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Plant beta-diversity across biomes captured by
imaging spectroscopy
Anna K. Schweiger 1,2✉ & Etienne Laliberté 1

Monitoring the rapid and extensive changes in plant species distributions occurring worldwide

requires large-scale, continuous and repeated biodiversity assessments. Imaging spectrometers

are at the core of novel spaceborne sensor fleets designed for this task, but the degree to which

they can capture plant species composition and diversity across ecosystems has yet to be

determined. Here we use imaging spectroscopy and vegetation data collected by the National

Ecological Observatory Network (NEON) to show that at the landscape level, spectral beta-

diversity—calculated directly from spectral images—captures changes in plant species com-

position across all major biomes in the United States ranging from arctic tundra to tropical

forests. At the local level, however, the relationship between spectral alpha- and plant alpha-

diversity was positive only at sites with high canopy density and large plant-to-pixel size. Our

study demonstrates that changes in plant species composition and diversity can be effectively

and reliably assessed with imaging spectroscopy across terrestrial ecosystems at the beta-

diversity scale—the spatial scale of spaceborne missions—paving the way for close-to-real-

time biodiversity monitoring at the planetary level.
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G lobal change, including climate and land use change, is
altering the distribution of plant species worldwide. Over
the last half-century, the rate of global biodiversity loss

has continuously exceeded that incurred during the Holocene, as
human impacts on our planet have escalated1. In addition,
increasingly rapid range shifts are leading to changes in plant
species composition and the loss of local plant diversity, putting
the sustainability of current management practices at risk2.
However, our ability to effectively monitor those changes using
traditional field surveys is limited by logistical and financial
constraints. As a result, large portions of the globe, particularly in
the global south, remain understudied3. The scientific community
has recognized the need for global, long-term and spatially
complete biodiversity data to guide conservation actions, and this
requires remote sensing3–5. Space agencies worldwide are
investing in novel sensors for assessing and monitoring the
composition, structure and health of terrestrial ecosystems6–8,
and imaging spectrometers (providing hyperspectral data with
hundreds of spectral bands) are at the core of these sensor fleets.
For example, the National Aeronautics and Space Administra-
tion’s (NASA) Surface Biology and Geology (SBG) mission will
acquire global spectroscopic visible to shortwave infrared
(VSWIR; 380–2500 nm) imagery at high spatial resolution
(~30 m × 30m pixel size) and sub-monthly temporal resolution7,
with one of its main priorities being the quantification of vege-
tation distribution and composition (https://sbg.jpl.nasa.gov/
satm). Similarly, the European Space Agency (ESA) is preparing
its Copernicus Hyperspectral Imaging Mission for the Environ-
ment (CHIME) to support biodiversity management9. In addi-
tion, data collected by the Italian Space Agency’s Precursore
Iperspettrale della Missione Applicativa (PRISMA)10 are already
available for access (https://prismauserregistration.asi.it/).

Imaging spectroscopy is the most promising remote sensing
approach to map the taxonomic and functional diversity of
vegetation11, but translating spectra to species or plant traits
requires extensive field data for calibration, which are and will
remain unavailable for most of the world. Over the past years,
spectral diversity—which can be calculated directly from image
data—has been increasingly recognized as a valuable indicator for
plant diversity that integrates phylogenetic, functional, and
structural facets of canopy heterogeneity12–14. Until now, the
potential for spectral diversity to assess plant diversity has been
discussed theoretically15,16 or explored at single sites13,17–20.
However, it is still unknown if spectral diversity can capture
spatial variation in plant species composition and diversity to a
sensible degree across biomes. If it did, then spectral diversity

could become a globally relevant remote sensing data product to
monitor the rapidly changing state of the world’s plant diversity.

Here, we used spectral images and vegetation inventories col-
lected by the National Ecological Observatory Network (NEON)
to determine the degree to which spectral diversity captures plant
species composition and diversity across the United States
(Fig. 1a). NEON sites cover a diverse range of ecosystems (Fig. 1b,
Supplementary Table 1), providing a unique opportunity to
evaluate spectral diversity as an indicator for plant diversity
across biomes ranging from arctic tundra to tropical forests. In
addition, spectral and vegetation data are collected in a standar-
dized way across all sites and at a spatial scale that is relevant for
future satellite missions (20 m × 20m plot size for vegetation
surveys). Further, the NEON spectral dataset, given its high
spatial resolution (1 m × 1m pixel size), allowed us to explore
links between spectral and plant diversity at different spatial
scales (Supplementary Fig. 1). At the local scale, the diversity
within plant communities (or research plots) is referred to as
alpha-diversity. At the regional or landscape scale, the spatial
variation in species composition among communities is referred
to as beta-diversity. For investigating the spectral-diversity—
plant-diversity relationship at the alpha-scale, we used plot-level
species inventories (alpha-diversity metrics calculated from per-
cent cover per species and plot) and pixel-level spectral data
(spectral variance among the 1 m × 1m image pixels per plot15).
For investigating the spectral-diversity—plant-diversity relation-
ship at the beta-scale, we used the same species inventories (beta-
diversity metrics calculated from percent cover per species and
plot) but plot-level spectral data (spectral variance among the
mean spectra of 20 m × 20m research plots).

