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ABSTRACT

Recent cancer pharmacogenomic studies profiled
large panels of cell lines against hundreds of
approved drugs and experimental chemical com-
pounds. The overarching goal of these screens is
to measure sensitivity of cell lines to chemical per-
turbations, correlate these measures to genomic fea-
tures, and thereby develop novel predictors of drug
response. However, leveraging these valuable data is
challenging due to the lack of standards for annotat-
ing cell lines and chemical compounds, and quanti-
fying drug response. Moreover, it has been recently
shown that the complexity and complementarity of
the experimental protocols used in the field result in
high levels of technical and biological variation in the
in vitro pharmacological profiles. There is therefore a
need for new tools to facilitate rigorous comparison
and integrative analysis of large-scale drug screen-
ing datasets. To address this issue, we have devel-
oped PharmacoDB (pharmacodb.pmgenomics.ca), a
database integrating the largest cancer pharmacoge-
nomic studies published to date. Here, we describe
how the curation of cell line and chemical compound
identifiers maximizes the overlap between datasets
and how users can leverage such data to compare
and extract robust drug phenotypes. PharmacoDB
provides a unique resource to mine a compendium
of curated cancer pharmacogenomic datasets that
are otherwise disparate and difficult to integrate.

INTRODUCTION

Cancer has emerged as one of the principal causes of mor-
tality in the 21st century (1). It is a collection of related dis-
eases with widely different prognosis and response to ther-

apy (2). This heterogeneity poses challenges for treatment,
as patients with the same diagnosis often have different re-
sponses to treatment and may develop resistances at differ-
ent rates (3). The genesis, progression, and response to phar-
macotherapy of cancer is largely determined by the molec-
ular state and features of the tumor cells (4). This observa-
tion spurred the development of high-throughput pharma-
cogenomics studies to investigate the relationships between
genomic, transcriptomic and proteomic features of cancer
cells and their response to treatment with small molecule
compounds.

Immortalized cancer cell lines are the most widely-used
models to study response of tumors to anticancer com-
pounds (5). In addition to being comprehensively profiled at
the molecular level, cancer cell lines can be cultured to con-
duct high-throughput drug screening studies, where large
panels of compounds are screened for their efficacy of halt-
ing the growth or killing molecularly distinct cancer tumor
models (6). Over the past decade, several large studies com-
bining high-throughput in vitro drug screening with molec-
ular profiling of cancer cell lines have been published (7–13).
Recognizing that the molecular diversity of cancer cannot
be faithfully represented by small panels of cell lines, these
studies have assembled large panels of hundreds to over a
thousand cell lines, and profiled them at the molecular and
pharmacological levels. These valuable data have been pub-
licly released via well-established data repositories and in-
stitutional websites.

The main limitation of the majority of published can-
cer pharmacogenomic studies is that they are restricted
to the analysis of single datasets. This is primarily due
to inconsistent annotations of cell lines and compounds,
which prevents direct comparison between datasets (14).
Meta-analysis of pharmacogenomic data is further hin-
dered by the lack of standards for statistical modeling of
drug dose-response curves and subsequent summarization
into drug sensitivity measures (14–17). However, joint anal-
ysis of independent datasets holds the potential to improve
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Table 1. Specifications of all the datasets included in PharmacoDB

Dataset # Drugs # Cells # Experiments Viability Assay Available Molecular Data Citations

CCLE 22 1061 11 670 CellTiter Glo mRNA expression, CNV, Mutation (8)
GDSC1000 250 1109 225 480 Syto60 mRNA expression, CNV, Mutation,

Methylation
(7,13)

gCSI 16 754 6455 CellTiter Glo mRNA expression, CNV, Mutation (10,11)
GRAY 90 84 9413 CellTiter Glo mRNA expression, CNV, RPPA,

Methylation, ExomeSeq
(9,22)

