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Abstract

A theory for turbulent particle pair diffusion in the inertial subrange [Malik NA, PLoS ONE 13

(10):e0202940 (2018)] is investigated numerically using a Lagrangian diffusion model, Kine-

matic Simulations [Kraichnan RH, Phys. Fluids 13:22 (1970); Malik NA, PLoS ONE 12(12):

e0189917 (2017)]. All predictions of the theory are observed in flow fields with generalised

energy spectra of the type, E(k)� k−p. Most importantly, two non-Richardson regimes are

observed: for short inertial subrange of size 102 the simulations yield quasi-local regimes for

the pair diffusion coefficient, KðlÞ � sð1þpÞ=2

l ; and for asymptotically infinite inertial subrange

the simulations yield non-local regimes KðlÞ � sgl , with γ intermediate between the purely

local scaling γl = (1 + p)/2 and the purely non-local scaling γnl = 2. For intermittent turbulence

spectra, E(k)� k−1.72, the simulations yield K � s1:556
l , in agreement with the revised 1926

dataset K � s1:564
l [Richardson LF, Proc. Roy. Soc. Lond. A 100:709 (1926); Malik NA, PLoS

ONE 13(10):e0202940 (2018)]. These results lend support to the physical picture proposed

in the new theory that turbulent diffusion in the inertial subrange is governed by both local

and non-local diffusion transport processes.

1 Introduction

Turbulent transport and mixing play an essential role in many natural and industrial processes

[1–9], where concentration fluctuations, which is related to the pair separation, often play a

critical role. Most theories of turbulent particle pair diffusion assume Richardson’s locality

hypothesis [10, 11]. However, a new theory for turbulent particle pair diffusion based on the

physical picture that both local and non-local diffusional processes govern the pair diffusion

process has been proposed by the author in [12].

The main prediction of the new theory in [12] is the existence of two non-Richardson

regimes in inertial subranges with generalised energy spectra E(k)� k−p: a quasi-local

(i.e. approximately local) regime at moderate inertial subrange size, Rk�1, where

Kðl; pÞ � sð1þpÞ=2

l ; and a non-local regime at asymptotically infinite inertial subrange size,

Rk!1, where Kðl; pÞ � sgðpÞl and < (1 + p)/2 < γ(p)< 2, and 1< p� 3.
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The power laws, γ(p), cannot be determined from the theory alone. For this, and for investi-

gating other predictions of the theory, ideally we would need experiments or Direct Numerical

Simulations which resolves all the time and length scales in the turbulence. At the current time

the capabilities of both experiments and DNS are far from being able to examine large inertial

subranges. Nevertheless, we can make some progress through the use of diffusion models.

Here, the aim is to investigate the predictions of the new theory numerically using Kine-

matic Simulations (KS) which is a Lagrangian diffusion model and it has the advantage that it

can generate very large inertial subranges which is essential to test the new theory. KS has been

used extensively in the past for pair diffusion studies (see Section 3 below). KS can be indica-

tive of the statistical scaling laws in the inertial subrange.

Dissipation range pair diffusion, where the initial particle separation is such that l0� η, is

outside the scope of the present work. A theory for dissipation range release would likely yield

different scaling laws because the ensemble of particle pairs would attain a distribution of sepa-

rations and enter the inertial subrange at different times after release. The subsequent inertial

range diffusion would in effect be an average over different virtual release times. Furthermore,

in the present KS we do not pose a dissipation range energy spectrum which is essential for

investigating dissipation scale diffusion.

In Section 2 we summaries the new theory developed in [12], and in Section 3 we describe

the KS method. In Section 4.1 we describe the simulation results for large inertial subranges of

size Rk = 106. In Section 4.2 the results for small inertial subranges Rk = 102 are described. In

Section 4.3 the simulation results for the transition in the scaling laws in K as the size of the

inertial subrange increases from small to very large values are described. In Section 5, cases

for very small initial separations l0� η in order to isolate and expose the non-local diffusional

process is investigated. In Section 6 we estimate the numerical errors in the results. We discuss

and draw conclusions from the results, and speculate its significane to the general theory of

turbulence in Section 7.

2 Summary of the new non-local theory

In order to characterize the pair diffusion process, Richardson assumed a scale dependent

pair diffusion coefficient (turbulent diffusivity), because convective gusts of winds increase

the pair separation at different rates depending on the separation [13–15]. In 1926, from

observational data of turbulent pair diffusion coefficients collected from different sources, he

assumed an approximate constant power law fit to the data, K(l)� l4/3, [10]. This is equiva-

lent to hl2i � t3 [11, 16], and is often referred to as the Richardson-Obukov t3-regime. l(t) is

the pair separation at time t and the angled brackets is the ensemble average over particle

pairs. Note that the assumed 4/3-scaling is consistent with Kolmogorov turbulence K41 the-

ory, see [12].

However, to date the validity of Richardson’s scaling law has not been established. The gen-

eral consensus among scientists in the field at the current time is that the collection of observa-

tional data, experimental data, and Direct Numerical Simulation, suggests a convergence

towards a Richard-Obukov locality scaling, but as noted by Salazar and Collins, “.. there has

not been an experiment that has unequivocally confirmed R-O scaling over a broad-enough

range of time and with sufficient accuracy” [17]

Furthermore, in [12] it was noted that one of the data-points used in Richardson comes

from molecular diffusion studies and should be dis-regarded. The remaining data-points

are sound, coming from geophysical turbulence settings containing extended inertial sub-

ranges. The line of best fit to this improved dataset displays an unequivocal non-local scaling,

K� l1.564; see Fig 1 in [12].

Turbulent particle pair diffusion
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This indicates that non-local diffusional processes cannot be ignored a priori in a general

theory of turbulent pair diffusion, which motivates the development of the present local-non-

local theory.

2.1 The new theory

The problem is to determine the pair diffusion coefficient (diffusivity), K = hl � vi, of an

ensemble of pairs of fluid particles in a field of homogeneous turbulence with an energy den-

sity spectrum, E(k) containing an generalised inertial subrange, E(k)� k−p, k1� k� kη, for

1< p� 3, and such that E(k)! 0 as k! 0. The particles in a pair are located at x1(t) and

x2(t) at time t, the pair displacement vector is l(t) = x2(t) − x1(t), and the pair separation is

lðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1
þ l2

2
þ l2

3

p
¼ jx2ðtÞ � x1ðtÞj. The initial separation at some earlier time, t0, is denoted

by l0 = |x2(t0) − x1(t0)|. The turbulent velocity field is, u(x, t), and the particle velocities at time

t are, respectively, u1(t) = u(x1(t), t) and u2(t) = u(x2(t), t), and the pair relative velocity is

v(t) = u2(t) − u1(t).
We assume point source release, which in practical terms means that the initial pair separa-

tion must be close to the Kolmogorov length scale, l0� η. Without loss of generality, it will

also be assumed that, t0 = 0.