Simulations have shown that plant alpha-diversity metrics,
such as the number of species per community, can be best esti-
mated from spectral imagery when the size of image pixels
roughly equals the size of individual plants21,22. While we expect
that the NEON airborne spectral data is of sufficiently high spatial
resolution to express alpha-diversity at sites dominated by forest,
alpha-diversity should be less traceable at sites dominated by
herbaceous vegetation, since at these sites pixel sizes will be far
larger than individual plants, approximating the size of plant
communities. Beta-diversity is a fundamentally important facet of
biodiversity that is strongly affected by global environmental
change23,24 and directly relevant for future satellite missions
because it is, by definition, a measure derived from community-
level information25. However, measuring beta-diversity or com-
positional turn-over remotely has received less attention than
alpha-diversity26. Although links between spectral beta- and

Fig. 1 Location of NEON sites. The NEON sites used in this study are located (a) across the entire United States and b cover all major biomes except for
tropical rainforest. Colors represent different biomes; for site abbreviations and characteristics see Supplementary Table 1.
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taxonomic beta-diversity have been shown in some tropical
forests19,20, the extent to which they hold across other ecosystems
remains to be investigated.

In this work, we provide evidence for a consistently positive
relationship between spectral beta- and plant beta-diversity across
ecosystems. This demonstrates that changes in plant species
composition can be tracked from arctic tundra to tropical forests
at the spatial resolution of spaceborne imaging spectrometers and
without the need for extensive field data.

Results
We found that across all NEON sites, spectral dissimilarity
among plots measuring 20 m × 20m increased with their dis-
similarity in plant species composition–a measure of plant beta-
diversity (Fig. 2a, Supplementary Table 2, Supplementary Fig. 2).
Testing the degree of correspondence between ordinations of

mean plot-level spectra and plant inventories revealed significant
covariance for 23 out of the 30 NEON sites with on average 47%
of the total variation in plant inventories explained by spectra
(Fig. 2b, Supplementary Table 3).

At the alpha-scale, on the other hand, we found that the
spectral-diversity–plant-diversity relationship depended on
environmental characteristics, including canopy density (Fig. 3,
Supplementary Tables 4–6). Overall, sites with closed canopy
cover—a leaf area index (LAI) greater than ~1—showed stronger
positive relationships between spectral and plant alpha-diversity
than sites with more open vegetation (Fig. 3). Interestingly,
when accounting for environmental differences among sites,
spectral alpha-diversity was a significant predictor for local plant
diversity in linear mixed-effects models (Fig. 4, Supplementary
Tables 4–6). This was the case even though our models, which
predicted local plant diversity with high accuracies (species
richness: coefficient of determination (r2) = 0.66, regression

Fig. 2 Spectral variation among plant communities captures differences in species composition. a At each site, the average pairwise spectral distance
among plots increases with their average pairwise taxonomic distance. Sites are ordered across a latitudinal gradient from north (dark colors) to south
(light colors). The overall relationship between pairwise spectral and taxonomic distances across all NEON sites is displayed in golden color and dashed
line (n= 13222, r2= 0.18, b= 0.47, t13221= 191.2, P < 0.001). Significance of the relationship between spectral and taxonomic distance was assessed using
two-sided t-tests; the number of observations is indicated by the gray tiles in the background. b Covariance between plot-wise ordinations of mean spectra
and plant species inventories per site. Colors represent different biomes and stars significance levels, ***P≤ 0.001, **P≤ 0.01, *P≤ 0.05, no star and
transparent shading indicates P > 0.05 (not significant). For site abbreviations see Supplementary Table 1, for statistics see Supplementary Tables 2, 3, for
results per site see Supplementary Fig. 2.