FIMM 52 50 2561 CellTiter Glo None (12)
CTRPv2 544 888 395 263 CellTiter Glo None (20,21)
UHNBreast 4 84 52 SRB RNAseq, RPPA, Mut (Safikhani et al., accepted,

Nat Commun 2017)
Total 759 1691 650 894

Viability assay: Syto60: Proliferation; fluorescent DNA stain (Invitrogen); CellTiter Glo: Viability, membrane integrity, ATP (Promega); SRB: Sulforho-
damine B colorimetric. Available molecular data: Mut: targeted mutation data; ExomeSeq: Whole exome-sequencing data; mRNA: gene expression data;
methylation: methylation microarray data; CNV: copy number variation data; RPPA: protein expression data using reverse phase protein lysate microarray.

robustness of research outputs against variations in the
complex experimental protocols used in high-throughput
drug screening (18). To address these issues we developed
PharmacoDB, the first database integrating multiple high-
throughput cancer pharmacogenomic datasets (Table 1;
Supplementary Figure S1A). PharmacoDB provides an in-
tuitive interface to search and explore these datasets (Figure
1A) based on cell lines and their tissue source, compounds
and their targets (Figure 1B), and experiments in which
cell viability is measured for cell lines treated with chemi-
cal compounds (Figure 1C). Moreover, PharmacoDB pro-
vides access to molecular profiles of cell lines and computa-
tional analytical tools via linkage to PharmacoGx (Figure
1D; Supplementary Figure S1A), an R/Bioconductor pack-
age implementing a suite of statistical modeling functions to
jointly analyze molecular features and drug dose-response
curves (19). Here, we describe the content of our integra-
tive pharmacogenomic database, the curation process, and
its web-interface.

DATA COLLECTION AND DATABASE CONTENT

Pharmacogenomic studies

PharmacoDB seeks to include the largest published stud-
ies investigating the viability response of human cancer cell
lines to chemical compound treatment. To date, we have
curated seven major cancer studies: The Cancer Cell Line
Encyclopedia (CCLE) (8), Genomics of Drug Sensitivity
in Cancer (GDSC) (7,13), Genentech Cell Screening Initia-
tive (gCSI) (10,11), the Cancer Therapeutic Response Por-
tal (CTRP) (20,21), the Oregon Health and Science Uni-
versity (OHSU) Breast Cancer Screen by Dr Joe Gray’s
lab (GRAY) (9,22), the Institute for Molecular Medicine
Finland cell viability screen (FIMM) (12), and the Univer-
sity Health Network (Toronto) breast cancer screen (UHN-
Breast) (Safikhani et al., accepted, Nat Commun 2017).
For each study, we downloaded the cell line and com-
pound annotations available with the original publications
of the study, either through the journal website or dedicated
portals for data sharing made available by the study au-
thors (Table 1; Supplementary Figure S1A; Supplementary
Methods).