We define the size of the inertial subrange Rk to be,

Rk ¼
kZ
k1

ð1Þ

where the inertial subrange part of the energy spectrum E(k) is defined in the wavenumber

range k1� k� kη.
We follow the usual convention and evaluate K at typical values of, l, namely at

l � sl ¼
ffiffiffiffiffiffiffi
hl2i

p
. Thus, the locality scaling is replaced by, KðlÞ � s4=3

l .

The theory is developed through a novel mathematical approach of decomposing the pair

relative velocity, v(l) = dl/dt, as a Fourier integral. Assuming homogeneity, the ensemble aver-

age of the scalar product of l with v yields a Fourier decomposition of the diffusion coefficient

itself,

KðlÞ � hl � vi �
Z

hðl � AÞ½ exp ðik � lÞ � 1�id3k: ð2Þ

where the integration is over the range of turbulent wavenumbers, and A(k) is the Fourier

coefficient of the Eulerian velocity field u(x).

Let kl = 1/l be the pair separation wavenumber, so that

klðtÞ �
1

slðtÞ
: ð3Þ

Note that kl(t) changes with time.

The new theory assumes the existence of two broadly independent diffusional processes

within the inertial subrange that contribute to the pair diffusion process as a whole. The two

transport processess are correlated locally and non-locally in space, respectively. This can also

be expressed in terms of equivalent wavenumbers; thus, each transport process acts from its

own range of wavenumbers relative to kl, labeled l (local) and nl (non-local):

Turbulent particle pair diffusion
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l: a local diffusion process operates at wavenumbers that are local to kl, say in the range ½k�l ; kl�
and such that k� kl, and |k � l|� 1. Within this range of wavenumbers local scalings apply.

nl: a non-local diffusion process operates at wavenumbers that are non-local to kl, say in the

range in the range ½k1; k�l �, and such that k� kl, and |k � l|⪡ 1. Non-local scalings apply in

this range of wavenumbers.

k�l is some arbitrary wavenumber that separates the two processes, and k1 < k�l < kl. (A

third transport process at very small wavenumbers k� kl has been shown to be negligible,

[12]).

This implies that the integral in Eq (2) is the sum of two integrals over different wavenum-

ber ranges which are defined as follows:

KðlÞ �
Z

nl
þ

Z

l

� �

hðl � AÞð exp ðik � lÞ � 1Þi d3k ð4Þ

which we rephrase as,

KðlÞ � Knl þ Kl: ð5Þ

We assume a generalised inverse power-law energy spectrum in the inertial subrange in the

swept frame of reference,

EðkÞ ¼ Ckε
2=3L5=3� pk� p; k1 < k < kZ; 1 < p � 3 ð6Þ

where Ck is a constant. A length scale L is necessary for dimensional consistency. L scales with

some length scale that is characteristic of the large energy scales, such as the integral length

scale, or the Taylor length scale. With this spectrum, and some closure assumptions detailed in

[12], Eq (4) becomes,

Kðl; pÞ � ε1=3Lð5=3� pÞ=2

Z

nl
kð1� pÞ=2dkþ Fl

Z

l
kð1� pÞ=2dk

� �

s2
l ð7Þ

The locality scaling is obtained by removing the non-local integral in this equation. This

yields,

Klðl; pÞ � Flε
1=3Lð5=3� pÞ=2s

gl

l ; where glðpÞ ¼ ð1þ pÞ=2; 1 < p � 3 ð8Þ

and Fl< 1 is a constant. For Kolmogorov turbulence, p = 5/3, this gives, K � s4=3

l , which

recovers the Richardson’s 4/3-scaling law, [18–20], which validates the derivation.

The non-local scaling in the first integral can be obtained in a similar manner. If the upper

end of the inertial subrange is assumed to scale with the large scales, k1� 1/L, then this yields,

Knlðl; pÞ � Snlε1=3L� 2=3s
gnl

l ; with gnlðpÞ ¼ 2; 1 < p � 3 ð9Þ

γnl(p) is the non-locality scaling and it is always equal to 2 independent of p. This corresponds

to strain dominated motion with Knl � s2
l . Snl is a constant.

The overall expression for the turbulent pair diffusion coefficient is therefore,

Kðl; pÞ � O
�
Flε

1=3Lð5=3� pÞ=2s
gl

l

�
þ O

�
Snlε1=3L� 2=3s2

l

�
; 1 < p � 3; ð10Þ
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PLOS ONE | https://doi.org/10.1371/journal.pone.0216207 May 20, 2019 4 / 28

https://doi.org/10.1371/journal.pone.0216207


or simply,

Kðl; pÞ � O
�
s
gl

l

�
þ O

�
s
gnl

l

�
; 1 < p � 3 ð11Þ

where glðpÞ ¼ ð1þ pÞ=2 local scaling ð12Þ

gnlðpÞ ¼ 2 non‐local scaling ð13Þ

To complete the analysis we need to obtain an experssion for the balance of the local and

non-local diffusion terms, defined to be ratio,

MKðp;Rl;CÞ ¼
Knl

Kl
�

1

Fl

1

Cð3� pÞ=2Þ
�

1

Rð3� pÞ=2Þ

l

 !

ð14Þ

The quantity

RlðtÞ ¼
klðtÞ
k1

ð15Þ

is the size of the inertial subrange relative to the pair separation in wavenumber space. The

quantity C is,

Cðp;RlÞ ¼
kl
k�l
: ð16Þ

C is an important quantity, which we call the locality kernel because it defines the extent (or

size), relative to the pair separation, where local scaling is expected to dominate.

In [12] it was shown that under fairly weak restrictions on C—essentially little more than

smoothness of C as a fucntion of p and Rl—over a wide range of smooth test functions for C, in

the critical range of p close to Kolmogorov’s p = 5/3 the balance of local and non-local diffu-

sional processes is close to unity,

MK � Oð1Þ close to p ¼ 5=3: ð17Þ

This indicates that the assumption that both local and non-local diffusional processses are

significant is physically reasonable. (Fl was chosen to be Fl = 0.25 in Eq (14)).

We assume an extension of Richardson’s second hypothesis, that in the limit of infinite

inertial subrange, for every p the diffusion coefficient is described by a single power, say γ(p),

across all scales. Thus, from Eq (11) K(l, p) must be a power law scaling which is intermediate

between the local and non-local scalings,

Kðl; pÞ � s
gðpÞ
l ; as Rk=C!1 with glðpÞ < gðpÞ < gnlðpÞ; 1 < p < 3: ð18Þ

Only in some special asymptotic limits do we obtain significantly different behaviour.

