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Abstract

Background: The efficient biological production of industrially and economically important compounds is a
challenging problem. Brute-force determination of the optimal pathways to efficient production of a target chemical
in a chassis organism is computationally intractable. Many current methods provide a single solution to this problem,
but fail to provide all optimal pathways, optional sub-optimal solutions or hybrid biological/non-biological solutions.

Results: Here we present RetSynth, software with a novel algorithm for determining all optimal biological pathways
given a starting biological chassis and target chemical. By dynamically selecting constraints, the number of potential
pathways scales by the number of fully independent pathways and not by the number of overall reactions or size of
the metabolic network. This feature allows all optimal pathways to be determined for a large number of chemicals
and for a large corpus of potential chassis organisms. Additionally, this software contains other features including the
ability to collect data from metabolic repositories, perform flux balance analysis, and to view optimal pathways
identified by our algorithm using a built-in visualization module. This software also identifies sub-optimal pathways
and allows incorporation of non-biological chemical reactions, which may be performed after metabolic production
of precursor molecules.

Conclusions: The novel algorithm designed for RetSynth streamlines an arduous and complex process in metabolic
engineering. Our stand-alone software allows the identification of candidate optimal and additional sub-optimal
pathways, and provides the user with necessary ranking criteria such as target yield to decide which route to select for
target production. Furthermore, the ability to incorporate non-biological reactions into the final steps allows
determination of pathways to production for targets that cannot be solely produced biologically. With this
comprehensive suite of features RetSynth exceeds any open-source software or webservice currently available for
identifying optimal pathways for target production.

Keywords: Mixed integer linear programming, Metabolic engineering, Flux balance analysis

Background
The biological production of compounds for industrial
applications is an interesting and complex problem. From
the perspective of biological retrosynthesis, there are
essentially two challenges 1) identifying new enzymes
to perform difficult and/or important chemical reactions
and 2) determining the optimal (minimal) number of
gene additions that is required to convert an industrial
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organism into one capable of successfully producing a
compound of interest. There is a growing body of liter-
ature for solving the first problem and recent work on
polyketide design has demonstrated considerable success
[1]. This paper is focused on the second problem, which
we argue is essentially a routing challenge. Identifying the
minimal number of gene additions (herein referred to as
an optimal pathway) has cost and time saving benefits in
downstream production. Producing a compound of inter-
est (hereafter x), not native in an organism requires deter-
mining the reaction (and corresponding enzyme/genes)
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additions necessary to produce x. Without complex rout-
ing algorithms the number of possible optimal pathways
grows exponentially relative to the pathway length. As
new biological reactions enter the literature and are avail-
able for synthetic addition, the optimal pathways may
fork down completely different routes. Furthermore, there
may be scenarios where the yield of a given compound
is optimized, but the number of gene additions are sub-
optimal (pathways with a greater number of gene/enzyme
additions than the minimal). These all represent the
distinct challenges in determination of pathways to
production.
Reaction additions and subsequent optimal pathways

can inefficiently be determined computationally by one-
by-one addition of non-native reactions to a stoichiomet-
ric matrix for a chassis organism, and then performing
flux balance analysis (FBA) to determine if there is com-
pound production without interfering biomass produc-
tion. FBA is a tool widely used in predicting genome-scale
metabolic behavior [2]. FBA is principally used for its ease
of setup and efficient optimal search. At a minimum, FBA
requires a stoichiometric matrix (S) which is complete
with regard to the available reactions and compounds for
a given organism. The reactions are conventionally tied
to a set of explicit enzymes and transporters. FBA uses
linear programming, requiring an objective function (Z),
to solve for the metabolism of interest. This may involve
minimization of input, maximization of output, or other
constraints [3].
Given k reactions to produce x, the naive approach to

adding new reactions is to search each of the k reactions
in the database to see if x is produced given the available
compounds from FBA. This requires query of each of the
k reactions. If there is a single step solution, it solves in
FBA(k) time. Where there are no single step solutions,
the problem explodes exponentially. A two-step solution
requires not just k reactions, but all reactions that pro-
duce precursors to the k reactions. If the average number
of reactions producing a given compound is g, the number
of pathways that must be tested for a y step solution in the
worst case is FBA(gy).
RetSynth overcomes the naive and inefficient method

of identifying solutions, particularly the worst-case,
using constraint based mixed-integer linear program-
ming (MILP). Given a database of known biological and
chemical reactions and a genome-scale metabolic model,
which can be constructed using RetSynth from numer-
ous metabolic repositories with known enzymatic and
chemical transformations, all optimal genetic additions
required to produce a given compound of interest can be
determined. The manner in which MILP is implemented
is to minimize the objective value which represents the
number of steps in the pathway. While selecting path-
ways based on number of reaction steps does not account

for other issues in synthetic pathways (such as enzyme
efficiency, enzyme or compound toxicity, or target yield)
this is an ideal starting method for identifying synthetic
pathways as minimizing the alterations made to a chas-
sis organism is likely to lessen the above-mentioned issues
as well as be more cost effective. Additionally, by reset-
ting weights for reactions in the optimal pathway, Ret-
Synth will automatically find novel sub-optimal pathways
thereby providing alternative pathways that may have bet-
ter target yield or fewer toxicity problems. This can be per-
formed iteratively to determine all sub-optimal pathways
for a specific path length.
Herein we describe the algorithm developed as part of

