 268:168–174.
- Wakui, M., B.V. Potter, and O.H. Petersen. 1989. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. *Nature*. 339:317–320.
- Wood, S.F., E.Z. Szuts, and A. Fein. 1990. Metabolism of inositol 1,4,5-trisphosphate in squid photoreceptors. J. Comp. Physiol. [B]. 160:293–298.