Firstly, as p! 1 then MK� 1, and therefore Knl� Kl, yielding the locality limit,

Kðl; pÞ ! Klðl; 1Þ � s1
l as p! 1: ð19Þ

Secondly, as p! 3 then MK� 1, and therefore Knl� Kl, yielding the non-locality limit,

Kðl; pÞ ! Knlðl; 3Þ � s2
l as p! 3: ð20Þ

Thus, as p! 1 then γ(p)! 1; and as p! 3 then γ(p)! 2. Furthermore, γ(p) must trans-

form smoothly between these limiting cases as p goes from 1 to 3. Globally, 1< γ(p)� 2.

Turbulent particle pair diffusion
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Eq (19) is the main prediction of the new theory, and it is equivalent to the mean square

separation scaling,

hl2i � twðpÞ; where wðpÞ ¼
2

2 � gðpÞ
ð21Þ

This is a non-linear relation between γ and χ, so small changes in γ could produce large

changes in χ.

Some specific results can be obtained from these sclaing laws. For Kolmogorov turbulence,

E� k−5/3, the new theory predicts that, γ> 4/3, and χ> 3.

For turbulence with intermittency μI> 0, such that E� k−(5/3+μI), the scaling is,

gmI > gl
mI
¼ 4=3þ mI=2: ð22Þ

Under the locality assumption, in real turbulence with intermittency p = 1.72 we should

obtain the scaling γl = 1.36, and χl = 3.125. Thus, the classical RO-t3 regime does not actually

exist! Richardson’s 1926 dataset, Fig 1, from real geophysical turbulence (i.e. including inter-

mittency) suggests a scaling of, gmI � 1:564, i.e. KmI
� s1:564

l .

Fig 1. The turbulent pair diffusion coefficient, log(K/ηvη), against, log(σl/η), from KS with energy spectra, E(k)�

k−p, and inertial subrange size, Rk = 106. For clarity only 10 of the 25 cases in Table 1 are shown: p = 1.01, 1.1,1.3, 1.5,

5/3, 1.9,2.2, 2.5, 2.9, 3.0. Solid black lines of slopes 1 and 2 are shown for comparison.

https://doi.org/10.1371/journal.pone.0216207.g001
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A non-local 4/3-law, K � s4=3

l , is precited for some spectrum, E � k� p� , where p� < 5/3 and

γ(p�) = 4/3. This is equivalent to hl2i � t3, with χ(p�) = 3, which is a new non-Richardson-Obu-

khov t3-regime for the mean square separation.

We define Mγ(p) to be the ratio of the scaling power γ(p) to and local scaling powers γl(p),

MgðpÞ ¼
gðpÞ
glðpÞ

: ð23Þ

Mγ(p) is equal to 1 at both p = 1 and p = 3, and since Mγ> 1 in the range 1< p< 3, then

there must be a maximum in Mγ at some p = pm for an energy spectrum E � k� pm , where

1< pm< 3.

The sketches in Figs 13 and 14 in [12] summarise the preditions from the new theory for,

respectively, the non-local regimes in the limit of asymptotically infinite inertial subranges

Rk!1, and the quasi-local regimes in the limit of short finite inertial subranges Rk� 102.

Finally, we remark that, ultra-violet corrections from the high wavenumber close to kη, and

infra-red corrections from the low wavenumbers close to k1 may modifying some of the scal-

ings law specially in the limit of small inertial subranges.

2.2 Exposing the local and non-local processes

It may be possible to isolate the individual local and non-local processes in different limts.

From the expression in Eq 14 it is evident that the analysis is valid only if Rl> C. The non-

local process, which is the first term in Eq (11), exists in the wavenumber range ½k1; k�l �; but

suppose that the inertial subrange itself is so small that it is close to the size of the locality ker-

nel itself, Rk� C? This corresponds to taking the limit Rl/C! 1 in Eq (14), which implies that

Mk! 0 which is a locality dominated limit. Thus quasi-local diffusion regimes can be recov-

ered in the non-Richardson limit of small but finite inertial subrange because of the absence of

non-local processes,

Kðl; pÞ � s
ð1þpÞ=2

l ; for Rk � C ð24Þ

As we progressively increase the size of the inertial subrange we would expect to see a

smooth transition from the locality regime at moderate inertial subrange to the non-locality

regime at very large (effectively infinite) subrange, as illustrated in the sketch in Fig 15 in [12].

We can also ‘turn off’ the local process in Eq (11) by simply removing the ‘local’ part of the

specturm—this is equivalent to taking a very small initial separation l0� η. Then there is a

spectral gap between the k0 = 1/l0 and kη� k0 where E(k) = 0. If this gap is large enough then

the spectrum between k1� k� kη will in efffect be non-local to the pair separation process so

long as σl(t)� η, and we should then observe pure strain dominated pair separation

Kðl; pÞ � s2
l ; for sl � Z ð25Þ

for all p, which is equivalent to exponential growth in time, σl(t)� l0 exp(St), where S depends

upon the form of E(k).

In the next sections we examine the predictions of the new theory using Kinematic

Simulations.

3 Numerical simulations

3.1 Particle trajectories using KS

In this study, the Lagrangian diffusion model Kinematic Simulations (KS) was used to obtain

the statistics of particle pair diffusion. In KS one specifies the second order Eulerian structure

Turbulent particle pair diffusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0216207 May 20, 2019 7 / 28

https://doi.org/10.1371/journal.pone.0216207


function through the power spectrum, [14, 21]. KS is useful here because it can generate very

large inertial subranges sufficient to test pair diffusion scaling laws.

KS generates turbulent-like non-Markovian particle trajectories by releasing particles in

flow fields which are prescribed as sums of energy-weighted random Fourier modes. By con-

struction, the velocity fields are incompressible and the energy is distributed among the differ-

ent modes by a prescribed Eulerian energy spectrum, E(k). The essential idea behind KS is

that the flow structures in it—eddying, straining, and streaming zones—are similar to those

observed in turbulent flows, although not precisely the same, and this is sufficient to generate

turbulent-like particle trajectories [14].

KS has been used to examine single particle diffusion [22], and pair diffusion [14, 20, 23–

25]. KS has also been used in studies of turbulent diffusion of inertial particles [26–30]. Mene-

guz & Reeks found that the statistics of the inertial particle segregation in KS generated flow

fields for statistically homogeneous isotropic flow fields are similar to those generated by DNS.

