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Abstract: Flowering reversion is a common phenomenon in plant development in which differ-
entiated floral organs switch from reproductive growth to vegetative growth and ultimately form
abnormal floral organs or vegetative organs. This greatly reduces tomato yield and quality. Research
on this phenomenon has recently increased, but there is a lack of research at the molecular and gene
expression levels. Here, transcriptomic analyses of the inflorescence meristem were performed in
two kinds of materials at different developmental stages, and a total of 3223 differentially expressed
genes (DEGs) were screened according to the different developmental stages and trajectories of the
two materials. The analysis of database annotations showed that these DEGs were closely related
to starch and sucrose metabolism, DNA replication and modification, plant hormone synthesis
and signal transduction. It was further speculated that tomato flowering reversion may be related
to various biological processes, such as cell signal transduction, energy metabolism and protein
post-transcriptional regulation. Combined with the results of previous studies, our work showed
that the gene expression levels of CLE9, FA, PUCHI, UF, CLV3, LOB30, SFT, S-WOX9 and SVP were
significantly different in the two materials. Endogenous hormone analysis and exogenous hormone
treatment revealed a variety of plant hormones involved in flowering reversion in tomato. Thus,
tomato flowering reversion was studied comprehensively by transcriptome analysis for the first time,
providing new insights for the study of flower development regulation in tomato and other plants.

Keywords: floral organ development; gene expression; RNA-seq; Solanum lycopersicum; vegetative
and reproductive growth

1. Introduction

In plants, the sexual reproduction process of flowering is a crucial developmental
phenomenon in the life cycle [1,2]. It marks the transition of plants from vegetative to
reproductive growth, a process commonly referred to as the flowering transition [3,4].
Initially, it was thought that flowering was an irreversible process in which the plant
initiates a series of life activities, such as flower organ formation, pollination and fruiting,
when it enters the reproductive growth stage [5]. Through ongoing scientific research,
it has been discovered that in the presence of a variety of environmental factors (light,
temperature, hormones, etc.) and genetic mutations, some plants enter the reproductive
growth stage but then switch to vegetative growth development, a phenomenon known
as flowering reversion [6–8]. The phenomenon of flowering reversion has attracted great
interest and has been studied in tomato (Solanum lycopersicum L.), Arabidopsis thaliana (L.)
Heynh., rice (Oryza sativa L.), maize (Zea mays L.), soybean (Glycine max (L.) Merr.) and other
crops [9–13]. Additionally, studies on related genes and gene regulation have gradually
been implemented and refined in recent years [14,15].

The development of plant flowers involves the regulation of the balance between
vegetative and reproductive growth, and the study of flowering reversion has been of great
interest to scientists [16]. Thus far, the pathways affecting the induction of floral organ
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initiation can be divided into six types, related to photoperiod, vernalization, temperature,
hormones, autonomy and age [17]. In the photoperiodic pathway, tomato is an interme-
diate day length plant and thus differs from the model plant A. thaliana in the process
of flowering reversion. SINGLE FLOWER TRUESS (SFT) is a homolog of FLOWERING
LOCUS T (FT) from A. thaliana. The sft mutation produces a late-flowering phenotype
under both long-day and short-day conditions and causes the replacement of flowers by
vegetative shoots [18]. SELF PRUNING (SP) is a gene homolog of CENTRORADIALIS
(CEN)/TERMINAL FLOWER1 (TFL1). The overexpression of SP in tomato causes flow-
ers to be replaced by leaves in inflorescences and inhibits the transition from vegetative
to reproductive growth [19,20]. In the vernalization pathway, the direction of meristem
development in Arabis paniculata mustard is associated with the expression of floral organ
characterization genes and the flowering initiation repressor gene PERPETUAL FLOWER-
ING 1 (PEP1) [21]. In longan (Dimocarpus longan Lour.), flower development ceases under
hot and humid winter conditions, and some inflorescences are transformed into nutritional
branches [13,22]. Among the established hormonal pathways, gibberellin plays a role in
promoting the initiation of flowering in plants, while cytokinins, auxins, methyl jasmonate
and brassinolide play important roles in the development of flowering organs [23–27].
Studies on age pathways have mainly focused on perennials, whereas in annual or biennial
plants more attention has been paid to the effects of environmental changes and gene
regulation on flowering reversion [28].

The genes affecting flowering reversion can also be divided into two categories: flow-
ering initiation-related genes and floral organ decision-related genes [29]. In recent years,
many results have been obtained through the screening and study of floral organ devel-
opment mutants [1,30]. The computational ordering of hundreds of tomato samples has
allowed the floral transition process to be reconstructed at a fine temporal resolution and
revealed that uf mutants exhibit a significant flowering reversion phenomenon. Unlike
the sft and dst mutations, the depletion of Uniflora (UF) has a minor impact on flower-
ing time but a major effect on shoot apical meristem (SAM) morphology during floral
transition [31]. The downregulation of the expression of the SEPALLATA homolog TM29
in tomato causes sepallata-like flowers, parthenocarpic fruit and ectopic shoots [32]. The
jointless (J) mutation in tomato causes the inflorescence to form one to three flowers and
then switch back to vegetative growth [33]. The failed termination of the floral meris-
tem and the occurrence of flowering reversion in the SlGT11 mutant indicate that SlGT11
controls floral organ patterning and floral determinacy in tomato [34]. In A. thaliana, the
FT and LEAFY (LFY) genes are involved in the photoperiodic regulation of flowering
initiation [35]. The ft mutants undergo flowering reversion under short-day conditions,
and LFY plays a similar role as a downstream gene of FT [36]. The SHORT VEGETATIVE
PHASE (SVP) gene is a flowering repressor gene that causes flowering reversion when
overexpressed in A. thaliana and Petunia hybrida [37]. In rice, mutations in the OsMADS1
and OsMADS15 genes cause the typical flowering reversion phenomenon [11]. In the
maize indeterminate 1 (id1) mutant, inflorescence meristems undergo reversion to produce
regenerative shoots, which may be associated with the accumulation of sugars [38]. In
soybean, GmBRI1, GmCPDs and GmNMH7 are associated with flowering reversion [39–41].
In switchgrass (Panicum virgatum L.), the simultaneous downregulation of SPL7 and SPL8
expression results in flowering reversion [42]. These studies of mutants and gene func-
tion have contributed to our understanding of flowering reversion, yet comprehensive
knowledge of gene expression patterns during flowering reversion is still lacking in tomato.