Annotation of cell lines and chemical compounds

We performed semi-automated curation of all the cell line
and compound identifiers with the goal of discovering and
maximizing the overlap between the datasets. First, we
looked for exact case-insensitive matches of the identifiers
used in the dataset undergoing curation to already curated
unique identifiers, if applicable. Second, for all remaining
compounds and cell lines, a partial, programmatic match-
ing algorithm was used to generate candidate unique iden-
tifier matches for each identifier used in the study. These
candidate matches were manually reviewed to find the cor-
rect match for all compounds and cell lines which had a
matching unique identifier. Third, we manually curated the
subset of identifiers for which there was no match using
the compound and cell line names. For compounds, we
used any other provided compound annotations such as the
SMILES, InchiKey or PubChem identifier to match them
with identifiers available for previously curated compounds.
If only the compound name is available, we used the We-
bChem R package (version 0.2) to query PubChem. If it
was possible to retrieve the identifiers of these compounds,
then the third step was repeated to find possible matches
with previously curated compounds. For cell lines which
had no correct matches in the second step, Cellosaurus (23)
was queried to generate candidate cell name synonyms, and
manual matching was attempted with current unique iden-
tifiers. If at the end of these three steps there remained any
cell line or compound names that were not matched, a new
unique, human interpretable identifier was created based
on the name from the dataset currently undergoing cura-
tion. This curation process maximized the overlap between
datasets (Figure 2; Supplementary Figures S2 and S3). Pro-
grammatic matching almost doubled the number of com-
pounds intersecting across datasets while manual curation
further increased the intersection by 32% (Figure 2A). Un-
like compounds, programmatically matching only moder-
ately increase the intersection across datasets while manual
curation was crucial to maximize overlap (Figure 2B). At
the dataset level, while some intersections increased only
modestly due to similar identifiers being used in the orig-
inal studies, the benefit was substantial for others. For ex-
ample, the intersection of compounds tested in GDSC1000
and CTRPv2 more than tripled, from 27 to 90 (Supplemen-
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Figure 1. Main functionalities of PharmacoDB, displaying (A) the interfaces to query the database through searching or exploring available entities, (B)
the five primary data types with respective profile pages, (C) the main visualizations of the aggregated data in PharmacoDB and (D) the link to PharmacoGx
for extensive computational analysis of pharmacogenomic data.

tary Figure S2A) and for cell lines, the intersection between
CCLE and CTRPv2 quadrupled (Supplementary Figure
S2B). While many of the newly matched identifiers differed
only in capitalization or hyphenation, computational ap-
proaches to mapping identifiers which ignore these differ-
ences would be insufficient. These approaches would fail
to match certain cases, such as the matching of compound
names AZD6244 and Selumetinib, and would also cause
mismatches, as for example for the distinct cell lines KMH-2
and KM-H2, which are respectively a Hodgkin’s lymphoma
cell line and a thyroid gland carcinoma. Differences in nam-
ing conventions often create difficulties and confusion for
researchers who wish to integrate data from across different
studies, and the curation done in PharmacoDB aims to alle-
viate this barrier to leveraging these valuable pharmacoge-
nomics studies. Overall, we identified 1691 unique cell lines
from 41 tissue sources and 759 unique compounds with 673
associated targets.

Annotation of drug targets

To obtain a comprehensive collection of target proteins
for the compounds included in PharmacoDB, the union
of known drug–target associations from four distinct data
sources was integrated into the database. The CTRPv2
study released curated annotations of the protein targets
for compounds (20). Additional drug target annotations
were retrieved programmatically from the Drug Repurpos-
ing Hub (24), DrugBank (25), and ChEMBL (26). For
DrugBank, we retrieved the gene symbol for each target us-
ing UniProt.ws (version 2.16.0). For ChEMBL, we used the
Web API to retrieve gene symbols for the protein targets,
subsequently linked to the appropriate GeneCard (27,28).

Comparison to existing databases

Current pharmacogenomic databases focus on cataloguing
and curating relationships between genomic variants and
the efficacy and/or toxicity of pharmaceutical compounds.
PharmGKB currently annotates over 620 drugs with a to-
tal of over 18 000 annotations (29). PharmGKB curation
includes manual evaluation of the evidence and statistical
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Figure 2. The total number of identifier matches between pairs of datasets
for (A) cell lines and (B) compounds before curation, after automatically
removing differences in capitalization and white space and manually re-
viewing matches within edit distance of 2, and after undergoing subsequent
manual curation.

significance of the gene-compound associations reported in
published studies. Those with strong evidence and clinical
significance are highlighted for use in clinical practice, while
associations with weak evidence or non-significant associ-
ations are made available for use in research. PGMD, an
effort by Qiagen Bioinformatics, similarly starts with min-
ing the pharmacogenomic literature, but aims to be wider
in the scope of genetic variation and additional annotations
captured in the database (30). PGMD includes annotations
about variants in intergenic regions, and maps each anno-
tation to genomic coordinates, enabling the integration of

this data into sequencing studies. This broader scope al-
lowed PGMD to include over 117 000 unique pharmacoge-
nomic annotations encompassing nearly 1400 drugs. The
DruGeVar database follows a similar literature mining ap-
proach, focusing on FDA and EMA approved drugs which
have a pharmacogenomic association on the drug label,
leading to a smaller but more clinically actionable database
(31).