KS has also been used as a sub-grid scale model for small scale turbulence [31].

3.2 The KS velocity fields and energy spectra

An individual Eulerian turbulent flow field realization in KS is generated as a truncated Fou-

rier series,

uðx; tÞ ¼
PNk

n¼1

�
ðAn � k̂nÞ cos ðkn � x þ ontÞ þ ðBn � k̂nÞ sin ðkn � x þ ontÞ

�
ð26Þ

where Nk is the number of representative wavenumbers, typically hundreds for very long spec-

tral ranges, Rk� 1. k̂n is a random unit vector; kn ¼ knk̂n and kn ¼ jknj. The coefficients An

and Bn are chosen such that their orientations are randomly distributed in space and uncorre-

lated with any other Fourier coefficient or wavenumber, and their amplitudes are determined

by hA2

ni ¼ hB
2

ni / EðknÞdkn, where E(k) is the energy spectrum in some wavenumber range k1

� k� kη. The angled brackets h�i denotes the ensemble average over space and over many ran-

dom flow fields. The associated frequencies are proportional to the eddy-turnover frequencies,

on ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3
nEðknÞ

p
. There is some freedom in the choice of λ, so long as 0� λ< 1. The con-

struction in Eq (26) ensures that the Fourier coefficients are normal to their wavevector which

automatically ensures incompressibility of each flow realization,r � u = 0. The flow field

ensemble generated in this manner is statistically homogeneous, isotropic, and stationary.

Unlike some other Lagrangian methods, by generating entire kinematic flow fields in which

particles are tracked KS does not suffer from the crossing-trajectories error which is caused

when two fluid particles occupy the same location at the same time in violation of incompressi-

bility; but because KS flow fields are incompressible by construction this error is eliminated.

The flow at a point in a KS flow field is irregular because of the presence of flow structures

such as vortex tubes and a probe will experience irregular alternations between high levels of

fluctuations and low levels of fluctuations. However, there is no dynamical energy transfer

between different scales of motion so this type of ‘intermittency’ is at a formal level different to

real turbulence, [14]. Nevertheless, it is of considerable interest to investigate how Lagrangian

statistical scalings change as we adjust the energy spectrum E(k)� k−p such that it mimics

intermittent-like spectra with p 6¼ 5/3. This is especially important because KS pair diffusion

statistics, including the flatness factor, have been found to be in close agreement with DNS at

low Reynolds numbers [25].

The energy spectrum E(k) can be chosen freely within a finite range of scales, even a piece-

wise continuous spectrum, or an isolated single mode are possible. To incorporate the effect of

large scale sweeping of the inertial scales by the energy containing scales, the simulations are

Turbulent particle pair diffusion
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carried out in the swept frame of reference by setting E(k) = 0 in the largest scales, for k< k1,

and an inverse power spectrum in the inertial subrange as discussed in [32],

EðkÞ ¼ Ckε
2=3L5=3� pk� p; k1 � k � kZ; 1 < p � 3 ð27Þ

where Ck is a constant. The Kolmogorov micro-scale is η = 2π/kη. L is some large outer length

scale (such as the integral length scale, or a Taylor length scale). The inertial subranges sizes is

defined by Eq (1).

A particle trajectory, xL(t), is obtained by integrating the Lagrangian velocity, uL(t), in time,

dxL
dt

¼ uLðtÞ ¼ uðxL; tÞ: ð28Þ

Pairs of trajectories are harvested from a large ensemble of flow realizations and pair statis-

tics are then obtained from it for analysis.

The spectrum in (27) is normalized such that the total energy density contained in any flow

realization is 3u0/2, where u0 is the rms turbulent velocity fluctuations in each direction.

In the current simulations, k1 = 1, L = 1, Ck = 1.5 (Kolmogorov constant) and u0 = 1. Then

this yields,

ε2=3 ¼ ðp � 1Þ 1 �
k1

kZ

 !p� 1 !� 1

ð29Þ

p = 1 is a singular limit which is not consider here. With Eq (29), vη = (εη)1/3 is the velocity

micro-scale, and tη = ε−1/3η2/3 is the time micro-scale.

The distribution of the wavenumbers is geometric, kn = rn−1 k1, and the common ratio

is r = (kη/k1)1/(Nk−1). The increment in wavenumber-space of the n’th wavenumber is

Dkn ¼ knð
ffiffi
r
p
� 1=

ffiffi
r
p
Þ. The frequency factor is chosen to be, λ = 0.5, which is typical in

many KS studies. A choice of λ< 1 does not affect the scaling in the pair diffusivity, even

frozen turbulence, λ = 0, has been found to yield the same scaling, which has been attributed

to the open streamline topology of streamlines in 3D flows, [20].

The particle trajectories xL(t) were obtained by integrating Eq (28) using a 4th order

Adams-Bashforth predictor-corrector method (4th order Runga-Kutta gives identical results).

Thomson & Devenish [33] used a variable time step Δt that was small compared to the turn-

over time of an eddy of the size of the instantaneous pair separation, but larger than the turbu-

lence micro-scale tη. While this speeds up the turnaround time of the calculations, here we

want to avoid any extra assumptions so that unambiguous conclusions can be drawn from the

results. Therefore, in all of the current simulations a very small but fixed time step, Δt� tη has

been used. This has the further advantage of avoiding any smoothening of the particle trajecto-

ries that is necessary when using variable time steps.

Eight pairs of a particles were released in each flow realization, placed far enough apart for

each pair to be independent. It is crucial to run over a large number of different flow realiza-

tions, otherwise the statistics will not converge. Typically the ensemble was around 4000 flow

realizations, yielding a harvest of 32, 000 particle pair trajectories per simulation. A simulation

was run for about one large timescale, T = 2π/k1, which required around 106 time steps for

Rk = 106, and about 103 time steps for Rk = 101. In most of the simulations the initial separation

was l0� η; but for p! 3 the energy in the small scales even in the inertial subrange is so small

that the particles take a long time to move apart significantly, so in order to accelerate the sim-

ulations for these cases we took l0� η.
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4 Simulation results

4.1 Infinite inertial subrange Rk!1 (Re!1)

In this first set of simulations we investigate the theory for pair diffusion in asymptotically infi-

nite inertial subrange, (infinite Reynolds number), and for this we take Rk = 106.

The spectra in Eq (27) were taken as input to the KS simulations. It is important to simulate

cases over the whole range of energy spectra 1< p� 3, in order to examine the new theory

comprehensively; 25 cases of p were selected in the range, 1< p� 3. The case p = 1 is singular,

but p can be taken close to this limit; the smallest value of p chosen was, 1.01 (Table 1).