Fig. 3 Spectral-diversity–plant-diversity relationships at the alpha-scale depend on leaf area index (LAI). Relationships between spectral alpha-diversity
and a plant species richness (LAI 1: n= 157, P=NS; LAI 2: n= 165, r2= 0.08, b= 3.23, t163= 3.96, P < 0.001; LAI 3: n= 149, r2= 0.05, b= 3.10,
t147= 3.05, P= 0.003; LAI 4: n= 118, r2= 0.02, b= 2.65, t116= 1.90, P= 0.06), b Shannon index (LAI 1: n= 157, r2= 0.16, b=− 0.17, t155=−5.54,
P < 0.001; LAI 2: n= 165, P=NS; LAI 3: n= 149, r2= 0.05, b= 0.21, t147= 2.85, P= 0.005; LAI 4: n= 118, r2= 0.05, b= 0.25, t116= 2.70, P= 0.008), and
c phylogenetic diversity (LAI 1: n= 157, P=NS; LAI 2: n= 164, r2= 0.05, b= 0.02, t162= 3.21, P= 0.002; LAI 3: n= 149, r2= 0.04, b= 0.03, t147= 2.60,
P= 0.01; LAI 4: n= 118, r2= 0.12, b= 0.06, t116= 4.13, P < 0.001). As phylogenetic diversity measure we used phylogenetic species evenness (PSE).
Significance was assessed using two-sided t-tests; colors represent four classes of LAI: LAI 1= [0.13, 0.634], LAI 2= (0.634, 1.183], LAI 3= (1.183, 1.84],
LAI 4= (1.84, 3.80]). For spectral-diversity–plant-diversity relationships at the alpha-scale per site see Supplementary Fig. 3.
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coefficient (b) = 1.03, t587= 33.80, P < 0.001; Shannon index:
r2= 0.57, b= 1.03, t587= 27.72, P < 0.001; phylogenetic diversity:
r2= 0.40, b= 1.04, t586= 19.87, P < 0.001), contained well known
factors explaining global biodiversity patterns, including latitude,
elevation, mean annual temperature and precipitation. Together,
these results suggest that spectral alpha-diversity as measured
from NEON spectral imagery might act as an indicator of plant
alpha-diversity in high LAI-ecosystems containing large plants
(e.g., temperate forests), but not in low LAI-ecosystems with
small plants (e.g., tundra).

Discussion
Our results show that spatial variation in plot-level reflectance
captures changes in plant species composition (i.e., beta-diversity)
at the proposed scale of upcoming satellite missions (~ 30 m ×
30m pixel size). Importantly, this relationship holds across
biomes, including ecosystems dominated by forests, shrub- and
grassland (Fig. 2, Supplementary Table 3). This means that the
degree of dissimilarity in spectral reflectance is directly related to
plant beta-diversity or the diversity among plant communities at
the regional or landscape scale, regardless of ecosystem type. Plots
that are spectrally rare or distant from the average plot within a
region might indicate floristically unique areas that may be of
high conservation value11,15. Tracking changes in spectral beta-
diversity over time could provide an early warning system of
ecosystem change, as changes in species composition precede
more severe shifts in environmental conditions. It would also
allow the detection of biotic homogenization, or the loss of beta-
diversity within regions23. In addition to biodiversity monitoring
and change detection, the spectral-diversity–plant-diversity rela-
tionship at the beta-scale allows the discovery and assessment of
environmental gradients that are important for plant community
assembly and biogeochemical cycles27.

In contrast to beta-diversity, the strength of the relationship
between spectral alpha- and plant alpha-diversity depended on
local environmental characteristics, including pixel-to-plant size
ratio and LAI (Fig. 3, Supplementary Tables 4–6). In the case of
the NEON imagery, with 1 m × 1m pixels, spectral alpha-
diversity predicted plant alpha-diversity best in forests with
closed canopies (LAI ≥ 1) consisting of mature trees (crown

diameter ≥ 2 m, Supplementary Fig. 3). These ecosystems might
also be better suited for spectral analysis of plant alpha-diversity
because edge and shadow effects are likely less prevalent than in
ecosystems with more open canopies, at least at the 1 m × 1m
pixel size that the NEON imagery provides. Notably, the rela-
tionships between spectral and phylogenetic diversity metrics
were stronger than between spectral and taxonomic diversity
metrics (species richness and Shannon index; Fig. 3). This is likely
because spectral dissimilarity among species depends on their
functional dissimilarity and evolutionary divergence time13,
which are captured by phylogenetic diversity metrics but not
taxonomic ones28.