While PharmGKB, PGMD and DruGeVar rely on lit-
erature mining to distill robust, clinically actionable phar-
macogenomic associations, PharmacoDB focuses on the
massive in vitro pharmacogenomic studies enabled by high-
throughput molecular profiling and drug screening as-
says, which aim to be hypothesis-generating resources for
biomarker discovery and drug repurposing. All the phe-
notypical data included in PharmacoDB are derived from
dose–response experiments on cancer immortalized cell
lines for approved and experimental compounds, unlike ex-
isting databases which mix evidence from preclinical and
clinical studies. As such, PharmacoDB is a resource for re-
searchers who have exhausted the existing literature, allow-
ing them to mine existing data to discover evidence related
to their compound or gene of interest, and enabling rapid
hypothesis generation or in vitro validation.

DATABASE ORGANIZATION AND WEB-INTERFACE

Database implementation

All of the data is stored in a MySQL database running the
default MyISAM database engine and with indexing con-
figured on all tables in order to speed up queries (database
schema in Supplementary Figure S4). The web interface is
implemented using Ruby (version 2.4.1) and Ruby on Rails
(version 5). To provide a smooth navigation experience, the
front-end is rendered on the server and performance is op-
timized with use of Turbolinks (version 5.0), which does se-
lective updates and contributes to faster page load times. All
charts were produced using d3.js (version 3), a JavaScript li-
brary tailored to produce dynamic and interactive data visu-
alizations using SVG, HTML5 and CSS web standards. Ev-
ery plot generated on PharmacoDB is available for down-
load in the SVG vectorized graphics format and the data
used to generate the plot are exportable as spreadsheets.

Search interface

Often, biomedical researchers interested in leveraging phar-
macogenomic data are investigating a specific biological
question about a given cell line, tissue, drug or target. Phar-
macoDB is designed to quickly answer the question: ‘What
pharmacogenomic data is available for my entity of inter-
est?’. A universal search bar interface allows users to in-
tuitively search across all entities included in the database:
datasets, tissues, cell lines, compounds and genes (Figure 1;
Supplementary Figure S1). This search bar is enhanced with
autocompletion, giving quick feedback to the existence of
an entity in our database, and helping with correct spelling
and punctuation of entries. The search bar also handles
more complex queries, allowing the user to search for pair-
wise and three way intersections of datasets, and navigate
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directly to a dose–response curve by querying for a cell line
and compound in combination.

Search by synonyms

The same cell line, tissue, or compound entity is often
known by several names, which are often used interchange-
ably in the literature. As described above, semi-manual cu-
ration of datasets in PharmacoDB was done to map the syn-
onyms used in each dataset to a unique human interpretable
identifier. However, as each user may be more or less famil-
iar with a specific synonym for a given compound or cell
line, PharmacoDB was implemented such that it is possi-
ble to search for a compound, tissue or cell line by any of
the synonyms collected in the curation process. This means
that if a researcher is familiar with the name of a com-
pound used in the CTRPv2 dataset, for example, they can
use this identifier to find experiments with the same com-
pound across other datasets. The synonyms encountered in-
clude different spelling or punctuation as well as completely
different names, and enable a more natural interface with
the database. Currently, there are 4162 different synonyms
used to refer to the 1,691 cell lines, 980 synonyms to refer to
the 759 compounds, and 184 synonyms for the 41 tissues in
PharmacoDB.