RetSynth to efficiently provide solutions targeted com-
pound production. Subsequently, RetSynth can deter-
mine which pathway will produce the highest yields of
a target compound using FBA. With this comprehen-
sive suite of features, RetSynth is an efficient tool for
identifying optimal solutions to target compound syn-
thesis. Additionally, we compare RetSynth performance
to other tools that can find optimal pathways to target
compound production, such as OptStrain [4], MetaRoute
[5], GEM-Path [6], ReBIT [7], RetroPath [8], and Route-
Search [9]. RetSynth outperformed these tools in over-
all capabilities including, identifying more optimal and
sub-optimal pathways, evaluating pathway efficiencies
using FBA, the number of metabolic repositories it can
compile into a single concise metabolic database, and
the time necessary to identify optimal and sub-optimal
pathways. Identification of sub-optimal pathways allows
the user more pathway choices than other algorithms
currently provide, while not producing an overwhelm-
ing number of solutions. The ability to provide opti-
mal and sub-optimal solutions is unique to RetSynth
and to our knowledge does not currently exist in other
available tools.

Implementation
RetSynth includes a comprehensive suite of features nec-
essary for complete implementation of the software. To
find pathways RetSynth requires a metabolic database of
reaction (i.e. corresponding catalytic gene/enzyme infor-
mation) and compound information. RetSynth can con-
struct a database of metabolic information from num-
ber of metabolic repositories, including PATRIC [10, 11],
KBase [12], MetaCyc [13], KEGG (Kyoto Encyclopedia
of Genomes and Genes) [14], MINE (Metabolic In-Silico
Network Expansion database) [15], ATLAS of Biochem-
istry [16] and SPRESI [17]. Additionally, users can add
individual reactions to the database. These may be newly
discovered from the literature or proprietary reactions.
Combining biological and chemical reaction repositories
into one database allows RetSynth to construct a com-
prehensive and concise metabolic database. In order to
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rank discovered pathways based on target yield in a chas-
sis organism, RetSynth uses CobraPy [18] to perform FBA.
The results are conveniently rendered with a visualization
module, allowing the user to quickly interpret results. Ret-
Synth is a stand-alone software package, built with Pyin-
staller, which does not require a webservice or MATLAB,
entirely written in Python except for two required non-
Python dependencies, the GNU Linear Programming Kit
(http://www.gnu.org/software/glpk), and libSMBL [19].
Finally, we have built an easy-to-use graphical user inter-
face to make RetSynth usable by everyone.

Results
RetSynth algorithm
The algorithm described below was developed for the
RetSynth software to rapidly and efficiently identify all
optimal pathways to target compound production in a
specified chassis organism. Optimal pathways can then be
ranked based on their ability to produce the highest yields
of a compound by evaluating flux through each candidate
pathway.
To identify optimal pathways, we constructed a MILP:

minimize z = tTx (1)
s.t. Cx = d,
and x ∈ {0,1}m,

where the entire RetSynth metabolic database is repre-
sented by a stoichiometric matrix C, with dimensions m
molecules × n reactions which are in the database. x is
a vector of variables the length of n which represent the
presence or absence (1 or 0) of each reaction in an optimal
path.Cx = dwhere d is a vector of the lengthmwhich sets
bounds on metabolite availability depending on whether
themolecule is a native metabolite to the chassis organism
(n) which is not constrained, a non-native metabolite (w)
which constrains the molecule to ensure if the molecule is
consumed in the optimal path it has to also be produced
by a reaction in the optimal path or the target molecule (g)
which has to be produced by a variable (2).

n =

⎡
⎢⎢⎢⎣

∞
∞
...
∞

⎤
⎥⎥⎥⎦w =

⎡
⎢⎢⎢⎣

≥ 0
≥ 0
...
≥ 0

⎤
⎥⎥⎥⎦ g = [

1
]
d =

⎡
⎣
n
w
g

⎤
⎦ (2)

The objective function is set to minimize the num-
ber of variables (reactions) needed to produce the target
compound. The objective function weights are distributed
based on whether the variables (reactions) are native
(I, vector of weights for native variables) or not native
(E, vector of weights for non-native variables) (3).

I =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦E =

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ t =

[
I
E

]
(3)

To identify all the optimal pathways, a penalty func-
tion is added to variables that are already identified as
part of an optimal pathway, forcing the algorithm to seek
an alternative optimal pathway. To implement this algo-
rithm, Sv is the total set of variables and S∗

v is a subset of
variables in an optimal pathway. We compute the penalty
such that any optimal pathway to the modified problem
remains an optimal pathway to the original problem, that
is tTx < β∗(1+1/(2β∗) < β∗ +1, where β∗ is the number
of reaction steps in the optimal pathway.
Here we illustrate how variables are weighted given that

they are in an identified optimal pathway S∗
v . Assume the

jth variable is a part of an optimal pathway but is not
included in S∗

v . Then we have tj = 1. The weights in t
for the other β∗ − 1 variables that are part of the optimal
pathway are 1+1/(2β∗). All together the optimal pathway
value to the modified problem will be β∗ + 1/2− 1/(2β∗).
The algorithm terminates only after the objective function
value to the modified problem reaches β∗(1 + 1/(2β∗)),
which is higher than the pathway that includes the jth
variable (Algorithm 1). This leads to a contradiction and
proves that our algorithm includes all variables that are
part of an optimal pathway.