Our results demonstrate that the spatial resolution of upcom-
ing spaceborne imaging spectrometers allows monitoring changes
in plant species composition at the community or beta-diversity
scale across a range of ecosystem types that encompass all major
terrestrial biomes. Our study did not include tropical rainforests,
but extends earlier work conducted in that biome where this
relationship had been found19,20. While spaceborne sensors are
probably less well suited to assess and monitor changes in plant
alpha-diversity in some ecosystems because of the mismatch of
plant-to-pixel size, this gap can be filled by spectrometers oper-
ated from airplanes or unoccupied aerial vehicles (UAVs) pro-
viding spatial resolutions at the m- and cm-scale, respectively. For
getting the most out of spectroscopic methods, integrated
approaches to remote sensing of plant diversity that combine the
strengths of field work, UAVs, airplanes and satellites are
needed3,5,29,30. Such integrated approaches could be based on
satellite spectroscopy for detecting at the landscape scale spec-
trally rare areas across space and changes in plant species com-
position across time; before assessing these areas of interest in
detail with airborne remote sensing and, whenever possible,
field data.

Networks of sites that collect remote sensing and field data in a
standardized way, such as NEON, are already set up as testing
grounds for integrated approaches to the remote sensing of bio-
diversity, for instance by allowing airborne image acquisition
close to satellite overpass times. Still, for the overwhelming por-
tion of the Earth, we have no data on plant species on the ground
and it is unlikely that we ever will. Even with sufficient funds,
keeping track of the rapid, global reshuffling of plant species
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Fig. 4 Spectral alpha-diversity predicts plant alpha-diversity. Correlations between predicted and measured a plant species richness (n= 589, r2= 0.66,
b= 1.03, t587= 33.80, P < 0.001), b Shannon index (n= 589, r2= 0.57, b= 1.03, t587= 27.72, P < 0.001), and c phylogenetic diversity (n= 588, r2= 0.40,
b= 1.04, t586= 19.87, P < 0.001) per plot calculated from mixed effects models including spectral alpha-diversity, vegetation type (forest, grassland,
shrubland), mean leaf area index, latitude, elevation, precipitation and temperature. As phylogenetic diversity measure we used phylogenetic species
evenness (PSE). The black line shows the overall model fit, one standard deviation is shaded in gray, the dashed line is the 1:1-line, gray lines are the linear
regressions per site, dot colors represent vegetation types. Significance was assessed using two-sided t-tests, no adjustments for multiple comparisons
were made; for mixed effects model statistics see Supplementary Tables 4–6.
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distributions caused by climate and land-use change, over-
exploitation, pollution and invasive species1 will remain impos-
sible with traditional field methods alone. Biodiversity observa-
tories also cannot be launched everywhere. But given limited
resources and the fact that we need high-quality field data to
make sense of processes occurring on the ground, imaging
spectroscopy can be used as a guide to direct fieldwork to key
locations15. As we are entering a new era of imaging spectroscopy
from space, our results provide strong evidence that differences
and changes in plant species composition can be effectively and
directly assessed across biomes via spectral diversity, paving the
way for comprehensive, close-to-real time biodiversity monitor-
ing at the planetary scale.

Methods
Spectral diversity. For spectral diversity calculations, we used NEON Airborne
Observation Platform (AOP) data (the orthorectified surface directional reflectance
mosaic data product, DP1.30006.00131) collected in 2018 and covering 30 sites
(Supplementary Table 1). Each mosaic file covers an area of 1 km × 1 km with a
spatial resolution of 1 m. Spectral data comprised 426 bands, spanning the spectral
region from ~380 nm to ~2510 nm at 5 nm band spacing. Image processing is done
by NEON and based on the industry standard ATCOR32 without correcting for
BRDF (bidirectional reflectance distribution function) effects. Details can be found
by following the dataset’s DOI31 and scrolling down to the documents under
Collection and Processing—Documentation. In addition, we masked atmospheric
water absorption bands from 1340 to 1445 nm and 1790 to 1955 nm, and removed
spectral bands at the beginning and end of the measured spectrum, i.e., ≤400 nm
and ≥2400 nm. We applied an NDVI (normalized difference vegetation index)-
mask33 to exclude non-photosynthetically active vegetation and a near-infrared
(NIR) shade-mask34 calculated as mean reflectance (ranging from 0–1) between
752 nm and 1048 nm. We used site-specific NDVI- and vegetation type-specific
NIR shade-mask thresholds due to the large variation in vegetation cover and
structure across our sites (Supplementary Table 1). For sites with sparse vegetation
cover, such as desert sites, we used a lower greenness-threshold (e.g., NDVI ≥ 0.2 at
SRER) compared to sites with high vegetation cover, such as temperate forests (e.g.,
NDVI ≥ 0.8 at HARV). As NIR shade-mask thresholds we chose mean NIR
reflectance ≥ 0.18 for plots dominated by forest, mean NIR reflectance ≥ 0.2 for
plots dominated by shrubland and mean NIR reflectance ≥ 0.22 for plots domi-
nated by grassland. At least 50% of all pixels within each plot needed to pass the
NDVI- and NIR shade-mask thresholds for the plot to be included in further
analyses. We checked the validity of our thresholds using NEON’s high resolution
camera imagery (DP1.30010.001)35 with 10 cm spatial resolution, collected
simultaneously with the spectral data.