Explore interface

Complementing the Search interface, the explore page
serves as a gentle entry point for new users attempting to
navigate PharmacoDB. It facilitates discovery of content
by presenting to the user all the entities aggregated in the
database. User interaction with the explore page occurs in
a series of filtering steps to find the entity or experiment of
interest. Depending on which selections users make, unre-
lated annotations are filtered out until they make a selection
corresponding to a single query of the database. This will
allows the user to quickly navigate through the large col-
lection of entities while having a complete picture of all the
targets, tissues, compounds and drugs included in Pharma-
coDB.

Profile pages

If a search query for a single entity is entered into the search
bar, or if an entity is selected in the explore page, the user is
redirected to a profile page. This page is designed to provide
the user with a comprehensive view of all the data available
for the entity of interest (Figure 3). Textual information is
consistently positioned on the left side, and visualizations
of the data are on the right. Each page contains a card in
the top left corner describing the entity selected, and any
relevant metadata available for this entity. For example, a
cell line card would contain the relevant annotations and
a description of the available molecular and pharmacolog-
ical data collected for each dataset, the tissue and disease
type for a cell line (Figure 3A). The card will also contain
links to any relevant external databases, such as GeneCards
for targets, Pubchem for compounds, and Cellosaurus for
cell lines. Searchable tables list all the dose-response exper-
iments in PharmacoDB pertaining to the entity being pro-
filed (Figure 3B). Elements in these tables tables are fully

linked to allow users to navigate between profile pages in
PharmacoDB, or by clicking on the experiment count for
a compound and cell line pair, redirected directly to page
displaying the drug testing experiment(s). The right-hand
side of the profile pages displays plots with summary statis-
tics about the entity (Figure 3C). For a cell line, a waterfall
plot reports the 15 compounds with the lowest and high-
est efficacy or potency. These plots allow finding the most
effective drug for a cell line of interest, or finding cell lines
which are abnormally sensitive for a drug of interest, across
all the datasets included in the database.

Drug dose-response curves

Searching for a cell line-drug pair or selecting a cell line
with a drug through the explore page will redirect to a page
displaying the dose-response data found across all datasets.
The page includes a plot of the measured viability values
and a Hill Slope curve fit to the measured data (Figure 4A;
Supplementary Methods), followed by a table of summary
statistics commonly used to summarize the (in)sensitivity
of the cell line to the given compound (Figure 4B). Each
curve plotted on the graph can be hidden and shown by
clicking on its entry in the legend. We used PharmacoGx
(19) to normalize and reprocess all cell viability data with
a uniform pipeline to remove any biases between datasets
introduced by computational aspects such as choice of Hill
Slope model, curve fitting algorithms, or inconsistent calcu-
lations of summary statistics between studies (Supplemen-
tary Figure S1; Supplementary Methods). Given the lack of
consensus regarding the best way to summarize drug dose-
response curve, we computed a compendium of summary
metrics for the response of the cell line to the treatment
with the compound, including the common IC50 (dose of
50% inhibition of cell viability), EC50 (dose at which 50%
of the maximum response is observed), Area Above Curve
(AAC), Einf (maximum theoretical inhibition), and the re-
cent drug sensitivity score (DSS) (32). Hovering over a value
in the summary measures table will display on the plot a vi-
sualization of the procedure used to calculate the summary
statistic. As there is no consensus as to the optimal metric
for summarizing the information contained in the dose re-
sponse curve (33). The IC50 and EC50 metrics focus on the
potency of the compound, the Emax on the efficacy, and the
AAC and DSS integrate both potency and efficacy. These
metrics are presented together on PharmacoDB, and a vi-
sualization of method of calculating them is displayed di-
rectly on the drug dose-response curve to aid in making an
informed decision of the correct measure to use for a given
experiment or specific biological question of interest.