Algorithm 1: Identifying all enzymes that can be part
of an optimal pathway
Data: A set of variables Sv
Result: A subset of variables S∗

v ⊆ Sv that can be part
of an optimal solution to problem (3)

1 S∗
v ← ∅;

2 Let β∗ > 0 be the objective function value (length of
optimal pathway to (1));

3 repeat
4 Let x be an optimal solution to (1);
5 foreach i such that tTxi ≥ 1 do
6 S∗

v ← {i};
7 ti ← 1 + 1

2β∗ ;
8

9 end foreach
10 Resolve(1);
11 return S∗

v ;
12 until tTx ≥ β∗(1 + 1

2β∗ );
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Sub-optimal length pathway enumeration
RetSynth is able to find pathways that are not only optimal,
but pathways up to β∗ + k, where k is a parameter set by
the user and indicates the level of sub-optimal pathways to
be identified. This involves adding additional constraints
to (1) which prevents any of the initial optimal pathways
from being discovered, forcing the algorithm to seek the
next best pathway. For each initial optimal pathway, a
constraint is added:

Y =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦O =

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦P =

[
Y
O

]
(4)

where Y are variables that are not part of a given opti-
mal pathway andO are variables in an optimal pathway S∗

v .
Combining vectors Y and O results in vector P (4). Con-
straints are set so that the combination of reactions in the
optimal pathway cannot be identified as a solution. With
the new constraints the metabolic system is:

minimize z = tTx (5)
s.t. Cx = d,

foreach β∗ in optimal solutions:

PTx ≤ β∗ − 1
and x ∈ {0,1}m

Adding these constraints forces the algorithm to seek
the next best sub-optimal pathway (5). At each level,
k constraints are added to prevent the algorithm from
finding previous levels of optimal or sub-optimal path-
ways. For each level of k algorithm (1) is implemented
to identify all sub-optimal pathways at that level, with
the exception that instead of resolving algorithm (1) it is
resolving (5).
After all optimal and sub-optimal solutions are identi-

fied, pathways are integrated into an FBA model for the
chassis organism and FBA is run optimizing growth (the
biomass reaction) and production of the target compound
[2, 18].

Enumerating and backtracking all solutions
The new set S∗

v is typically much smaller than Sv, and dras-
tically reduces the search space for enumerating all opti-
mal solutions. To track optimal paths, define a directed
graph G = (V ,E) with two types of nodes: V = Vc ∪
Vp and Vc ∩ Vp = ∅. The process nodes Vp represent
the enzymes selected in the previous section, whereas
the compound nodes Vc represent all compounds that
are inputs to the processes. Directed edges represent the
input/output relationships between compounds and pro-
cesses. The backtracking proceeds by starting with target
compound x. Step 1 is to determine processes in Vp that
produce x. A directed edge is connected between nodes in

Vp and x. These nodes are then removed from Vp. Step 2
is to determine compounds that serve as inputs for these
removed nodes and to add them from Vc. If Vp is not
empty, step 1 will be repeated for each added node from
Vc. This process will be repeated until Vp is empty, result-
ing in a directed dependency graph G of all pathways to
production by native metabolism to x.
Given a compound of interest and a dependency graph G,

a connected subgraph that includes the node for the com-
pound of interest and at least one predecessor node for each
compound node describes a feasible solution to the prob-
lem. Symmetrically, any feasible solution is a subgraph that
satisfies these conditions. Subsequently, such a subgraph
withminimum number of process nodes defines an optimal
solution.

Validating RetSynth
Using metabolic networks from KBase and data from
the MetaCyc metabolic repository, RetSynth was used
to identify optimal pathways for compounds which
already have experimentally tested synthetic pathways in
Escherichia coli. Comparing model results to experimen-
tally validated pathways demonstrates that RetSynth can
generate practical candidate pathways for compound syn-
thesis.
2-propanol has previously been produced in Escherichia

coli JM109 grown on LB media. Enzymes were added into
E. coli in order to convert the native precursor acetyl-
CoA into 2-propanol [20]. These conversions include
acetyl-CoA to acetoacetyl-CoA, acetoacetyl-CoA to ace-
toacetate, acetoacetate to acetone, and finally acetone
to 2-propanol. Enzymes thiolase, CoA-transferase, ace-
toacetate decarboxylase and alcohol dehydrogenase were
added to Escherichia coli JM109 to facilitate these reac-
tions. For RetSynth, the chassis organism Escherichia
coli strain K-12 M1655 was used because a metabolic
model for strain JM109 was not freely available. The
optimal pathway identified by RetSynth consisted of the
catalytic conversions acetoacetate to acetone and ace-
tone to 2-propanol (acetoacetate decarboxylase and alco-
hol dehydrogenase catalyzed these reactions, respectively)
(Fig. 1A). Though shorter because the Escherichia coli
K-12 M1655 strain has acetoacetate (which needs to
be synthetically produced in Escherichia coli JM109)
RetSynth’s optimal pathway uses the overall production
pathway shown by Jojima et al. to be effective in producing
2-propanol [20].
To produce 1-butanol in Escherichia coli BW25113 on