The results obtained from the simulations for Rk = 106 are summarized in Table 1. This

table shows γ(p) from the simulations in column 2; and the locality scalings γl(p) = (1 + p)/2 in

column 3. For the mean square separation laws, hl2i � tχ, the χ(p) = 2/(2 − γ(p)) is shown in

column 4; and the locality scalings wlðpÞ ¼ 2=ð2 � glpÞ ¼ 4=ð3 � pÞ in column 5. The ratio of

scaling powers,

MgðpÞ ¼
gðpÞ
glðpÞ

; ð30Þ

is shown in column 6.

Table 1. p, γ(p), γl(p), χ(p), χl(p), and Mγ(p) from the simulations for Rk = 106. The pair diffusion coefficient is,

K � sgðpÞl , and the locality scaling is, γl(p) = (1 + p)/2. The mean square separation is, hl2i = tχ(p), where χ(p) = 2/(2 − γ
(p)), and the locality scaling is, χl(p) = 2/(2 − γl(p)). The ratio of the power scalings is, Mγ(p) = γ(p)/γl(p).

p γ(p) γl(p) χ(p) χl(p) Mγ

1.01 1.060 1.005 2.128 2.010 1.055

1.1 1.120 1.05 2.273 2.105 1.067

1.2 1.190 1.10 2.469 2.222 1.082

1.3 1.260 1.15 2.703 2.353 1.096

1.4 1.340 1.20 3.030 2.500 1.117

1.5 1.410 1.25 3.390 2.667 1.128

1.6 1.480 1.30 3.846 2.857 1.139

5/3 1.525 4/3 4.211 3 1.144

1.70 1.545 1.35 4.396 3.077 1.144

1.72 1.556 1.360 4.505 3.125 1.144

1.74 1.570 1.370 4.651 3.175 1.146

1.77 1.585 1.385 4.819 3.252 1.144

1.8 1.605 1.40 5.063 3.333 1.146

1.9 1.660 1.45 5.882 3.636 1.145

2.0 1.710 1.50 6.897 4 1.140

2.1 1.750 1.55 8.000 4.444 1.129

2.2 1.790 1.60 9.424 5 1.119

2.3 1.820 1.65 11.11 5.714 1.103

2.4 1.850 1.70 13.33 6.676 1.088

2.5 1.880 1.75 16.67 8 1.074

2.6 1.900 1.80 20.00 10 1.056

2.7 1.930 1.85 28.57 13.33 1.043

2.8 1.950 1.90 40.00 20 1.026

2.9 1.970 1.95 67.67 40 1.010

3.0 2.000 2.00 1 1 1.000

https://doi.org/10.1371/journal.pone.0216207.t001
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Log-log plots of the turbulent pair diffusion coefficient K/ηvη against the separation σl/η for

different energy spectra E(k)� k−p display clear power law scalings of the form,

Kðl; pÞ � s
gðpÞ
l ; 1 < gðpÞ � 2; 1 < p � 3; ð31Þ

over wide ranges of the separation inside the inertial subrange, Fig 1. The γ(p)’s are the slopes

of the plots in Fig 1; these are more easily observed by plotting the compensated diffusion coef-

ficient K=sgðpÞl against the separation, Fig 2. The γ(p)’s are obtained as the powers that give hor-

izontal lines over the longest range of separation, a procedure that determines γ(p) to within

1% error for most p, except near the singular limit, p = 1, where the errors are around 6%, (see

Section 4).

Fig 3 shows the plots of γ(p) (black filled circles) and γl(p) = (1 + p)/2 (dotted blue line)

against p. It is observed that the scaling powers, γ(p), are in the range, (1 + p)/2 < γ(p)� 2,

and as p! 1, then γ(p)! 1; and as p! 3, then γ(p)! 2. Furthermore, the, γ(p)’s, display a

smooth transition between the asymptotic limits at p = 1 and 3.

Fig 2. The compensated turbulent pair diffusion coefficient, logðK=sgðpÞl Þ, against log(σl/η), for the same cases as

in Fig 1, and with the same colour coding. For clarity some of the plots have been spaced out vertically, hence no

scale is shown on the ordinate; this does not affect the scalings.

https://doi.org/10.1371/journal.pone.0216207.g002
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Fig 3. γ(p), γl(p), and Mγ(p) against p. The black filled circles are the γ(p)’s from the simulations. The dotted blue line

is the locality scaling γl(p) = (1 + p)/2. The cyan squares are the ratios, Mγ = γ(p)/γl(p) (right hand scale). See Table 1.

https://doi.org/10.1371/journal.pone.0216207.g003

Fig 4. χ(p), χl(p), against p. The black filled circles are, χ(p)’s from the simulations. The dotted blue line is the locality

scaling, χl(p) = 4/(3 − p). See Table 1.

https://doi.org/10.1371/journal.pone.0216207.g004
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The range of separation over which the scalings laws, Kðl; pÞ � sgðpÞl , exist progressively

reduce from both ends as p! 3. Ultra-violet corrections reduces the range from below due to

the diminishing energies contained in the smallest scales so that the pair separation penetrates

further into the inertial subrange before it ‘forgets’ the initial separation. Infra-red corrections

reduces the range from above because the long range correlations are increasingly stronger as

p! 3 causing the particles in a pair to become independent at earlier times and at smaller

separation.

The plot of Mγ against p in Fig 3 (right hand scale) shows a peak at pm� 1.8, where

Mγ(pm)� 1.15. Mγ remains close to this peak value in a neighbourhood of pm, in the range 1.5

< p< 2.

Fig 4 shows the simulation results of the scaling powers, χ(p), (filled black circles), and χl(p)

= 4/(3 − p) (dotted blue line), against p. The same is shown in Fig 5, but focussing in on the

range 1.5 < p< 2 which covers the intermittent turbulence range which is indicated by the

two red vertical lines.

Turbulence with intermittency has spectrum E(k)� k−(5/3+μI). Three extra cases with, pI =

5/3 + μI, where therefore simulated. The currently accepted value for the intermittency lies in

the range, 0.025< μI< 0.075, [34–37]; and three cases that cover this range are, pI = 1.70, 1.72,

Fig 5. χ(p), χl(p), against p. Similar to Fig 4, but focussing in on the range of intermittency spectra. The two vertical

red lines are the lower and upper bounds for intermittent turbulence spectra, respectively p = 1.70 and 1.74.

https://doi.org/10.1371/journal.pone.0216207.g005
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and 1.74. For these spectra, the simulations produced, (Fig 3 and Table 1),

KmI
� s1:545

l ; for pI ¼ 1:70; mI ¼ 0:033

KmI
� s1:556

l ; for pI ¼ 1:72; mI ¼ 0:053

KmI
� s1:570

l ; for pI ¼ 1:74; mI ¼ 0:073

ð32Þ

The mid-point in the intermittency range is close to, pI = 1.72, which gives the scaling law

KmI
� s1:556

l , which is an error of about 0.5% in the scaling power compared to the Richardson’s

1926 revised data as shown in Fig 1 in [12]. For, pI = 1.70, we obtain KmI
� s1:545

l , and the error

in the scaling power is 1.2%; for pI = 1.74, we obtain KmI
� s1:570

l , and the error in the scaling

power is 0.4%.