Batch query

For queries involving multiple cell lines and compounds,
users can access the drug sensitivity data via the Batch
Query page. While the search interface is limited to the re-
trieval of drug sensitivity data for one compound / cell-
line pair at a time, the batch query interface allows users to
quickly cut and paste their list of cell lines and compounds
of interest. After submission, a spreadsheet containing all
the summary metrics for the drug dose-response curves in-
cluded in PharmacoDB will be available for download.
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Figure 3. An example profile page from PharmacoDB for a cell line. The page is organized so that the left column contains textual information, and the
right column contains plots. Panel (A) is the information card for the cell line (MCF7). Panel (B) contains tables listing the available data profiles for this
cell. Panel (C) contains summary plots about the drug screening performed in each dataset and the waterfall plots of the cell response to treatment with
compounds.
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Figure 4. An example of drug dose response curve plot with (A) the A549 lung cancer cell line treated with the MEK inhibitor AZD6244, and (B) the
corresponding table of summary statistics. IC50: dose of 50% inhibition of cell viability; EC50: dose at which 50% of the maximum response is observed;
AAC: area above curve; Einf: maximum theoretical inhibition; DSS: drug sensitivity score.

PharmacoGx

In addition to cell line viability screens, the cancer pharma-
cogenomic datasets included in PharmacoDB include ex-
tensive molecular profiling. We recently released the Phar-
macoGx package (19) to facilitate the analysis of the rela-
tionships between the pharmacological and molecular data
for the purposes of biomarker discovery (18) and drug re-
purposing (34). The reprocessing of pharmacological data
and the extensive curation of identifiers done for Pharma-
coDB has been fully integrated into PharmacoSet (PSet)
R objects released with the PharmacoGx platform. While
PharmacoDB does not contain molecular data, a PSet ob-
ject has been created and linked to from each dataset pro-
file page (Supplementary Figure S1A). To facilitate find-
ing molecular data for a specific cell line, a table describ-
ing the availability of molecular profiles in PharmacoGx is
available at the bottom of each cell line profile page (Fig-
ure 3). Furthermore, each compound profile page and gene
profile page in PharmacoDB includes a table of univari-
ate associations between the molecular features of the cell
lines included in the database and their response to com-
pounds they were tested with (Supplementary Figure S5).
These associations were computed using the drugSensitivi-
tySig function in PharmacoGx, described in more detail in
Supplementary Methods. This link between PharmacoDB
and PharmacoGx enables bioinformaticians to use the web-
application as an entry point for their pharmacogenomic
analysis, and allows them to leverage our extensive curation.
As an example, one can quickly use PharmacoDB to ver-
ify that high expression of the gene ERBB2 predisposes cell
lines to be sensitive to treatment with lapatinib. Searching
ERBB2 brings up the gene profile page, where lapatinib is
listed as a top associated drug with moderate effect size and
very high significance. This association was found in CCLE,
which suggests to researchers interested in investigating this
association further that CCLE would be a good starting
point for their analysis. Downloading the CCLE PSet as in-
structed on the link from the CCLE profile page, one can
delve deeper using PharmacoGx, for instance to repeat this
analysis per tissue type. Example code for such an analysis
is provided in Supplementary Methods, and reveals as ex-

pected that the association is strongest in breast (Standard-
ized Coefficient: 0.75, p-value: 2.7 × 10−06), and soft tissue
breast (standardized coefficient: 0.85, P-value: 2.3 × 10−04)
and weak in hematopoietic/lymphatic and bone (standard-
ized coefficient: –0.07, P-value: 0.92 and standardized coef-
ficient: 0.04, P-value: 0.56 respectively).