an M9 media, Atsumi et al. added a synthetic pathway
consisting of 3 enzymatic conversions starting with the
conversion 2-ketobutyrate to 2-oxovalerate [21]. Because
2-ketobutyrate is a rare metabolite in Escherichia coli
BW25113, the authors add an overexpressed leuABCD
pathway to increase yields of this precursor. Subsequently,
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2-oxovalerate is converted to butanal by pyruvate decar-
boxylase and then to butanol by alcohol dehydrogenase.
Using the standard BW25113 metabolic model retrieved
from the KBase repository, RetSynth was unable to iden-
tify this pathway since the model did not contain a reac-
tion for 2-oxovalerate synthesis. The lack of production
of this metabolite in the model is unsurprising as nat-
ural yield of the precursor is so minimal in Escherichia
coli [21]. However, with the capabilities of RetSynth, it is
simple to manually add this pathway into the model, as
Atsumi et al. did to increase production of 2-oxovalerate.
Once the leuABCD pathway was added, the same pathway
was identified by RetSynth as was published by Atsumi et.
al (Fig. 1b).
Our third validation example was to find the opti-

mal pathway to production of 3-methylbutanol in
Escherichia coli strain BW25113. Our pathway con-
verted native metabolite 2-keto-4-methylpentanoate
to 3-methylbutanal and then subsequently produced
3-methylbutanol via added enzymes pyruvate decar-
boxylase and alcohol dehydrogenase (Fig. 1C). This
matches the synthetic pathway used by [20] to produce
3-methylbutanol.

Optimal and sub-optimal pathways for MetaCyc
compounds in Escherichia coli K-12 M1655
The power of RetSynth lies in its ability to quickly iden-
tify optimal and sub-optimal pathways for a large set of

target compounds. To illustrate this strength, a database
was constructed consisting of a KBase metabolic network
for Escherichia coli K-12 M1655 and MetaCyc reaction
information. For every compound in the MetaCyc repos-
itory that was not native to Escherichia coli K-12 M1655,
RetSynth identified an optimal pathway along with two
levels (pathways that require more than the minimal
number of gene additions, specifically, second and third
best number of gene/reaction additions) of sub-optimal
pathways.
Of the 15,706 MetaCyc compounds that were not native

to Escherichia coli K-12 M1655, we found synthetic path-
ways for 3462 compounds. Optimal and sub-optimal
pathways for methyl acetate and pterostilbene, both of
which have economic value, are illustrated in Fig. 2. For
methyl acetate, which is commonly used in paints and
nail polish, optimal and two levels of sub-optimal path-
ways were identified for production in Escherichia coli.
The optimal pathway synthesizes acetone from the native
compound acetoacetate and subsequently converts ace-
tone to methyl acetate (Fig. 2a). The last step of the
optimal pathway is then shared among all candidate path-
ways. The two-level sub-optimal pathways include the
conversion of the native compound farnesyl diphosphate
to acetone and the conversion of methylglyoxal to acetone
through two enzymatic steps. The level two sub-optimal
pathway synthesizes 2-methylpropanal-oxime from the
native compound valine which is then followed by three

O O

O-

acetoacetate
acetoacetate decarboxylase

EC 4.1.1.4

O

acetone

OH

2-propanol

 H+ NADH/NADPH

alcohol dehydrogenase
EC 1.1.1.80

EC 1.1.1.M22

NAD/NADP + H+CO2

O

butanal

OH

butanol

pyruvate decarboxylase
 EC 4.1.1.-

alcohol dehydrogenase
EC 1.1.1.-

NADH/NADPH + H+ NAD/NADP

leuABCD pathway

A)

B)

C)

O

O-

O

2-ketobutyrate

O

-O

O

2-oxovalerate

H+ CO2

O

OH

O

O HO

H+ CO2

3-methylbutanal

H+ + NADH NAD

3-methylbutanol  2-keto-4-
methylpentanoate

pyruvate decarboxylase
 EC 4.1.1.1

alcohol dehydrogenase
EC 1.1.1.1

Fig. 1 RetSynth Validation. Optimal pathways identified by RetSynth for 2-propanol (a), butanol (b) and 3-methylbutanol (c). Red indicates
compound targets, magenta indicates native compounds to Escherichia coli K-12 M1655 or BW25113
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A)

B)

Fig. 2 Optimal and sub-optimal pathways. Optimal and sub-optimal pathways identified by RetSynth for methyl acetate (a), and pterostilbene (b).
Red indicates compound targets, magenta indicates native compounds to Escherichia coli K-12 M1655

enzymatic conversions to produce acetone. The second
target compound pterostilbene, which has been shown
to have health benefits such as lowering cholesterol and
glucose levels [22], can be synthesized in Escherichia coli
through the identified optimal pathway, which consists
of four enzymatic conversions starting with the native
compound tyrosine, or the level one sub-optimal path-
way, which has five enzymatic conversions starting with
phenylalanine (Fig. 2b). A second level sub-optimal path-
way could not be identified for this compound. Theoreti-
cal yields were predicted using RetSynth’s FBA module to
be 0.24 and 0.02 (mol/mol of glucose) for methyl acetate
and pterostilbene, respectively. These compounds are just
two examples of the 3462 compounds that we were able to
quickly and efficiently discover optimal and sub-optimal
pathways.