The corresponding scalings for the mean square separation, hl2i � tχ(p), for the three inter-

mittent spectra are respectively,� t4.396,� t4.505 and� t4.651, Fig 5 and Table 1.

The Kolmogorov spectrum p = 5/3 produces, K � s1:525
l , and the error in the scaling power

is 2.5%. Richardson’s 4/3-law, K � s4=3

l , is 15% in error.

The simulations show a non-Richardson 4/3-scaling, K � s4=3

l , for the the spectrum E(k)�

k−1.4, where p� � 1.4, (Fig 3 and Table 1); this yields a new non-R-O t3-regime, hl2i � t3.

Table 2. p, γ(p), χ(p), and Mγ(p) from the simulations for Rk = 102. The pair diffusion coefficient is, K � sgðpÞl . The

mean square separation is, hl2i = tχ(p), where χ(p) = 2/(2 − γ(p)). The ratio of the power scalings is, Mγ(p) = γ(p)/γl(p).

p γ(p) χ(p) Mγ

1.01 1.100 2.222 1.095

1.1 1.150 2.353 1.095

1.2 1.210 2.532 1.100

1.3 1.250 2.667 1.087

1.4 1.305 2.878 1.088

1.5 1.350 3.077 1.080

1.6 1.390 3.279 1.069

5/3 1.410 3.390 1.057

1.70 1.420 3.449 1.052

1.72 1.430 3.509 1.051

1.74 1.440 3.571 1.051

1.77 1.455 3.670 1.051

1.8 1.465 3.738 1.046

1.9 1.510 4.082 1.041

2.0 1.540 4.348 1.027

2.1 1.565 4.600 1.010

2.2 1.610 5.128 0.006

2.3 1.640 5.555 0.994

2.4 1.670 6.061 0.982

2.5 1.700 6.667 0.971

2.6 1.750 8.000 0.972

2.7 1.800 10.00 0.973

2.8 1.860 14.29 0.979

2.9 1.930 28.57 0.990

3.0 2.000 1 1.000

https://doi.org/10.1371/journal.pone.0216207.t002

Turbulent particle pair diffusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0216207 May 20, 2019 14 / 28

https://doi.org/10.1371/journal.pone.0216207.t002
https://doi.org/10.1371/journal.pone.0216207


4.2 Short inertial subrange Rk�1 (Re�1)

In this section, we investigate the new theory in [12] in the limit of short inertial subrange.

According to the new theory short subranges could isolate and expose the local diffusional

process.

Simulations were carried out for the same cases of p as in Section 3.1, but now for a short

inertial subrange of RK = 102. The results are summarised in Table 2 which shows p, γ(p), χ(p),

and Mγ(p). Figs 6 to 10 are the counterparts to Figs 1 to 5 but for Rk = 102.

Fig 6 shows the log-log plots of the diffusion coefficient K/ηvη against σl/η for the same

10 selected cases of p as in Fig 1. Fig 7 shows the corresponding log-log plots of the compen-

sated diffusion coefficient, K=sð1þpÞ=2

l against σl/η—this time the diffusion coefficient is

compensated by the locality scaling � s
ð1þpÞ=2

l . The plots are close to horizontal, though not

quite.

Table 2 shows the γ(p)’s obtained from the simulations, which are also plotted in Fig 8 (c.f.

Fig 3). The γ(p)’s are close to the locality scalings γl(p) = (1 + p)/2, as demostrated in the plot of

Fig 6. The turbulent pair diffusion coefficient, log(K/ηvη), against, log(σl/η), from simulations with energy spectra, E(k)

� k−p, and inertial subrange size, Rk = 102. For clarity only 10 of the 25 cases in Table 2 are shown: p = 1.01, 1.1,1.3, 1.5, 5/

3,1.9,2.2,2.5, 2.9,3.0. Solid black lines of slopes 1 and 2 are shown for comparison.

https://doi.org/10.1371/journal.pone.0216207.g006
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the ratio, Mγ against p also in Fig 8. Although they differ by about 10% close to p = 1, most of

this error is due to the singularity at this point, see Section 4.

In the critical range of p close to p = 5/3, which is far from the singular limit, the maxi-

mum difference from locality is about 5% which is a real physical effect most likely due

to the fact that even in this short subrange there may be some small non-local straining

effect. There is also infra-red corrections close to k = k1, and ultra-violet corrections close

to k = kη which will penetrate some way in to the inertial subrange from both ends thus

reducing the effective range over which the scalings can be observed. In short inertial sub-

ranges these end-of-range corrections will be appear relatively greater than in large inertial

subranges.

As in the latter case, as p! 3, the range of separations over which the locality scaling is

observed diminishes from both ends of the domain, and this probably leads to the sub-local

diffusion, γ(p)< γl(p), for p> 2.2, Fig 8.

Fig 9 shows the plots of χ(p) and the locality scalings χl(p) against p for comparison, (c.f.

Fig (4)). Fig 10 is the same except zooming in on the intermittency range (c.f. Fig 5).

Fig 7. The compensated turbulent pair diffusion coefficient, logðK=sgðpÞl Þ, against log(σl/η), for Rk = 102 for the

same cases as in Fig 6, and with the same colour coding. For clarity some of the plots have been spaced out vertically,

hence no scale is shown on the ordinate; this does not affect the scalings.

https://doi.org/10.1371/journal.pone.0216207.g007
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From the simulations, the scalings obtained for the pair diffusivity are: K � s1:41
l for p = 5/

3; K � s1:42
l for p = 1.70; K � s1:43

l for p = 1.72; K � s1:44
l for p = 1.74.

For the same spectra, the scalings for hl2i are respectively,� t3.39� t3.449� t3.509 and�

t3.571, Fig 10 and Table 2. Thus, a true R-O t3-regime cannot exist in reality.

Overall, the simulation results for Rk = 102 are always close to locality, and to within 5% in

the range of spectra close to real turbulent spectra—we call these quasi-local regimes.