We selected spectral alpha-diversity (SDα)15 over other existing spectral diversity
metrics because it measures spectral variance, which we felt more closely reflected
abundance-weighted taxonomic diversity measures. As plant communities, we used
NEON’s distributed base plots measuring 20m x 20m within which plant inventories
are conducted. For each site, we extracted spectral reflectance values per plot
and brightness-normalized all spectra to account for illumination differences36. We
performed a PCA with type I-scaling to reduce data dimensionality15 and selected
PCs until more than 95% of the total spectral variation was explained. We calculated
SDα as the sum of the squared deviations of every pixel and spectral feature (PC) per
community from the mean spectral feature of that community standardized by the
number of pixels in the community15.

Plant diversity. We calculated taxonomic diversity metrics using two datasets: i)
percent cover of herbaceous and understory plants (i.e., plants <3 m) from
NEON’s plant presence and percent cover data (DP1.10058.001)37 and ii) tree
inventories, including identity, location, crown diameter and height, from
NEON’s woody plant vegetation structure data (DP1.10098.001)38. Details
regarding the sampling design for generating these datasets can be found by
following the datasets’ DOIs37,38 and scrolling down to the documents under
Collection and Processing - Documentation. Since not all NEON sites were
inventoried in 2018, the year of spectral image collection, we used plant
inventories collected between 2016 and 2019. Most plots and sites used in our
study contained individuals ≥3 m (trees, tall shrubs). However, for individuals
≥3 m NEON’s plant presence and percent cover (DP1.10058.001)37 data does
not report crown cover, but only basal diameter (when there is no vegetative
growth <3 m) or percent cover of foliage along the stem <3 m (when there is
vegetative growth <3 m). For matching spectral data and plant inventories it is,
however, important to scale inventories to vegetation cover as seen from above.
We thus mapped all trees recorded in the woody plant vegetation structure38

data based on their location, crown diameter and height39 (Supplementary
Fig. 4). For each plot, we calculated crown cover per tree as seen from above
taking overlapping crowns into account by ranking the trees according to their
height. We then scaled plant cover <3 m to the area per plot not covered by tree

crowns and combined both, tree cover and scaled herbaceous/understory
inventories. We calculated taxonomic alpha-diversity metrics, i.e., species rich-
ness and Shannon index using the R40 package vegan41. For calculating phy-
logenetic alpha-diversity, we generated 100 phylogenies with V.phylomaker42 in
R using the phylogeny released by ref. 43 as the backbone mega-tree, with new
tips bound to randomly selected nodes at and below the genus- or family-level
basal node (scenario 2, 100 repeats in V.phylomaker). We used the taxonomic
name resolution service (http://tnrs.iplantcollaborative.org/) to match species
names to the backbone phylogeny; and we attached missing species, unknown
species and plant genera with uncertain identification to the phylogenies using
close species– or genus–level relatives. Then, we calculated phylogenetic species
evenness (PSE) per community based on vegetation cover seen from above
and the 100 phylogenies using the R package picante44, and averaged the result.
Initially, we also intended to calculate functional diversity metrics calculated
from the plant foliar physical and chemical properties data collected by
NEON45. However, at the time of our analysis this dataset was too small
to derive any meaningful metrics across all 30 sites. We calculated taxonomic
beta-diversity per site using Hellinger distances and the R script provided in
ref. 46.