Of the 3462 targets, 513 compounds had optimal and
sub-optimal level one and two pathways, 1125 compounds
had optimal and sub-optimal level one pathways, and for
the remaining 1824 compounds only had optimal path-
ways. The average number of pathways identified for a
compound was 7 and the average time it took to calcu-
late all pathways for a compound was 8 minutes (Fig. 3).
Some compounds significantly exceeded the average time,
which is due to the process of eliminating cyclic pathways.
When a cyclic pathway is identified, constraints must be
added to the MILP to prevent the pathway from being
identified as a viable route to production (Additional file 1).
The MILP is then resolved to calculate an alternative
pathway. Thus, compounds with multiple cyclic pathways
dramatically increase the time required to find optimal
routes to production.
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Fig. 3 Optimal and sub-optimal pathways. Number of pathways
versus time for each target compound. Red dashed lines indicate the
averages on the Y and X axis. Colors indicate whether optimal and
sub-optimal (level 1 and 2) pathways (yellow), optimal and
sub-optimal (level 1) pathways (teal) or optimal pathways only
(purple) could be identified for each compound

Using the RetSynth results for the 3462 target com-
pounds, we can identify which reaction/enzyme is com-
mon to the highest number of them. This gene would
be an advantageous gene addition for cultured strains of
Escherichia coli. To identify what reaction/enzyme would
make an optimal genetic modification (i.e. leading to the
production of the highest number of downstream tar-
gets, given that subsequent genetic modifications were
made) for each reaction/enzyme we counted the num-
ber of compounds for which it was the first step in an

optimal or sub-optimal pathway. Each reaction/enzyme
was only counted once per compound even if it was in
multiple optimal and/or sub-optimal pathways. Of the
total 766 enzymes that were the first step in optimal
and/or sub-optimal pathways, we identified 24 enzymes
that were in 50 or more compound production path-
ways (Fig. 4a). The top four reactions/enzymes found
in the highest number of target compound pathways,
above 100 compounds, are illustrated in (Fig. 4b, c, d, e).
Enzymes 1.1.1.222 and 1.1.1.237 are hydroxyphenylpyru-
vate reductases which catalyze the reactions in Fig. 4b
and c respectively and are natively found in Solenoste-
mon scutellarioides. The remaining two enzymes 4.3.1.23
and 4.3.1.24 (tyrosine ammonia-lyase and phenylalanine
ammonia-lyase respectively) catalyze reactions in Fig. 4d
and e. These enzymes are natively found in organisms
Rhodotorula glutinis and Ustilago maydis respectively.
Additionally, it was discovered that enzyme 4.3.1.25 can
catalyze both these reactions and is found in Rhodotorula
glutinis. By identifying enzyme additions that are in
the highest number of target compound production
pathways RetSynth can lead and enhance the develop-
ment of efficient chassis organisms for optimal produc-
tion of all types of economically and industrial target
compounds.

Biological and chemical hybrid pathways for target
compound production
In addition to identifying biological optimal and sub-
optimal pathways, RetSynth can incorporate strictly syn-
thetic chemistry reaction repositories such as SPRESI,
which contains thousands of chemical reactions, into its

A) B)

C)

D)

E)

Fig. 4 Optimal enzyme/gene addition. a Depicts the number compounds each enzyme is in an optimal or sub-optimal pathway (only shows
enzymes that are in 50 or more compound pathways). b, c, d, e Are the reactions that are catalyzed by the top four enzymes in the highest number
of compound pathways
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metabolic database. By integrating SPRESI into RetSynth’s
MetaCyc and KBase database, pathways that use both
biological and chemical reactions to produce necessary
compounds (termed hybrid pathways) can be discovered.
With the addition of SPRESI, 413 more target com-
pound production pathways were identified. The hybrid
pathway for production of benzene in Escherichia coli
K-12 M1655 (Fig. 5) consists of the enzymatic conver-
sion of native compound 4-aminobenzoic acid to pheny-
lamine (predicted theoretical yield to be 0.24 mol/mol
glucose) which can subsequently be chemically synthe-
sized into benzene [23]. Benzene is an important precur-
sor to the production of other high value compounds.
The ability to build a hybrid database greatly expands
RetSynth’s capability for the find pathways to production
of many target compounds that would otherwise not be
possible.

Discussion
Benchmarking RetSynth to other pathway identifying tools
There are a number of other tools which can find syn-
thetic pathways for target compounds, however none of
these tools encompass all of the features of RetSynth
(Table 1). We perform comparisons between RetSynth
and other tools to illustrate RetSynth’s increased number
and improved capabilities by benchmarking features
between software such as the number of pathways found
for each target compound, predicting yield of each target
(if applicable) and time required to obtain results.