Transcriptome sequencing is an effective technique for examining complex biological
pathways and molecular mechanisms of gene expression networks by systematically study-
ing gene transcription at the entire transcriptional level [43]. In this study, we selected the
‘116’ and ‘117’ cultivars as research materials, among which the ‘117’ variety is highly sus-
ceptible to flowering reversion under the same growing conditions as ‘116’. The sampling
time points were set at the flowering induction period, flower bud differentiation period
and floral organ formation and developmental period, and inflorescence meristems were
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collected. The RNA sequencing (RNA-seq) platform was used to analyze differentially
expressed genes (DEGs) and to mine and screen candidate genes associated with flowering
reversion. Finally, the changes in the contents of endogenous hormones were measured,
and the plants were treated with exogenous hormones. Our primary aim was to gain an
overall understanding of the genes that regulate flowering reversion, which could benefit
tomato breeding for producing optimal strains in the future.

2. Results
2.1. Phenotypic Comparison between ‘116’ and ‘117’

Tomato flowering reversion occurs at the intersection at the top of the inflorescence
and produces branches or leaves, which gradually grow along with the flowers and fruits
as time progresses. As shown in Figure 1, flowering reversion was observed in ‘117’ plants
(Figure 1A), whereas no obvious signs were observed in ‘116’ plants (Figure 1B). Flowering
reversion became evident during the inflorescence period, and nutrient branches started to
grow in the fruiting and expansion stages. During the fruit-ripening period, there were
very obvious nutritional branches at the anterior end of the topmost fruit. The changes
in the inflorescence meristems of ‘116’ and ‘117’ were observed by light microscopy. As
shown in Figure 1C–H, in ‘117’, the inflorescence axis was divided in two, and the portion
in which flowering reversion occurred contained more cells with larger diameters. The
diameter was more consistent in ‘116’ plants.
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Figure 1. Phenotypic changes in the process of flowering reversion. (A,B) Phenotypes of flowering 
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tions of changes in flowering reversion in ‘117′ (C–E) and ‘116′ (F–H) at three different times (con-
sistent with the Early, Mid and Late periods of the RNA-seq assay sampling time). The black solid 
line (C–H) represents a scale of 500 μm. The red line (C–H) represents the distinction between the 
flower Pi: Pith, PC: Parenchyma cell, Ch: Chlorophyll, EP: Epidermal, Xy: Xylem. 

2.2. Quality Assessment and Repeat Correlation Analysis of RNA-seq Data 
A total of 119.72 Gb of clean data were obtained after data filtering; each sample 

yielded an average of 6.65 Gb of data, and the percentage of Q30 bases in each sample was 
not less than 92.55%. The raw data composition of the raw reads obtained from sequenc-
ing is shown in Figure S1. The specific sequencing data quality of the specific sequenced 
samples is shown in Table S2. Overall, all 18 samples showed good sequencing quality 
and fully met the requirements for subsequent data analysis. Additionally, the raw reads 
obtained from the RNA sequencing of all 18 samples were submitted to the NCBI Se-
quence Read Archive database with the registration number SUB10254346. 

After sequencing and comparison with the reference genome (the tomato genome 
version SL 4.0 and annotation ITAG 4.0), a total of six groups were finally screened in 
different time periods, and the numbers of genes identified are shown in Table S3. The 
lowest number of known genes accounted for 71.07%, and the total number of all genes 
in each group was greater than 24,000. Pearson correlation analysis was performed on 18 
samples of the two studied varieties, ‘116′ and ‘117′, in three periods; from the results 
(Figure 2), which show a correlation coefficient of 0.6 < R2 < 1, we concluded that the 18 
samples presented a relatively high degree of homogeneity of genes within each sample. 
R2 < 0.6 indicates poor reproducibility. Although several samples in the analysis showed 
R2 < 0.6, this did not affect our subsequent bioinformatic analysis. From the reproducibility 

Figure 1. Phenotypic changes in the process of flowering reversion. (A,B) Phenotypes of flowering re-
version with flower and fruit growth in ‘117’ (A) and ‘116’ (B) plants. (C–H) Microscopic observations
of changes in flowering reversion in ‘117’ (C–E) and ‘116’ (F–H) at three different times (consistent
with the Early, Mid and Late periods of the RNA-seq assay sampling time). The black solid line (C–H)
represents a scale of 500 µm. The red line (C–H) represents the distinction between the flower Pi:
Pith, PC: Parenchyma cell, Ch: Chlorophyll, EP: Epidermal, Xy: Xylem.
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2.2. Quality Assessment and Repeat Correlation Analysis of RNA-seq Data