Statistical analysis. We assessed the association between spectral and taxonomic
variation within sites (i.e., at the beta-diversity scale) based on spectral and taxo-
nomic distance among plots. For each plot within a site, we calculated the distance
to all other plots at the site based on the plot-level average spectrum and vegetation
cover as seen from above, using Euclidean and Hellinger distances for spectral and
plant inventory data, respectively. To assessed the overall association between
spectral variation and plant community composition, we fit linear regression
models between spectral and taxonomic distances per plot, per site and across all
sites. In addition, we assessed the correspondence between ordinations of plot-wise
mean spectra and plant inventories with co-inertia analysis using Monte Carlo
testing on the sum of eigenvalues with 999 permutations as implemented in the R
package ade447.

To assess the potential dependence of the relationship between spectral
alpha- and plant alpha-diversity on site characteristics, we used mixed effect
models as implemented in the R package nlme48 with site identity as the random
effect. Environmental variables included in the models were mean LAI per site
calculated from NEON’s spectrometer LAI mosaic data49 and site characteristics
listed by NEON, i.e., main vegetation type (forest, grassland, shrubland),
latitude, elevation, mean annual temperature and mean annual precipitation
(Supplementary Table 1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this analysis are available from NEON: https://doi.org/10.48443/qeae-
3×15, https://doi.org/10.48443/4e85-cr14, https://doi.org/10.48443/abge-r811, https://
doi.org/10.48443/e3qn-xw47, https://doi.org/10.48443/h2rb-pj34.

Code availability
The R code is available on GitHub at https://github.com/elaliberte/specdiv (https://doi.
org/10.5281/zenodo.6385476) and https://github.com/annakat/NEON_crown_area
(https://doi.org/10.5281/zenodo.6383923).

Received: 4 January 2022; Accepted: 21 April 2022;

References
1. Díaz, S. et al. Summary for policymakers of the global assessment report on

biodiversity and ecosystem services of the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services. https://doi.org/10.5281/
zenodo.3553579 (2019).

2. Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3,
e1603055 (2017).

3. Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2,
16024 (2016).

4. HyspIRI Mission Concept Team. HyspIRI Final Report. https://hyspiri.jpl.
nasa.gov/downloads/reports_whitepapers/HyspIRI_FINAL_Report_
1October2018_20181005a.pdf. Jet Propulsion Laboratories, California
Institute of Technology, Pasadena, CA, USA (2018).

5. Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30369-6 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2767 | https://doi.org/10.1038/s41467-022-30369-6 |www.nature.com/naturecommunications 5

http://tnrs.iplantcollaborative.org/
https://doi.org/10.48443/qeae-3�15
https://doi.org/10.48443/qeae-3�15
https://doi.org/10.48443/4e85-cr14
https://doi.org/10.48443/abge-r811
https://doi.org/10.48443/e3qn-xw47
https://doi.org/10.48443/e3qn-xw47
https://doi.org/10.48443/h2rb-pj34
https://github.com/elaliberte/specdiv
https://doi.org/10.5281/zenodo.6385476
https://doi.org/10.5281/zenodo.6385476
https://github.com/annakat/NEON_crown_area
https://doi.org/10.5281/zenodo.6383923
https://doi.org/10.5281/zenodo.3553579
https://doi.org/10.5281/zenodo.3553579
https://hyspiri.jpl.nasa.gov/downloads/reports_whitepapers/HyspIRI_FINAL_Report_1October2018_20181005a.pdf
https://hyspiri.jpl.nasa.gov/downloads/reports_whitepapers/HyspIRI_FINAL_Report_1October2018_20181005a.pdf
https://hyspiri.jpl.nasa.gov/downloads/reports_whitepapers/HyspIRI_FINAL_Report_1October2018_20181005a.pdf
www.nature.com/naturecommunications
www.nature.com/naturecommunications


6. Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth
observation for ecological applications. Ecol. Process. 10, 1 (2021).

7. Cawse-Nicholson, K. et al. NASA’s surface biology and geology designated
observable: a perspective on surface imaging algorithms. Remote Sens.
Environ. 257, 112349 (2021).

8. Stavros, E. N. et al. ISS Observations Offer Insights Into Plant Function. Nature
Ecology and Evolution 1, https://doi.org/10.1038/s41559-017-0194 (2017).

9. Rast, M., Nieke, J., Adams, J., Isola, C. & Gascon, F. Copernicus Hyperspectral
Imaging Mission for the Environment (Chime). IEEE International Geoscience
and Remote Sensing Symposium IGARSS, 108–111, https://doi.org/10.1109/
IGARSS47720.2021.9553319 (2021).

10. Cogliati, S. et al. The PRISMA imaging spectroscopy mission: overview and
first performance analysis. Remote Sens. Environ. 262, 112499 (2021).

11. Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest
trait diversity and guide conservation. Science 355, 385–389 (2017).