OptStrain
OptStrain uses mixed integer linear programming
(optimization-based framework) to find stoichiometri-
cally balanced pathways that produce a target compound
in a specified chassis organism [4]. The design flow for
this software follows three main steps: 1) generation of a
metabolic database filled with stoichiometrically balanced
reactions from four metabolic repositories (KEGG, EMP
(Enzyme and Metabolic Pathways), MetaCyc, UM-BBD
(University of Minnesota Biocatalyst/Biodegradation
database), 2) calculation of the maximum theoretical
yield of the target compound with no restriction on
whether native or non-native reactions are used, and 3)
identification of the pathway that minimizes the number
of non-native reactions and maximizes theoretical yield.
Additionally, OptStrain identifies alternative pathways
that meet both the criteria of minimization of non-native
reactions and maximum theoretical yield. Because the
software is no longer supported, a direct comparison to
RetSynth could not be performed. However, there are
numerous key differences between the two software. Ret-
Synth allows the user direct control of the pathways they
identify, specifically the level of sub-optimal pathways
to find, and does not directly tie them to the yield of

Fig. 5 Optimal pathway for benzene production. Hybrid pathway
including biological and chemical reactions necessary to produce
benzene. Red indicates compound targets, magenta indicates native
compounds to Escherichia coli K-12 M1655

the target compound which ultimately results in a more
comprehensive list of synthetic pathways to evaluate. The
user also hasmore ability to add a variety of different types
of reactions and compounds to the RetSynth database,
including those from the literature that are not yet in
a repository, as well as chemical reactions. Integrating
chemical reactions into the database permits the user to
also identify hybrid (containing both biological and chem-
ical reactions) pathways. Because all targets cannot be
produced biologically, this gives the user more pathways
than would have otherwise be achieved using Opt-
Strain. Additionally, the overall usability of RetSynth far
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Table 1 Comparison of different software

Software Easily available Optimal
pathways

Sub-optimal
pathways

Chemical optimal/
suboptimal pathways

Flux balance
analysis

Graphical user
interface

Enzyme
promiscuity

RetSynth
√ √ √ √ √ √

OptStrain
√ √ √

GEM-Path
√ √

MetaRoute
√ √ √

RouteSearch
√ √ √ √

Retrobiosynthesis
√

RetroPath
√ √ √ √ √

Depicts the different features of each software

surpasses OptStrain’s, primarily because RetSynth has an
easy-to-use graphical user interface and is a stand-alone
software package, precluding the need for any knowl-
edge of programming or command-line usage. Overall,
these features of RetSynth result in a more comprehen-
sive and functional tool than what OptStrain currently
provides.

GEM-Path
The GEM-Path algorithm uses several different tech-
niques to design pathways for target compound produc-
tion in a chassis organism [6]. This algorithm specifically
uses 443 reactions that were pulled from BRENDA and
KEGG repositories to identify pathways in Escherichia
coli. The 443 reaction were methodically classified into
three different categories 1) reactions that use no co-
substrates or co-factors, 2) reactions that are anabolic
conversions (merging the substrate with a co-substrate),
and 3) reactions that are catabolic conversions where
the substrate breaks down into corresponding prod-
uct and co-product. Additionally, thermodynamic anal-
ysis was performed for each reaction, calculating �G
(KJ/MOL), as was a promiscuity analysis (determining
if an enzyme could accept multiple substrates). Sub-
sequently, GEM-Path implemented a pathway predic-
tor algorithm, which works by 1) designating a target
compound and setting predictor constraints (maximal
pathway length, metabolites to compute at each itera-
tion, thermodynamic threshold, and reaction promiscu-
ity threshold), 2) applying reactions to the target in a
retrosynthetic manner for generating the corresponding
substrates, and 3) checking if the substrate matches a
compound in the Escherichia coli metabolome. Subse-
quently, if a pathway is found FBA is run to validate
production.
GEM-Path is not available for public use and there are

other differences between the two software. GEM-Path
integrates more detailed reaction parameters when pre-
dicting a pathway (i.e.�G and promiscuity) than RetSynth

uses to identify optimal solutions. This subsequently
makes GEM-Path’s metabolic database substantially
smaller than RetSynth and therefore is missing many syn-
thetic pathway opportunities. Additionally, GEM-Path’s
algorithm does not allow multiple pathways per target to
be identified, limiting the potential pathways provided to
the researcher.

MetaRoute
MetaRoute is a web-based tool that finds pathways
between two specified compounds using a graph-based
searching algorithm [5]. Specifically, this tool uses Epp-
stein’s k-shortest path algorithm to find the shortest
distance between two nodes in a graph. The graph rep-
resenting a metabolic network was built by 1) using pre-
calculated and concise atom mapping rules in which two
successive reactions are represented by a single edge, 2)
removing irrelevant reaction conversions (i.e. glucose 6
phosphate to ATP to AMP), and 3) using an updated
weighting schema which decreased weights on edges
through frequently used metabolites which traditionally
had higher weights. The graph of reactions and com-
pounds MetaRoute uses was built using several metabolic
repositories including BN++ (a biological information sys-
tem), BNDB (biochemical network database) and KEGG.
There are several key differences between this web-based
tool and RetSynth, one being that a source compound
must be specified instead of a chassis organism, which
limits the number of pathways that can be discovered.
While a user could perform a pathway search between
every internal chassis compound and the target, this
would take an extraordinary amount of time to get all opti-
mal pathways and require the user to further sort through
the pathways and identify the best route. Additionally,
this is not a tool that can find sub-optimal pathways
or evaluate the effectiveness of pathways through FBA.
RetSynth’s capabilities far exceed MetaRoute’s includ-
ing being a stand-alone software package that does not
require a webservice like MetaRoute.
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RouteSearch
RouteSearch is a module of the Pathway Tools software
utilizing the EcoCyc and MetaCyc databases for synthetic
pathway identification [9]. This tool uses the branch-and-
bound search algorithm on atom mapping rules to find
optimal pathways between a set of starting compounds
(or a specified source compound) and a target compound.
Users can specify the weights (costs) of identifying path-
ways with reactions native to the chassis organism and
those external to the organism. Additionally, multiple
optimal pathways as well as higher cost or length sub-
optimal pathways can be identified by RouteSearch. The
user must specify howmany pathways they want to exam-
ine, and if there are fewer optimal pathways than the user
specified, then RouteSearch will give longer (sub-optimal)
pathways. When identifying pathways by RouteSearch
using the BioCyc web-browser a set of source compounds
can be used to find pathways to an individual target
compound. Additionally, a number of external bacterial
organisms can be set by the user in which to search for
optimal pathways. When using all bacterial organisms,
however, RouteSearch freezes and is unusable. In addi-
tion to the web browser, RouteSearch can be used through
the Pathway Tools software suite, which allows all Meta-
Cyc reactions to be loaded quickly and efficiently. When
using RouteSearch through Pathway Tools only a single
source compound can be set and optimal pathways can-
not be identified from an entire set of source compounds.
Thus a rapid search for an optimal and sub-optimal path-
way using all native chassis organism metabolites cannot
be rapidly or efficiently achieved. While RouteSearch can
perform similar functions to RetSynth the usability and
system-wide analysis that RetSynth provides cannot be
matched.