A total of 119.72 Gb of clean data were obtained after data filtering; each sample
yielded an average of 6.65 Gb of data, and the percentage of Q30 bases in each sample was
not less than 92.55%. The raw data composition of the raw reads obtained from sequencing
is shown in Figure S1. The specific sequencing data quality of the specific sequenced
samples is shown in Table S2. Overall, all 18 samples showed good sequencing quality
and fully met the requirements for subsequent data analysis. Additionally, the raw reads
obtained from the RNA sequencing of all 18 samples were submitted to the NCBI Sequence
Read Archive database with the registration number SUB10254346.

After sequencing and comparison with the reference genome (the tomato genome
version SL 4.0 and annotation ITAG 4.0), a total of six groups were finally screened in
different time periods, and the numbers of genes identified are shown in Table S3. The
lowest number of known genes accounted for 71.07%, and the total number of all genes
in each group was greater than 24,000. Pearson correlation analysis was performed on
18 samples of the two studied varieties, ‘116’ and ‘117’, in three periods; from the results
(Figure 2), which show a correlation coefficient of 0.6 < R2 < 1, we concluded that the
18 samples presented a relatively high degree of homogeneity of genes within each sample.
R2 < 0.6 indicates poor reproducibility. Although several samples in the analysis showed
R2 < 0.6, this did not affect our subsequent bioinformatic analysis. From the reproducibility
tests, we learned that the correlation between the reproducibility of the two cultivars was
strongly influenced by time variation.
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Figure 2. Individual correlation analyses between 18 transcriptome samples.

2.3. Analysis of DEGs in Different Comparison Groups

The intra- (Early_116 vs. Mid_116, Early_116 vs. Late_116, Mid_116 vs. Late_116;
Early_117 vs. Mid_117, Early_117 vs. Late_117, Mid_117 vs. Late_117) and intergroup
(Early_116 vs. Early_117, Mid_116 vs. Mid_117, Late_116 vs. Late_116) comparisons
of DEGs between the 18 samples of ‘116’ (no flowering reversion) and ‘117’ (flowering
reversion) in different periods provide a clearer understanding of the up- and downregu-
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lation patterns of DEGs in the different comparative analyses, as detailed in Table S4 and
Figure 3A.
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Figure 3. Statistics of the numbers of DEGs. (A) Statistical analysis of DEGs in different groups in
different periods. (B) Volcano plot of DEGs between different groups. (C) Venn diagram statistics of
comparisons between different groups.

In ‘116’, the interperiod comparisons revealed 2, 2047 and 2067 upregulated genes
and 3, 741 and 852 downregulated genes in the early, middle and late stages, respectively,
while in ‘117’ the same comparison revealed 22, 3 and 18 upregulated genes and 4, 3 and
45 downregulated genes (Figure 3A). The number of DEGs in ‘116’ was significantly higher
than that in ‘117’ and much higher in the middle and late stages than in the early stages,
indicating that a large number of DEGs were involved in the flowering reversion pathway
in the middle and late stages and that the late stage was the main stage of differential gene
expression. Similar results were found in the late-stage intergroup comparisons, where a
total of 31 DEGs were upregulated and 22 DEGs were downregulated in the mid-stage of
the intergroup comparisons; in the late stage, the number of upregulated DEGs reached
839 and the number of downregulated DEGs reached 2313. The identified intergroup
differences are shown in more detail in Figure 3B. The proximity indicated that the mid–late
stage is the main period of flowering reversion, and this period is also the main stage of
gene activation for meristem determination, floral organ characteristic determination and
floral organ formation.

The VENN statistics of the comparative analysis between groups showed that the
number of DEGs shared between the pre- and mid-phases was 31, while the number of
DEGs shared with the post-phase was 57 and the number of DEGs shared between the mid-
and post-phases was 29 (Figure 3C). This further indicated that the large numbers of DEGs
associated with flowering reversion are expressed in the middle and late stages and that
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these genes are continuously and stably expressed during the maintenance of flowering,
which may be the mechanism whereby plants maintain their flowering status. The specific
expression levels and details of these DEGs are shown in Table S5.