USER ACCESS TO DATA, CODE AND FEEDBACK

Programmatic data access

PharmacoDB exposes its data through an Application Pro-
gramming Interface (API), enabling users to programmat-
ically interact with the application. The API is RESTful
(Representational State Transfer), meaning that all appli-
cation resources are made available using a predefined set
of stateless operations, in this case being HTTP verbs such
as GET, POST, DELETE. No authentication keys, or to-
kens, are currently needed in order to access the API. The
API has been implemented using the Go programming lan-
guage, and Gin HTTP web framework has been used for
routing. All queries are made using HTTP GET requests,
and all results are returned in JSON format by default. All
the data in PharmacoDB are publicly available via the API.
Additionally, a dump of the SQL database is available for
download from the front page and R objects for all the phar-
macogenomic datasets are available via the PharmacoGx
R/Bioconductor package (19).

Code and documentation

The PharmacoDB code is open-source and publicly
available through the PharmacoDB GitHub repository
(github.com/bhklab/PharmacoDB) under the GPLv3
license. The documentation is available in the web-
application as video and textual descriptions of all the
entities and search queries in PharmacoDB. These include
descriptions of the dataset, tissue, cell line, genes, and
drug/compound pages. Tutorials on how to perform more
complex queries, such as displaying a drug dose-response
curve and intersecting datasets, are also described in detail
in the Documentation page of PharmacoDB.

https://github.com/bhklab/PharmacoDB
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Feedback

Our web-application provides an easily accessible, option-
ally anonymous contact mechanism for providing feedback
on all aspects of PharmacoDB. Users can suggest cor-
rections to annotations by clicking on the feedback icon
accessible on the left of every profile page. The fields in
the ‘Contact Us’ page are then prefilled with data rele-
vant to the annotation in question. The GitHub API is
then used to automatically file user suggestions and feed-
back as issues in the GitHub Issue Tracker at our repos-
itory (github.com/bhklab/PharmacoDB). This allows for
full transparency regarding the reliability of data in the
database and enables the community to fully assess and cor-
rect any missing information.

SUMMARY AND FUTURE DIRECTIONS

PharmacoDB is the first database providing a comprehen-
sive resource to search and explore the largest pharmacoge-
nomic studies released to date. By combining rigorous cu-
ration of identifiers across the published pharmacogenomic
datasets with comprehensive search and visualizations of
the pharmacological data, PharmacoDB allows researchers
to quickly access the data available to answer their biolog-
ical questions of interest. It provides an interface to query
for specific drug dose-response curves, and easily find the
largest possible intersection between datasets.

As current pharmacogenomic datasets continue to ex-
pand and new ones are published, the number of cell lines
screened with compounds will increase, opening new av-
enues of research for meta-analysis in biomarker discovery
and other applications. In this setting, PharmacoDB will
provide a unique resource where researchers can quickly
mine the large amount of data generated by these high-
throughput drug screening studies. Moreover, given the re-
cent activity in the pharmacogenomic field, new statistical
approaches are being developed to better model and sum-
marize drug dose-response curves. Recently, Hafner et al.
published the growth rate inhibition 50 (GR50) metric to
robustly quantify drug response by accounting for the dif-
ferent proliferation rate of each cancer cell lines (35), and
showed an increase in consistency across datasets (36). Al-
though this method and others may require data that are
not always available for all datasets (e.g., proliferation rate
of each cell lines for GR50) we are committed to implement
them to provide users with the opportunity to select the
most relevant readout for their specific application. In ad-
dition to datasets measuring cell viability, we also plan to
update PharmacoDB with pharmacogenomic datasets re-
porting the transcriptional changes due to chemical pertur-
bation, such as the Connectivity Map (37) and the L1000
(Subramanian et al., BiorXiv 2017) datasets. The combina-
tion of drug sensitivity and perturbation data would allow
users to study deeper the relationship between the molecu-
lar state of cancer/normal cell lines and their response to
compound perturbations (34). Other datasets assessing the
toxic effect of chemical perturbations in hepatocytes and
kidney cell lines (38–40) will also be integrated to extend
the scope of PharmacoDB beyond cancer. The flexibility of
PharmacoDB will enable continuous update of the phar-

macogenomic datasets, and facilitate the analysis of these
valuable data by the scientific community.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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