Retrobiosynthesis
Retrobiosynthesis is a synthetic biology tool that can
build novel synthetic pathways for compound produc-
tion. This tool, which was developed by the Swiss
Federal Institute of Technology [24], first implements
a network generation algorithm that compiles a list
of all theoretically possible enzymatic transformations.
A pathway reconstruction algorithm, using either a
graph-based search or optimization-based methods,
then builds all possible pathways from a source com-
pound to a target. After implementation of these algo-
rithms, reduction steps are taken to decrease the
amount of information which include: 1) sorting through
the list of possible enzymatic transformations and
comparing what is known vs novel using repositories such
as KEGG, MetaCyc, and ChEBI, and 2) sifting through
the pathways and selecting ones based on thermody-
namic feasibility, number of enzymatic transformations in
a pathway and maximum target yield.

Although the Retrobiosynthesis tool performs many
of the same functions as RetSynth, and can predict
novel enzymatic transformations, its ability to be used by
independent researchers is limited. It requires setting up a
collaboration with the Swiss Federal Institute of Technol-
ogy and having them run the analysis. Retrobiosynthesis
requires a designation of a source compound, making it
likely that identifying all pathways to a target in a chassis
organism would require a large amount of time, although
we could not test this as we do not have access to the tool.
RetSynth is a stand-alone software with a graphical user
interface that researchers can download and use indepen-
dently, making identifying pathways less reliant on the
developers. Overall the software is quicker and easier to
use for researchers to find optimal pathways.

RetroPath
RetroPath is a synthetic pathway finding tool used to
identify pathways between a set of source compounds
and a target compound [8]. RetroPath uses a database
(database named RetroRules) of external metabolic reac-
tions which was constructed using reaction informa-
tion collected from BNICE, Simpheny, KEGG, Reactome,
Rhea and MetaCyc. Reactions are represented by reac-
tion SMARTS which facilitates the ability for potential
novel enzymatic transformations to be predicted. Path-
ways between source and target compounds are calculated
by identifying the shortest hyperpath in a larger weighted
hypergraph (constructed using the database of external
reactions) using the FindPath algorithm [25, 26].
To compare synthetic pathways between RetSynth and

RetroPath we first retrieved the reaction SMARTS avail-
able for the MetaCyc repository from the RetroRules full
database (https://retrorules.org/). A RetSynth database
was then built to match the reactions that were in
the RetroPath MetaCyc reaction rules database so an
equal comparison between the tools could be run. Extra
RetroPath parameters such as maximum and minimum
diameter and maximummolecular weight for source were
all kept at their default values of 1000, 0 and 1000 respec-
tively. Diameter is a measure of the depth and detail
of the molecular reaction signatures (reaction SMARTS)
used to identify pathways in RetroPath. The larger diam-
eter the more detailed and strict the reaction SMARTS
are and therefore are less able to predict novel reactions.
Because RetSynth cannot predict novel reactions and we
want to do a strict comparison between the two tools the
maximum diameter of 1000 keeps the reaction SMARTS
sufficiently strict to prevent novel reactions from being
identified by RetroPath. Additionally, source compounds
(metabolites native to Escherichia coli K-12 M1655) were
also the same for the two tools. Using RetroPath, which
was run with the KNIME analytics platform with the
pathway limit being 10 reaction steps (which matched
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the default pathway limit of RetSynth) we attempted to
identify pathways for all MetaCyc compounds not in
Escherichia coli. This query, however, was too large for
RetroPath to handle, and subsequently RetroPath was
employed to find pathways for a smaller set of target com-
pounds including methyl acetate, pterostilbene (Fig. 2),
2-propanol, butanol, sabinene, 2-methylbutanal and
isobutanol. RetSynth with this smaller database was able
to identify pathways for all compounds in this smaller set

while RetroPath was only able to find optimal and sub-
optimal pathways for 2-methylbutanal, isobutanol and
2-propanol (Fig. 6).
RetSynth and RetroPath were able to identify 3 path-

ways for production of 2-propanol in Escherichia coli
(Fig. 6a). Pathways identified by the tools consisted of
1) the conversion of native compound farnesyl diphos-
phate to 2-propanol in 3 enzymatic conversions, 2)
the conversion of native compound acetoacetate to 2-