2.4. GO and KEGG Enrichment Analysis of DEGs

GO analysis was performed on the set of DEGs identified between the two cultivars
at different times with a p-value ≤ 0.05 (Figure 4; Table S6). The GO analysis results were
divided into three main categories: biological process, cellular component and molecular
function. In the classification of biological processes, DEGs were annotated to a total
of 17 significant entries. The metabolic process, cellular process, localization, biological
regulation, regulation of biological process and response to stimulus entries were enriched
with large numbers of DEGs (≥150 DEGs), especially in the metabolic process category,
which included the most enriched DEGs. In the classification of cellular components, DEGs
were annotated to a total of 11 significant entries, among which the DEGs were abundantly
enriched in the membrane, cell, cell part, organelle, protein-containing complex and mem-
brane part entries. In the classification of molecular function, DEGs were annotated to
10 significant entries. The entries for binding, catalytic activity, transporter activity and
structural molecule activity were associated with a large number of DEGs. Thus, the GO
classification analysis suggested that DEGs associated with flowering reversion in tomato
may be involved in cellular metabolism, cellular components, binding and catalysis.
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KEGG pathway enrichment analysis was also performed on the set of DEGs screened
via transcriptome sequencing in three different periods for both the ‘116’ and ‘117’ va-
rieties (Figure 5, Table S7). The KEGG classifications were divided into five categories:
cellular processes, environmental information processing, genetic information process-
ing, metabolism and organismal systems (Figure 5A). In the cellular processes category,
transport and catabolism (256 DEGs) and cell growth and death (82 DEGs) were signifi-
cantly enriched. In the environmental information processing category, signal transduction
(284 DEGs) was significantly enriched. In the genetic information processing category,
translation (352 DEGs) and folding as well as sorting and degradation (248 DEGs) entries
were significantly enriched. The largest number of DEGs was enriched in the metabolism
category, and these genes were concentrated in the carbohydrate metabolism (540 DEGs),
carbohydrate metabolism (540 DEGs), global and overview maps (335 DEGs), amino acid
metabolism (272 DEGs) and lipid metabolism (271 DEGs) entries. During the KEGG
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pathway enrichment analysis of these DEGs, the top 20 most significant pathways were
selected by ranking the significantly enriched pathways from lowest to highest accord-
ing to Q-values ≤ 0.05. The biosynthesis of amino acids (ko01230, 379 DEGs), starch
and sucrose metabolism (ko00500, 288 DEGs), glycerophospholipid metabolism (ko00564,
142 DEGs), carbon metabolism (ko01200, 424 DEGs) and glycolysis/gluconeogenesis
(ko00010, 212 DEGs) pathways were significantly enriched, as shown in Figure 5B.
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To gain more insight into the enrichment of these DEGs in KEGG pathways, we
performed separate KEGG enrichment analyses of the DEGs from the three different
developmental stages of the two cultivars, as shown in Figure 6. In the early stage, these
DEGs were mainly concentrated in the DNA replication, cell cycle, meiosis and citrate
cycle (TCA cycle) categories (Figure 6A). In the middle stage, citrate cycle (TCA cycle)
entries were still the most enriched entries, except for carbon metabolism and pentose
and glucuronate interconversions, which were also enriched with large numbers of DEGs
(Figure 6B). In the later period, the most enriched entries were ribosome, biosynthesis of
amino acids, biosynthesis of antibiotics, carbon metabolism, starch and sucrose metabolism
and photosynthesis antenna proteins (Figure 6C).

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 8 of 21 

 

 

 
Figure 5. KEGG pathway enrichment analysis of the set of DEGs in different periods between ‘116′ 
and ‘117′. (A) Secondary classification of the KEGG pathways of DEGs. (B) Scatter plot of DEG en-
richment in the top 20 KEGG pathways. 

To gain more insight into the enrichment of these DEGs in KEGG pathways, we per-
formed separate KEGG enrichment analyses of the DEGs from the three different devel-
opmental stages of the two cultivars, as shown in Figure 6. In the early stage, these DEGs 
were mainly concentrated in the DNA replication, cell cycle, meiosis and citrate cycle 
(TCA cycle) categories (Figure 6A). In the middle stage, citrate cycle (TCA cycle) entries 
were still the most enriched entries, except for carbon metabolism and pentose and glu-
curonate interconversions, which were also enriched with large numbers of DEGs (Figure 
6B). In the later period, the most enriched entries were ribosome, biosynthesis of amino 
acids, biosynthesis of antibiotics, carbon metabolism, starch and sucrose metabolism and 
photosynthesis antenna proteins (Figure 6C). 

 
Figure 6. KEGG enrichment analysis of individual DEGs in three different periods. (A) KEGG anal-
ysis of DEGs at the early time point. (B) KEGG analysis of DEGs at the middle time point. (C) KEGG 
analysis of DEGs at the late time point. 

2.5. Identification of Key Regulatory Genes for Flower Formation Reversal in Tomato 
A large number of genes have been shown to be involved in the regulation of flow-

ering organ formation in tomato flowering reversion studies; based on previous studies, 
we summarized 351 flowering marker genes according to their expression in the tran-
scriptome, as shown in Figure 7 and Table S8 [31]. In the KEGG analysis, we identified 
DEGs enriched in photosynthesis, cell growth and death, and aging pathways, which may 
be factors regulating flowering reversion in tomato; the details of these results are shown 
in Table S9. Additionally, in the GO analysis, we identified three genes related to cell pro-
liferation—Solyc01g106830, Solyc02g092110 and Solyc10g083580—among the DEGs. 

Figure 6. KEGG enrichment analysis of individual DEGs in three different periods. (A) KEGG
analysis of DEGs at the early time point. (B) KEGG analysis of DEGs at the middle time point.
(C) KEGG analysis of DEGs at the late time point.