4.3 Scaling law as Rk increases

The theory in [12] predicts a smooth transition from local to non-local regimes as Rk increases.

To examine this, simulations were carried out for progressively larger inertial subranges, from

Rk = 101 to 106, for two selected energy spectra, namely for Kolmogorov spectrum, E(k)�

k−5/3, and for an intermittent spectrum, E(k)� k−1.72.

Fig 11 shows the log-log plots of the diffusion coefficient K/ηvη against σl/η for p = 5/3 for

the six cases of inertial subrange size considered, Table 3. Fig 12 is similar but for p = 1.72.

Both sets of plots show similar trends; for the smallest Rk = 101 we obtain γ� 1.1� 4/3—

clearly the subrange is too short to manifest any kind of genuine inertial range scaling.

The cases Rk = 102 are close to locality scalings, as already discussed in Section 3.2.

As Rk increases further the γ(p)’s increase asymptotically towards the limiting values, γ!
1.525 for p = 5/3, and γ! 1.556 for p = 1.72. This is clearly seen in Figs 13 and 14 which show

the log-linear plots of γ against log(Rk).

5 Exposing the non-local process

In [12] it was hypothesised that the non-local process could also be isolated and exposed by

taking a very small initial separation l0� η. Then the early motion should be purely strain

dominated relative motion so long as σl(t)� η. It was also noted that this regime should be

independent of the form of E(k) and also of the size of the inertial subrange. To examine this

hypothesis we therefore only need to test a few cases to prove generality.

Fig 8. γ(p), γl(p), and Mγ(p) against p for Rk = 102. The black filled circles are the γ(p)’s from the simulations. The

dotted blue line is the locality scaling γl(p) = (1 + p)/2. The cyan squares are the ratios, Mγ = γ(p)/γl(p) (right hand

scale). See Table 2.

https://doi.org/10.1371/journal.pone.0216207.g008
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Thus we ran simulations for three sizes of the subrange, Rk = 101, 102, and 103 for the same

spectrum p = 5/3, and in each case we took l0/η = 10−3 respectively. Fig 15 shows log-log plot

of K/ηvη against σl/η for these cases. We also ran simulations for different spectra p = 1.4, 5/3,

and 2.0 for the same inertial subrange size Rk = 102, and the results are shown in Fig 16.

In all the above cases, the results display clear K � s2
l scalings which is the signature of

strained motion. Importantly, these regimes are valid till about σl/η� 10−2 before they start to

bend away from from a slope of 2 as the inertial subrange is approached from below and iner-

tial subrange scaling begins to have its impact. This gives us a rough estimate of the size of the

locality kernel which must be of the order of C� 102.

6 Estimate of numerical errors

The numerical results presented here are the most comprehensive obtained to date from KS

due to the very large ensemble of particle pairs and the small time steps used. The statistical

fluctuations in the results are therefore small. The γ(p)’s, which are the slopes of the plots in

Fig 5, can be determined to within 1% error. An exception is close to the singular limit p = 1

where the numerical errors can be large. An accurate estimate of this error can be obtained as

follows, noting first that the error level in γ(p) is identical to the error level in Mγ.

Fig 9. χ(p), χl(p), against p for Rk = 102. The black filled circles are, χ(p)’s from the simulations. The dotted blue line

is the locality scaling, χl(p) = 4/(3 − p). See Table 2.

https://doi.org/10.1371/journal.pone.0216207.g009

Turbulent particle pair diffusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0216207 May 20, 2019 18 / 28

https://doi.org/10.1371/journal.pone.0216207.g009
https://doi.org/10.1371/journal.pone.0216207


As p! 1, then Mγ! 1; but very close to this limit, Mγ� 1 is still a good approximation.

For the Rk = 106 case, and for p = 1.01, KS produces, Mγ� 1.06 (Fig 7 and Table 1). This is an

error of 6% which is small considering that it is so close to the singular limit. An error of

around 1% away from p = 1 is therefore reasonable. In the limit p = 3 there is no detectible

error in Mγ from KS to three decimal places (Table 2).

KS is an established method used by many researchers in turbulent diffusion studies, as

noted in the earlier references in this paper. However, some researchers [23, 33, 38] have

argued that KS suffers from systematic erros due to the lack of true dynamical sweep of the

small inertial range scales by the much larger energy containing convective scales. However,

the author has recently investigated this issue in [32] and shown that such conclusions are

unfounded because they were made under the assumption of locality being true. Through an

analysis of pairs of trajectories the quantitative errors in KS due to the sweeping effect were

proven to be negligible provided that the simulations are carried out in a frame of reference

moving with the large scale sweeping flow. The scalings obtained from KS are therefore genu-

ine, and not errors as previously thought.

Fig 10. χ(p), χl(p), against p for Rk = 102. Similar to Fig 8, but focussing in the range of real turbulence with

intermittency. The two vertical red lines are the lower and upper bounds for intermittent turbulence spectra,

respectively p = 1.70 and 1.74.

https://doi.org/10.1371/journal.pone.0216207.g010
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Fig 11. The turbulent pair diffusion coefficient, log(K/ηvη), against, log(σl/η), from the simulations for spectrum

E(k)� k−5/3 for different inertial ranges Rk as shown in Table 3. Lines of slope 4/3 and 1.525 are shown for

comparison.

https://doi.org/10.1371/journal.pone.0216207.g011

Table 3. Rk, γ and χ, from the simulations for p = 5/3, and p = 1.72 (right hand columns).

p = 5/3 p = 1.72

Rk γ(p) χ(p) γ(p) χ(p)

101 1.220 2.564 1.230 2.597

102 1.410 3.390 1.440 3.571

103 1.472 3.788 1.495 3.960

104 1.500 4.000 1.530 4.255

105 1.515 4.124 1.550 4.444

106 1.525 4.211 1.556 4.505

https://doi.org/10.1371/journal.pone.0216207.t003
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7 Discussion and conclusions

Richardson conceived his scaling law to be applicable to real turbulence, not just a mathemati-

cal curiosity. The new theory, developed in [12] and tested numerically here, generalises Rich-

ardson’s scaling arguments and is also constructed to be applicable to real turbulence. The

fundamentally new concept here is that turbulent pair diffusion is the convolution of local and

non-local diffusional processes; and from this idea two limiting cases of non-Richardson pair

diffusion regimes has been obtained.