A)

B)

C)

Fig. 6 RetSynth vs RetroPath2.0. Optimal and sub-optimal pathways identified by RetSynth and RetroPath for 2-propanol (a), 2-methylbutanal (b)
and isobutanol (c). Red indicates compound targets, magenta indicates native compounds to Escherichia coli K-12 M1655
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propanol in 2 enzymatic conversions, and 3) the con-
version of methylglyoxal to 2-propanol in 3 enzymatic
conversions. Both tools were also able to find syn-
thetic pathways for 2-methylbutanal (Fig. 2b). RetSynth
was able to find 3 pathways, all of which contained
2 enzymatic steps. All pathways produce the interme-
diate 3-methy-2-oxopentanoate (which is subsequently
converted to 2-methylbutanal) from 3 different native
compounds including 2-methylbutanoyl CoA, isoleucine
and 3-methyl-2-oxobutanoate. RetroPath was only able
to identify one pathway which was the conversions
of isoleucine to 3-methyl-2-oxopentanoate and then to
2-methylbutanal. Finally, for isobutanol 3 pathways of
almost identical enzymatic conversions were found by
RetroPath and RetSynth (Fig. 6c). Both identified the 3-
step pathway which takes valine and produces isobutanol
as well as a 2-step pathway which takes 3-methyl-2 oxobu-
tanoate and produces isobutanol. The final pathway of
3 enzymatic conversion steps starts again with native
compound 3-methyl-2-oxobutanoate and transforms it
into isobutanoyl-CoA and then into isobutanal and sub-
sequently isobutanol. The second step is catalyzed by
EC 1.2.1.10 in RetSynth and EC 3.6.1.- in RetroPath2.0.
The removal of CoA from a substrate is represented
by a general reaction in RetroPath and therefore the
corresponding enzyme is less specific than what is given
by RetSynth.

Overall RetSynth was able to identify pathways for a
larger set of compounds than RetroPath. Additionally,
RetSynth’s supplementary capabilities, including identi-
fying theoretical yields for target compounds as well as
incorporating chemical reactions into the database of
external reactions makes it highly versatile for individ-
ual user needs. RetSynth can be easily run using the
graphical user interface and can implement usage of mul-
tiple processors, enabling quick identification of synthetic
pathways for large sets of target compounds. Currently,
RetSynth can only generate pathways with reactions that
are known enzymatic transformations while RetroPath, by
having a database of reaction SMARTS allows the soft-
ware to predict novel enzyme transformations. While this
RetroPath feature undoubtedly has advantages in discov-
ering production pathways, the goal of RetSynth is to pro-
vide the most feasible pathways for target production and
therefore using known reactions ultimately makes path-
ways provided by RetSynth more likely to be functional.
Furthermore, because RetSynth is a stand-alone software
package it is extremely easy to use and does not require
downloading any outside software. Currently, RetroPath
is used through KNIME for which the installation and
usage can be challenging. All of these features enable
RetSynth to perform more comprehensive and system-
wide metabolic studies than is currently available from
other tools.

Fig. 7 RetSynth Application. A graphical user interface for RetSynth
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RetSynth graphical user interface mode
In addition to RetSynth’s command-line interface, a sim-
ple graphical user interface (GUI) is available for both
MacOS and Windows (Fig. 7). The GUI, which was
constructed with the python package Tkinter, provides
the same options to the user as the command-line
interface including designating a target compound and
chassis organism, selecting the level of sub-optimal path-
ways to identify, predicting maximum theoretical yield
using FBA, and the ability to generate a new custom
database from metabolic repositories PATRIC, MetaCyc
and/or KEGG. To save the user time, a basic default
database is included with the application, allowing users
to identify pathways in Escherichia coli. The applica-
tion outputs all pathway information into figures and
text/excel files to the user’s desktop or a user-specified
directory. The GUI enables RetSynth to be used by
a broader user-base compared to other tools currently
available.

Conclusions
RetSynth is an open-source, stand-alone software tool
for identifying optimal and sub-optimal pathways to bio-
logical, chemical and hybrid production of target chem-
icals. Additionally, RetSynth is able to rank pathways
based on maximum theoretical yield which is calculated
by flux balance analysis. Our tool exceeds the capabil-
ities of any other current software available because it
includes a graphical user interface, providing the ability
for RetSynth to be used by scientists without a pro-
gramming background, the capability to add new and
proprietary biological reactions as well as synthetic chem-
ical databases, efficient identification of optimal and
sub-optimal pathways and clear images of pathways via
our visualization module to allow quick interpretation
of results.

Availability and requirements
Project name: RetSynth
Projecthomepage: https://github.com/sandialabs/RetSynth
Operating system(s): Mac, Windows and Linux
Programming language: Python and Java
Other requirements: GNU Linear Programming Kit
(v4.64), libSMBL
License: BSD 2-clause license

Additional file

Additional file 1: Supplementary Methods-Preventing Cyclic pathways
from being identified as viable routes. Outlines how software prevents
pathways with cycles from being identified. (DOCX 3 kb)
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