Int. J. Mol. Sci. 2022, 23, 8992 8 of 19

2.5. Identification of Key Regulatory Genes for Flower Formation Reversal in Tomato

A large number of genes have been shown to be involved in the regulation of flowering
organ formation in tomato flowering reversion studies; based on previous studies, we
summarized 351 flowering marker genes according to their expression in the transcriptome,
as shown in Figure 7 and Table S8 [31]. In the KEGG analysis, we identified DEGs enriched
in photosynthesis, cell growth and death, and aging pathways, which may be factors
regulating flowering reversion in tomato; the details of these results are shown in Table
S9. Additionally, in the GO analysis, we identified three genes related to cell proliferation—
Solyc01g106830, Solyc02g092110 and Solyc10g083580—among the DEGs.
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2.6. WGCNA of DEGs

To further investigate the interregulation of DEGs during flowering reversion in ‘116’
and ‘117’ plants at different times, a total of 3223 genes were screened for the construction of
scale-free co-expression networks, and according to the optimal power threshold for module
mining and co-expression topology, heatmap construction was performed according to
the optimal power threshold (Figure 8A), and 18 co-expression modules were established
(Figure 8B). Expression pattern analysis of genes within modules showed that genes within
the greenyellow, grey60 and sienna3 modules were highly expressed in ‘116’ plants (Pearson
correlation coefficient ≥0.8), and we performed KEGG enrichment analysis of the genes
within these modules. The results are shown in Figure S2. Genes within the yellowgreen,
brown, greenyellow, darkred and grey60 modules were highly expressed in the Late_116
group, suggesting that a relatively high expression trend for these genes may be correlated
with flowering time; the darkgreen, pink, saddlebrown and darkmagenta modules were
highly expressed in sample ‘117’, and genes within the pink module were highly expressed
within the Late_117 group. The mining of these genes may provide a basis for explaining
tomato flowering reversion.
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Figure 8. Gene co-expression network analysis by WGCNA. (A) Gene dendrogram colored according
to the correlations between gene expression levels. Different colors represent different gene modules
and indicate coefficients of dissimilarity between genes. (B) Module–sample association. The abscissa
represents the samples; the ordinate represents the modules. The numbers in each cell are the
correlation coefficients (top) and p-values (bottom).

2.7. Analysis of the Metabolic and Regulatory Pathways of DEGs

MapMan software was used to visualize the results of the enrichment analysis of
DEGs between the ‘Late’ groups to explore their regulatory pathways (Figures 9 and S3).
As shown in Figure 9, most DEGs were upregulated, and these DEGs were mainly asso-
ciated with such entries as the cell wall, lipid metabolism, carbohydrate metabolism and
amino acid metabolism. In addition, some genes in the photosynthesis pathway were
downregulated. Hormones such as IAA, abscisic acid (ABA), cytokinins and GA play an
important role in the process of flower formation reversal. These hormones have important
functions in plant flowering and flower organ formation. In the IAA hormone pathway,
6-BA-related genes were upregulated and GA-related genes were downregulated.
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2.8. Validation of RNA-Seq Data by RT-qPCR

To verify the reliability of the RNA-seq results, we selected nine DEGs for RT-qPCR
validation. These nine DEGs were mainly selected from 351 genes related to flowering,
including cell differentiation-related genes, tomato flower formation regulatory genes, and
tomato flowering repressor genes. As shown in Figure 10, the RT-qPCR and RNA-seq data
showed similar trends, confirming the accuracy of the RNA-seq results. Among these nine
DEGs, the CLE9 and CLV3 genes were expressed at low levels, which is consistent with their
expression patterns as cell differentiation-related genes. The expression levels of all genes
except SVP were higher in ‘116’ than in ‘117’, with S-WOX9 showing the highest expression.
The expression pattern of SVP differed from that of the other genes, as it showed higher
expression levels in ‘117’ than in ‘116’.
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2.9. Measurements of GA3, IAA and 6-BA Hormones

In the endogenous hormone analysis, we measured the contents of Gibberellin A3
(GA3), indole-3-acetic acid (IAA) and 6-Benzylaminopurine (6-BA). The test results showed
that the expression levels of the three hormones were different between the two varieties
(Figure 11). The content of GA3 showed a decreasing trend in ‘117’ and an increasing trend
in ‘116’, and the content in the middle and late periods was higher in ‘116’. The levels of
IAA and 6-BA showed similar trends; they were higher in ‘117’ than in ‘116’ and presented
a decreasing trend in ‘117’ and an increasing trend in ‘116’.
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2.10. Effects of Hormones on Flowering Reversion in Tomato

Tomato flowering reversion significantly changed the phenotypes of the two experi-
mental materials treated with different concentrations of GA3, IAA and 6-BA (Figure 12).
After GA3 treatment, plant height increased significantly and flowering reversion became
more obvious, with a large number of vegetative branches appearing at the tips of the
inflorescences; however, flowering was not reversed in ‘116’. After IAA treatment, the
most obvious change was the reversal of flowering in ‘116’ plants. After 6-BA treatment,
although flowering reversion was not observed, the vegetative branches grew rapidly. With
increasing concentrations of the three hormones, the development of flowering reversion
became more obvious and vegetative branches appeared earlier.
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3. Discussion
3.1. Transcriptomic Analysis Yields 3223 DEGs Associated with Flowering Reversion

Flowering reversion is a phenomenon in which differentiated floral organs and tissues
show a reversal of their development trajectories and enter vegetative growth again, which
has been found in many species, including both monocotyledons and dicotyledons [8,44].
In the study of the molecular mechanism of floral organogenesis, scientists have found a
variety of genes related to flowering reversion by investigating flowering reversion-related
mutants and flower development [45–47]. However, flowering reversion is not simply the
reversion of flower development but also may involve other novel biological regulatory
processes. Therefore, it is necessary to conduct a more comprehensive molecular biological
analysis of flowering reversion from a new point of view. In this study, transcriptome
analysis was carried out on the inflorescence meristem, which readily underwent flowering
reversion in ‘117’ but did not show flowering reversion in ‘116’. According to the devel-
opmental stages and different developmental characteristics of the different materials, it
can be inferred that the DEGs identified in ‘116’/’117’ are related to flowering reversion.
A total of 3223 DEGs that may be involved in tomato flowering reversion were screened,
among which 25 genes showed differences in gene expression in the three periods.