12. Meireles, J. E. et al. Leaf reflectance spectra capture the evolutionary history of
seed plants. N. Phytologist 228, 485–493 (2020).

13. Schweiger, A. K. et al. Plant spectral diversity integrates functional and
phylogenetic components of biodiversity and predicts ecosystem function.
Nat. Ecol. Evolution https://doi.org/10.1038/s41559-018-0551-1 (2018).

14. Cavender-Bares, J. et al. Harnessing plant spectra to integrate the biodiversity
sciences across biological and spatial scales. Am. J. Bot. 104, 966–969 (2017).

15. Laliberté, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral
diversity into alpha and beta components. Ecol. Lett. 23, 370–380 (2020).

16. Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species
diversity: recent advances and open challenges. Ecol. Inform. 5, 318–329
(2010).

17. Gholizadeh, H. et al. Detecting prairie biodiversity with airborne remote
sensing. Remote Sens. Environ. 221, 38–49 (2019).

18. Wang, R. et al. Influence of species richness, evenness, and composition on
optical diversity: a simulation study. Remote Sens. Environ. 211, 218–228
(2018).

19. Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using
high‐fidelity imaging spectroscopy. Ecol. Appl. 24, 1289–1296 (2014).

20. Draper, F. C. et al. Imaging spectroscopy predicts variable distance decay
across contrasting Amazonian tree communities. J. Ecol. 107, 696–710 (2019).

21. Wang, R., Gamon, J. A., Cavender‐Bares, J., Townsend, P. A. & Zygielbaum,
A. I. The spatial sensitivity of the spectral diversity–biodiversity relationship:
an experimental test in a prairie grassland. Ecol. Appl. 28, 541–556 (2018).

22. Rossi, C. et al. Spatial resolution, spectral metrics and biomass are key aspects in
estimating plant species richness from spectral diversity in species-rich
grasslands. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.244 (2021).

23. Finderup Nielsen, T., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is
less: net gain in species richness, but biotic homogenization over 140 years.
Ecol. Lett. 22, 1650–1657 (2019).

24. McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners
replacing many losers in the next mass extinction. Trends Ecol. Evolution 14,
450–453 (1999).

25. Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a
roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

26. Rocchini, D. et al. Measuring β‐diversity by remote sensing: a challenge for
biodiversity monitoring. Methods Ecol. Evolution 9, 1787–1798 (2018).

27. Chadwick, K. D. & Asner, G. P. Landscape evolution and nutrient
rejuvenation reflected in Amazon forest canopy chemistry. Ecol. Lett. 21,
978–988 (2018).

28. Felsenstein, J. Phylogenies and the comparative method. American Naturalist,
1-15, https://doi.org/10.1086/284325 (1985).

29. Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity.
Remote Sens. Environ. 231, 111218 (2019).

30. Schimel, D. S., Asner, G. P. & Moorcroft, P. Observing changing ecological
diversity in the Anthropocene. Front. Ecol. Environ. 11, 129–137 (2013).

31. NEON (National Ecological Observatory Network). Spectrometer
orthorectified surface directional reflectance—mosaic, RELEASE-2021
(DP3.30006.001). https://doi.org/10.48443/qeae-3x15. Dataset accessed from
https://data.neonscience.org on March (2021).

32. Richter, R. & Schläpfer, D. Geo-atmospheric processing of airborne imaging
spectrometry data. Part 2: Atmospheric/topographic correction. Int. J. Remote
Sens. 23, 2631–2649 (2002).

33. Asner, G. P. & Martin, R. E. Airborne spectranomics: mapping canopy
chemical and taxonomic diversity in tropical forests. Front. Ecol. Environ. 7,
269–276 (2009).

34. Rüfenacht, D., Fredembach, C. & Süsstrunk, S. Automatic and accurate
shadow detection using near-infrared information. IEEE Trans. pattern Anal.
Mach. Intell. 36, 1672–1678 (2013).

35. NEON (National Ecological Observatory Network). High-resolution
orthorectified camera imagery mosaic, RELEASE-2021 (DP3.30010.001).

https://doi.org/10.48443/4e85-cr14. Dataset accessed from https://data.
neonscience.org on March 3 (2021).

36. Feilhauer, H., Asner, G. P., Martin, R. E. & Schmidtlein, S. Brightness-
normalized partial least squares regression for hyperspectral data. J. Quant.
Spectrosc. Radiat. Transf. 111, 1947–1957 (2010).