It is important to note that Richardson’s scaling arguments were essentially kinematic in

nature, being developed before the age of flow structures and dynamical energy transfer

between different scales and intermittency was established. As such, the scaling laws are

broadly independent of the precise mechanisms of dynamical energy transfer between

Fig 12. The turbulent pair diffusion coefficient, log(K/ηvη), against, log(σl/η), from the simulations for spectrum

E(k)� k−1.72 for different inertial ranges Rk as shown in Table 3. Lines of slope 1.36 and 1.556 are shown for

comparison.

https://doi.org/10.1371/journal.pone.0216207.g012

Turbulent particle pair diffusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0216207 May 20, 2019 21 / 28

https://doi.org/10.1371/journal.pone.0216207.g012
https://doi.org/10.1371/journal.pone.0216207


different scales, much like the Kolmogorov spectrum itself. This is true also of the new local-

non-local theory for the same reasons.

This may also explain why KS works well in the investigation of statistical scaling laws.

KS is a Lagrangian model for tubulent diffusion, comparable to non-Markovian stochastic

diffusion models. KS cannot account for all aspects of turbulence, like actual energy transfer

between different scales, large scale sweeping of smaller scales, and true intermittency.

However, as the theory itself is constructed for statistical scaling laws that are not strongly

dependent on the precise dynamics, this may not be a critical limitation in the present con-

text. Furthermore, it has been shown in [32] that the sweeping error in KS is negligible if

simulations are carried out in the swept frame of reference as has been done here; and at

least the energy spectrum of intermittent turbulence can be readily implemented in KS. The

results presented here show that in the limit of locality, i.e. small inertial subrange, KS yields

the correct Richardson scaling, and in the limit of asymptotically infinite inertial subrange

with intermittent-like spectrum we obtain a non-local scaling law which is remarkably close

to the revised 1926 data. These results provide some degree of confidence in the fidelity of

the KS results; but we will have to wait for DNS or experiments that can interrogate very

large inertial subranges for a definitive answer to how realistic KS statistics is of actual

turbulence.

Fig 13. γ, against, log(Rk), from the simulations (symbols) for spectra E(k)� k−5/3 and k−1.72 as shown.

https://doi.org/10.1371/journal.pone.0216207.g013
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The main mathematical hypothesis of this theory is the separation of the inertial subrange

in to two wavenumber ranges, which leads to the existence of two broadly independently diffu-

sional processes that produce local and non-local scalings individually, but together they pro-

duce scale dependent diffusion coefficients with constant power laws γ(p)—the actual value of

the γ(p) is dependent upon the inertial range power law� k−p and also upon the size of the

inertial subrange, Rk Eq (1).

The main predictions of the theory are, firstly that in turbulence with generalized energy

spectra, E(k)� k−p, and for asymptotically infinite inertial range, Rk!1, the pair diffusion

coefficient scales like, Kðl; pÞ � sgðpÞl , with (1 + p)/2 < γ(p)� 2, in the range 1< p� 3, which

is intermediate between the purely local and purely non-local scaling power laws. Secondly,

for small inertial subranges, there exists quasi-local scaling regimes, with γ(p)� (1 + p)/2,

because the non-local range of scales are effectively absent and the entire inertial subrange

then acts locally at all separations inside the inertial subrange.

The resuts from the KS simulations reported here confirm all the predictions of the theory.

Most importantly, two sets of non-Richardson pair diffusion regimes are observed: (1) non-

local regimes for asymptotically infinite inertial subrange, Rk = 106, Figs (1) to (5); and (2)

quasi-local regimes for short inertial subrange of Rk = 102, Figs (6) to (10). A smooth transition

from small to large subranges is observed in Figs (11) to (14).

Fig 14. χ, against, log(Rk), from the simulations (symbols) for spectra E(k)� k−5/3 and k−1.72 as shown.

https://doi.org/10.1371/journal.pone.0216207.g014
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The simulation results for Rk = 106 are in good agreement with the revised geophysical data

in Fig 1 in [12], K � s1:564
l . In the critical range of intermittent spectra, the scalings γ are gener-

ally within about 1% of 1.564. For E(k)� k−1.72, the simulations produced, KmI
� s1:556

l . The

equivalent power law scaling in hl2i is� t4.505, Table 1.

In short inertial subranges of size Rk = 102 in the critical range of intermittent spectra, the

scalings γ(p) are generally within about 5% of locality scaling laws. For intermittency observed

in real turbulence, E(k)� k−1.72, the simulations produce the scaling law, K � s1:43
l , and the

equivalent power law scaling in hl2i is� t3.509, Table 2.

An important corollory of the current work is that real turbulence with intermittency does

not contain the classical R-O t3-regime, even under the locality hypothesis. This is remarkable

because the R-O t3-regime has been much debated for decades and its existance taken for

granted.

To date no scaling greater than t3 inside the inetial subrage has been reported in experi-

ments or in DNS, except for the 1926 dataset—this implies that current laboratory experiments

and DNS where pair diffusion has been investigated are still in or below the quasi-locality

Fig 15. log(K/ηvη), against, log(σl/η), from the simulations for the spectrum E(k)� k−5/3 for different inertial subrange

size, Rk = 101, 102, and 103 as shown. The initial separations in each case is l0/η = 10−3. A line of slope 2 is shown for

comparison.

https://doi.org/10.1371/journal.pone.0216207.g015
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limit. Indeed, the biggest inertial subranges generated in current DNS is around Rk = 102,

which is consistent with our theory and simulations which suggest that this is indeed the lower

limit for quasi-local regimes to be observable.

Some results apparently showing pair diffusion scaling greater than� t3 have been reported

in some recent DNS, [39, 40]. However, these results are for small initial separations l0� η and

appear over a short time period after release. The authors themselves note that this is probably

due to the influence of the separation in the dissipation range at earlier times—that is, in a

DNS which contains a genuine dissipation range, particles that have left the dissipation range

continue to be affected by the dissipation range some distance in to the inertial subrange. This

is likely a manifestation of the ultra-violet corrections mentioned in the main text above and

also in [12]. This should not be confused with genuine inertial range scaling.

Finally, we remark that the concepts investigated here and in [12] could have a significant

impact on the general theory of turbulence, evoking some important questions for the future.

For example, are long-range correlations in turbulence more significant than previously

thought in high Reynolds number turbulence? Could turbulent diffusion be better modelled as

a bi-variant process? And, if experiments ultimately do show that the KS results are close to

Fig 16. log(K/ηvη), against, log(σl/η), from the simulations for Rk = 102 for different spectra E(k)� k−p, p = 1.4, 5/3, and

2.0 as shown. The initial separations in each case is l0/η = 10−3. A line of slope 2 is shown for comparison.

https://doi.org/10.1371/journal.pone.0216207.g016
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real turbulence statistics, does this mean that the dynamics plays a less important role for

lower order Lagrangian statistics?
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