Through GO enrichment, KRGG pathway enrichment and WGCNA of the 3223 DEGs
screened, it was found that many biological processes, such as cell signal transduction, gene
transcriptional regulation, protein post-transcriptional regulation and metabolic pathway
regulation, were involved in the induction of tomato flowering reversion. The results
showed that the induction of tomato flowering reversion is a complex phenomenon in-
volving many biological processes. In addition, this study revealed that a large number of
DEGs were enriched in classifications related to organelles and membrane structure, and a
large number of DEGs were also enriched in plant signal transduction-related classifica-
tions. Thus, increased signal transduction could be observed among tomato inflorescence
meristem cells undergoing flowering reversion.

3.2. The Relationship between Floral Organ Development and Flowering Reversion

Floral organ development refers to the process by which the stem tip or axillary meris-
tem changes from vegetative growth to reproductive growth and finally develops into
florets under the joint action of appropriate internal and external factors when the plant
enters a certain growth period. This process involves the developmental transformation of
the stem tip meristem and the transformation of spikelet meristem to spikelet meristem,
spikelet meristem to floret meristem and floret meristem to primordial meristem in each
whorl organ. Flowering reversion can occur at different stages of floral organ development
when internal and external environmental conditions are not suitable for the further de-
velopment of floral organs; in this process, the floret primordium, spikelet primordium or
inflorescence primordium may partially or completely re-enter vegetative growth, rather
than gradually degenerate to a higher level of tissue formation [48–50]. In addition to the
reversion of these tissues located at the top of organs, other types of organs that are not fully
differentiated (such as the bract primordium, calyx primordium and petal primordium) can
also undergo reversal; they will eventually lose the ability to develop into regenerated buds,
such as the apical tissues of organs, and will instead form leaves or leaf-like vegetative
organs [51].

In this study, through the analysis of the expression of homologous genes related
to flower development in tomato, it was found that the screened DEGs were consistent
with 58 genes related to flower development. The relative expression of some key genes
in floral organ development was analyzed, and it was found that the expression of CLE9
and CLV3, which are related to cell differentiation, was lower in ‘117’ than in ‘116’. FA and
SFT, which are homologous genes of the flowering-promoting genes LFY and FT, were
expressed at very low levels in the two materials but were expressed at higher levels in
‘116’. The expression patterns of the PUCHI, UF, LOB30 and S-WOX9 genes were similar.
In contrast to other genes, the flowering suppressor gene SVP was highly expressed in
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‘117’. These results are similar to those of previous studies indicating that there are large
differences between the molecular mechanisms of floral organ development and flowering
reversion [31,52]. Previous studies have also found that the expression patterns of genes
related to flower development in plants undergoing flowering reversion are not completely
opposite those in normal flowering plants and that there is still some relationship between
them [10,14,53].

3.3. Effect of Plant Hormones on Flowering Reversion

Plant hormones are small molecular compounds whose contents in plants are very
low, but they are nevertheless involved in all aspects of plant development [54]. Gibberellin,
cytokinins, auxins, methyl jasmonate and brassinolide all play important roles in the
development of plant floral organs [55]. Plant hormones also play an important role in
the process of flowering reversion; for example, in longan, the levels of cytokinins in
materials undergoing flowering reversion are lower than those in materials not showing
this phenomenon; in contrast, the contents of gibberellin and abscisic acid are higher [13].
The overexpression of cytokinin synthesis genes leads to the abnormal development of
floral organs in Arabidopsis thaliana [24].

The regulation of plant development by different hormones is not completely inde-
pendent, and there are a variety of complex relationships between these pathways. For
example, the elimination of proteins needed for the functions of hormones, such as aux-
ins, ethylene and jasmonic acid, is related to the activity of the ubiquitin 26S proteasome
(ubiquitin-26S proteasome) [56]. In addition, different hormones may show competitive
or antagonistic functions. Cytokinins and auxins play an indispensable role in plant de-
velopment, and the ratio of CTK/AUX determines the developmental trajectories of the
plant apical meristem, root apical meristem and tissue cultured in vitro [57]. Abscisic acid,
gibberellin and ethylene play antagonistic roles in the production of phenolic acids in the
hairy roots of Salvia miltiorrhiza. The application of one hormone alone can effectively
induce an increase in phenolic acid content, but when two kinds of hormones are added at
the same time the contents of different types of phenolic acids are significantly affected [58].

In this study, we determined the contents of endogenous hormones (GA3, IAA and
6-BA) in tomato inflorescence meristems. There were significant differences in the contents
of the three hormones in the early stage, which were higher than those in ‘117’, indicating
that they were involved in the process of flower formation reversion. In ‘116’ plants, the
contents of the three hormones increased gradually; in contrast, the contents of 6-BA and
IAA remained high in ‘117’ plants. The results of exogenous hormone induction treatment
showed that there were significant changes in flowering reversion after treatment with
the three hormones. GA3 and 6-BA may be related to growth after flowering reversion,
and IAA may be involved in the process of flowering reversion. The results suggest that
tomato flowering reversion may be affected by multiple hormones or controlled by multiple
hormone-related genes.