37. NEON (National Ecological Observatory Network). Plant presence and
percent cover, RELEASE-2021 (DP1.10058.001). https://doi.org/10.48443/
abge-r811. Dataset accessed from https://data.neonscience.org on March 3
(2021).

38. NEON (National Ecological Observatory Network). Woody plant
vegetation structure, RELEASE-2021 (DP1.10098.001). https://doi.org/10.
48443/e3qn-xw47. Dataset accessed from https://data.neonscience.org on
March 3 (2021).

39. Schweiger, A. K. NEON_crown_area (1.0.0). https://doi.org/10.5281/zenodo.
6383923 (2022).

40. R Foundation for Statistical Computing. R: A language and environment for
statistical computing (R Foundation for Statistical Computing, 2019).

41. Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7
(2020).

42. Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large
phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).

43. Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant
phylogeny. Am. J. Bot. 105, 302–314 (2018).

44. Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology.
Bioinformatics 26, 1463–1464 (2010).

45. NEON (National Ecological Observatory Network). Plant foliar traits,
RELEASE-2021 (DP1.10026.001). https://doi.org/10.48443/za0d-wn97.
Dataset accessed from https://data.neonscience.org on March 3 (2021).

46. Legendre, P. & De Cáceres, M. Beta diversity as the variance of community
data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963
(2013).

47. Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram
for ecologists. J. Stat. Softw. 22, 1–20 (2007).

48. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and
nonlinear mixed effects models. R package version 3.1-152 (2021).

49. NEON (National Ecological Observatory Network). LAI—spectrometer—
mosaic, RELEASE-2021 (DP3.30012.001). https://doi.org/10.48443/h2rb-pj34.
Dataset accessed from https://data.neonscience.org on March 3 (2021).

Acknowledgements
The authors thank Dave Barnett, Tristan Goulden, Claire Lunch, Courtney Meier, Kate
Thibault, Samantha Weintraub-Leff and the entire NEON team for their support. We
also thank Maarten B. Eppinga and Matthew Kaproth for providing thoughtful feedback
on our manuscript. We thank CABO members for stimulating discussions about our
study. A.K.S. acknowledges support by the University Research Priority Program Global
Change and Biodiversity of the University of Zurich. This study was funded by Discovery
Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC;
RGPIN-2014-06106, RGPIN-2019-04537 to E.L.) and a Discovery Frontiers Grant to
support the Canadian Airborne Biodiversity Observatory (CABO) from NSERC (509190-
2017 to E.L.). A.K.S. dedicates this work to the memory of her late father, Dr. Heinz
Schweiger.

Author contributions
A.K.S. and E.L. conceptualized the ideas and developed the methodology for this work.
A.K.S. lead data analyses and visualization. A.K.S. and E.L. wrote and revised the
manuscript together.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-30369-6.

Correspondence and requests for materials should be addressed to Anna K. Schweiger.

Peer review information Nature Communications thanks Frederick Draper, Angela
Lausch, and Nicholas Vaughn for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30369-6

6 NATURE COMMUNICATIONS |         (2022) 13:2767 | https://doi.org/10.1038/s41467-022-30369-6 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41559-017-0194
https://doi.org/10.1109/IGARSS47720.2021.9553319
https://doi.org/10.1109/IGARSS47720.2021.9553319
https://doi.org/10.1038/s41559-018-0551-1
https://doi.org/10.1002/rse2.244
https://doi.org/10.1086/284325
https://doi.org/10.48443/qeae-3x15
https://data.neonscience.org
https://doi.org/10.48443/4e85-cr14
https://data.neonscience.org
https://data.neonscience.org
https://doi.org/10.48443/abge-r811
https://doi.org/10.48443/abge-r811
https://data.neonscience.org
https://doi.org/10.48443/e3qn-xw47
https://doi.org/10.48443/e3qn-xw47
https://data.neonscience.org
https://doi.org/10.5281/zenodo.6383923
https://doi.org/10.5281/zenodo.6383923
https://doi.org/10.48443/za0d-wn97
https://data.neonscience.org
https://doi.org/10.48443/h2rb-pj34
https://data.neonscience.org
https://doi.org/10.1038/s41467-022-30369-6
http://www.nature.com/reprints
www.nature.com/naturecommunications


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30369-6 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2767 | https://doi.org/10.1038/s41467-022-30369-6 |www.nature.com/naturecommunications 7

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Plant beta-diversity across biomes captured by imaging spectroscopy
	Results
	Discussion
	Methods
	Spectral diversity
	Plant diversity
	Statistical analysis

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