3.4. Flowering Reversion Is the Result of Multiple Biological Processes

In the study of floral organ development, it has been established that transformation
from vegetative growth to reproductive growth involves flowering signal perception, signal
transmission, flowering initiation and floral organ determination-related genes, which
determine the developmental direction of the meristem in different periods. In the study
of flowering reversion in plants, several genes involved in flowering reversion have been
found through the study of mutants or reverse genetics; for example, flowering reversion
has been studied in in Arabidopsis thaliana ft and lfy-6 mutants [59,60], flowering reversion
has been studies in rice OsMADS15 and OsMADS1 mutants [61], and floret reversion in
the inflorescence meristems of maize has been studied in id1 mutants [62]. However, these
flowering reversion phenomena can also be associated with flower development to some
degree. In addition, flowering reversion may involve several biological processes, such
as the inhibition of further floral organ development, regulation of differentiated floral
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meristem development and promotion of vegetative growth [63]. Although this study did
not prove the existence of multiple pathways of flowering reversion under experimental
conditions, on the basis of previous studies and our transcriptome analysis, it can be
inferred that there are many biological pathways related to flowering reversion in tomato.

4. Materials and Methods
4.1. Plant Materials and Growth

The tomato cultivars ‘116’ and ‘117’ used in this study were obtained from our labora-
tory. The plants were grown in a solar greenhouse located at the experimental site of the
Northeastern Agricultural University, Harbin, China (126.916 E, 45.773 N). Four-week-old
seedlings were transplanted, and regular water and fertilizer management were then ap-
plied until flowering and fruiting. Randomized complete block designs were used, with
10 plants planted in each plot and three replications. The sampled tissue was selected from
the inflorescence meristem of the second or third spikes of flowers, and sampling was
performed three times, during flowering induction, floral bud differentiation and floral
organ formation and development [31]. The collected tissues were immediately immersed
in liquid nitrogen and subsequently stored at −80 ◦C until use.

4.2. Microscopic Structure Analysis of Tomato Flowering Reversion

On the basis of anatomical analysis, histological analyses were performed according to
the different periods of the sampled inflorescence meristem. The inflorescence meristems
were fixed in FAA (formalin:acetic acid:70% alcohol = 1:1:18) fixative for 8 h, followed
by immersion in Ehrlich Hematoxylin solution for 3 days [41]. After the completion of
staining, the tissues were rinsed with distilled water for 1.5 h, followed by decolorization
in an ethanol gradient (50, 70, 80 and 90% for 20 min each, followed by 100% for 15 min
two times) and clearing treatment with xylene (ethanol:xylene = 1:1 solution for 1.5 h,
followed by 3 treatments with pure xylene for 1.5 h each), after which the samples were
embedded, sectioned and imaged [10]. Imaging was performed under an Olympus BX53
light microscope (BX53, Olympus, Tokyo, Japan).

4.3. mRNA Library Construction and Sequencing

The extraction and detection of total RNA, the ethanol precipitation protocol and
CTAB-pBIOZOL (product code: BSC55S1, Bioer Technology, Hangzhou, China) reagent
were used for the purification of total RNA from the plant tissue, according to the manu-
facturer’s instructions. Subsequently, the total RNA was qualified and quantified using a
NanoDrop instrument and Agilent 2100 Bioanalyzer (Thermo Fisher Scientific, Waltham,
MA, USA) [64]. For the construction of mRNA libraries, oligo(dT)-attached magnetic
beads (L-3002A) were used to purify mRNA (bio-Linkedin, Shanghai, China). The final
library was amplified with phi29 (D7053L) to produce DNA nanoballs (DNBs) contain-
ing more than 300 copies of one molecule (Beyotiom, Shanghai, China) [65]. DNBs were
loaded into the patterned nanoarray and paired-end 150-base reads were generated on the
MGISEQ-2000 platform (BGI, Shenzhen, China) [66]. Eighteen libraries were constructed,
representing six biological variants and three replicates.

4.4. Mapping Reads and DEG Analysis

The sequencing data were filtered with SOAPnuke (v1.5.2) by removing (1) reads
containing sequencing adapters, (2) reads whose low-quality base ratio (base quality less
than or equal to 5) was more than 20% and (3) reads whose unknown base (‘N’ base) ratio
was more than 5%. Then, clean reads were obtained and stored in FASTQ format [67]. The
clean reads were mapped to the S. lycopersicum reference genome sequence (tomato genome
version SL 4.0 and annotation ITAG 4.0) using HISAT2 (v2.0.4) [68]. Bowtie2 (v2.2.5) was
applied to align the clean reads to the reference coding gene set, and the expression levels
of the genes were calculated by RSEM (v1.2.12) [69]. DEGs were identified using DESeq2
(v1.4.5) according to a Q-value ≤ 0.05 and |log2FC| ≥ 2 [70].
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4.5. Gene Ontology (GO) Functional and KEGG Pathway Enrichment Analysis of DEGs

To gain insight into the observed phenotypic changes, GO (http://www.geneontology.
org/) (accessed on 2 April 2022) and KEGG (https://www.kegg.jp/) (accessed on 2 April
2022) enrichment analyses of annotated DEGs were performed using Phyper (https://en.
wikipedia.org/wiki/Hypergeometric_distribution) (accessed on 10 April 2022) based on
the hypergeometric test [71]. The significance levels of terms and pathways were subjected
to Bonferroni correction based on the Q-value with a rigorous threshold (Q-value ≤ 0.05).

4.6. Weighted Gene Co-Expression Network Analysis (WGCNA)

The WGCNA version 1.70–3 R package was used to perform WGCNA based on the
expression correlation pattern between DEGs [72]. The analysis was applied to all DEGs,
and log2 (FPKM + 1) values were used as the input. Soft thresholds were set as the optimal
values (SET. R. sq value > 0.8 and slope value close to −1) to make the network suitable for
a scale-free topology. The minimum number of genes within a module was 25 (minModule-
Size = 25), and the similar module merging threshold was 0.25 (cutHeight = 0.25). Based
on the Pearson correlation coefficient between samples, we chose Pearson values > 0.8 as
the analysis module for further discussion.

4.7. Analysis of MapMan Biological Functions of DEGs

MapMan is software used for the functional analysis of plant genes and pathway
analysis that enables the integration and visualization of the functions of DEGs in metabolic
pathways [73]. We downloaded ITAG (v4.0) Mapping and Pathways from the MapMan
Store and loaded them into the appropriate locations in the software. When using ITAG
(v4.0) mapping for X4 annotation, only those pathways marked as X4 were used. The
experimental matrix (i.e., FPKM values of DEGs in the transcriptome) was loaded, and the
newly loaded DEG data were employed as the matrix for microarray analysis in MapMan.
The experimental data were displayed along the pathway, after which the corresponding
Pathways file and then X4.4 Solanum lycopersicum mapping were selected, all adjustments
were completed and the image was outputted.

4.8. Expression Profiles of Plant Flowering-Related Marker Genes

By combining previous studies and our preliminary experimental results, 351 genes
related to plant flowering were finally selected [31]. The FPKM expression values of these
genes were then row-normalized and used to generate heatmaps.

4.9. Real-Time qPCR Analysis

Total RNA was extracted using CTAB-pBIOZOL reagent, following the methodological
steps in the accompanying instructions. cDNA was synthesized using the Transcript II One-
Step gDNA Removal and cDNA Synthesis Kit (TransGen Biotech, Beijing, China). In this
study, all specific PCR primers were designed using Primer Premier 5 software, as shown in
Table S1. The EF1α gene was used as an internal reference gene [74]. The experiments were
performed using AceQ® qPCR SYBR® Green Master Mix (Vazyme, Nanjing, China) and
a qTOWER3G detection system (Analytik Jena, Thuringia, Germany). The PCR reaction
was performed as follows: 10 min at 95 ◦C and 40 cycles of 94 ◦C for 20 s and 60 ◦C for 30 s.
Expression analysis of the genes was performed using the 2−∆∆CT method, and significance
analysis was performed using SPSS 7.0.

4.10. Measurements of Relevant Hormone Contents

Inflorescence meristems were collected in each of the above three periods three times
in each experimental group from both cultivars. The samples were extracted and purified
according to the method of Li et al. [75]. GA3 (B20187), IAA (B21810) and 6-BA (B24213)
standards from Sigma (Yuanye Bio-Technology Co., Ltd., Shanghai, China) were used in
these analyses.

http://www.geneontology.org/
http://www.geneontology.org/
https://www.kegg.jp/
https://en.wikipedia.org/wiki/Hypergeometric_distribution
https://en.wikipedia.org/wiki/Hypergeometric_distribution
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4.11. Exogenous Hormone Treatment

Tomato plants were sprayed with different concentrations of exogenous hormones
at the seedling stage. The three hormones were GA3, IAA and 6-BA, consistent with the
determination of endogenous hormones. The GA3 application concentrations were 100,
150 and 200 mg·L−1, and the IAA and 6-BA application concentrations were 50, 100 and
150 mg·L−1. Thirty plants with the same growth were selected for each hormone treatment,
and they were divided into 3 groups with 10 plants in each group, three replications were
performed and the whole experiment was repeated three times, with growth status and
flowering reversion recorded every week.

5. Conclusions

In this study, through the phenotypic and microscopic observation of flowering rever-
sion in tomato, it was found that, during flowering reversion, the inflorescence meristem
formed vegetative branches. The transcriptomic analysis of inflorescence meristems in three
different developmental stages of tomato materials ‘117’ (showing flowering reversion) and
‘116’ (showing normal development) resulted in the screening of 3223 DEGs. Through the
multidatabase annotation of these DEGs, it was found that multiple biological processes,
such as cell signaling, gene transcription regulation, protein post-transcriptional regulation
and metabolic pathways, were involved in the reversion of tomato flowering. In addition,
a large number of DEGs were enriched in organelle- and membrane-associated categories,
and from this, combined with a large number of DEGs enriched in plant signaling-related
categories, it can be speculated that these DEGs may play a role in the reception and
transmission of plant hormone signals and related downstream signals. Combined with
the results of previous studies, our work showed that the gene expression levels of CLE9,
FA, PUCHI, UF, CLV3, LOB30, SFT, S-WOX9 and SVP were significantly different in the
two materials. The analyses of endogenous hormone and exogenous hormone induction
showed that a variety of hormones were involved in tomato flowering reversion. These
outcomes provide new insights into flower development in tomato and other plants and
provide a basis for the study of optimal tomato plant types.
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