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ABSTRACT Genome-wide association studies (GWAS) can identify genetic variants
responsible for naturally occurring and quantitative phenotypic variation. Association
studies therefore provide a powerful complement to approaches that rely on de
novo mutations for characterizing gene function. Although bacteria should be ame-
nable to GWAS, few GWAS have been conducted on bacteria, and the extent to
which nonindependence among genomic variants (e.g., linkage disequilibrium [LD])
and the genetic architecture of phenotypic traits will affect GWAS performance is
unclear. We apply association analyses to identify candidate genes underlying varia-
tion in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of En-
sifer meliloti. For 11 traits, we find genotype-phenotype associations that are stron-
ger than expected by chance, with the candidates in relatively small linkage groups,
indicating that LD does not preclude resolving association candidates to relatively
small genomic regions. The significant candidates show an enrichment for nucleo-
tide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five
traits, candidates are enriched in large linkage groups, a possible signature of epista-
sis. Many of the variants most strongly associated with symbiosis phenotypes were
in genes previously identified as being involved in nitrogen fixation or nodulation.
For other traits, apparently strong associations were not stronger than the range of
associations detected in permuted data. In sum, our data show that GWAS in bacte-
ria may be a powerful tool for characterizing genetic architecture and identifying
genes responsible for phenotypic variation. However, careful evaluation of candi-
dates is necessary to avoid false signals of association.

IMPORTANCE Genome-wide association analyses are a powerful approach for iden-
tifying gene function. These analyses are becoming commonplace in studies of hu-
mans, domesticated animals, and crop plants but have rarely been conducted in
bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti, an
agriculturally and ecologically important bacterium because it fixes nitrogen when in
symbiosis with leguminous plants. We identified candidate alleles and gene
presence-absence variants underlying variation in symbiosis traits, antibiotic resis-
tance, and use of various carbon sources; some of these candidates are in genes
previously known to affect these traits whereas others were in genes that have not
been well characterized. Our results point to the potential power of association anal-
yses in bacteria, but also to the need to carefully evaluate the potential for false as-
sociations.
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Identifying gene function in bacteria has largely relied on forward or reverse genetics.
In their standard application, these approaches rely on de novo mutations, and often

mutations that cause complete loss of function. Association analyses, or genome-wide
association studies (GWAS), provide a complementary approach for identifying gene
function by using statistical approaches to associate naturally occurring allelic variation
with phenotypic variation (1). Unlike approaches that rely on de novo mutations, GWAS
identify segregating alleles that are responsible for naturally occurring phenotypic
variation, the variation that has resulted from and is the raw material for evolution.
Identifying naturally segregating phenotype-associated alleles can inform fundamental
questions about genotype-to-phenotype mapping, such as the role of regulatory versus
coding variants (e.g., reference 2), rare versus common variants (e.g., references 3 and
4), SNPs versus structural variants (e.g., reference 5), and the effect sizes of causative
variants (e.g., references 6 and 7).

GWAS have been used to explore the genetic basis of phenotypic variation in
humans (7), model eukaryotes (e.g., references 8 and 9), and domesticated plants and
animals (10, 11). Because bacterial genomes can be sequenced relatively inexpensively
and phenotypes can be readily measured under controlled conditions, bacteria could
be highly amenable to association analyses (12–14). In fact, there are several examples
of GWA methods successfully being applied to bacteria. GWAS have identified both
previously known and novel operons associated with nickel tolerance in Mesorhizobium
(15), copy-number variants associated with alginate metabolism in Vibrio (16),
presence-absence variation (PAV) of known and novel virulence factors associated with
infectivity in Listeria (17), antibiotic resistance genes in several lineages (18, 19), and
both gene presence-absence and nucleotide variants associated with host range of
Campylobacter (20).

Despite the potential for bacterial GWAS, the nonindependence of segregating
variants, i.e., linkage disequilibrium (LD), may be problematic. Recombination in pro-
karyotes typically operates by gene conversion or double recombination (reviewed in
reference 21). Thus, LD will not necessarily decay monotonically with genomic distance
as it is generally assumed to do in eukaryotic species (22). Recombination rates vary
widely both among bacterial lineages and within species (23, 24), in part due to
variation among species in transformation competence and DNA repair machinery (25)
or population structure (26). The extent of recombination and relatedness might limit
the ability of GWAS to pinpoint the specific variants responsible for phenotypic
variation and thus is important to consider when choosing statistical approaches to
conduct association analyses in bacteria (14, 18, 27).

Ensifer meliloti (formerly Sinorhizobium meliloti) is an ecologically and agriculturally
important species that has been extensively studied. Much of the work on Ensifer has
been motivated by its role as a facultative symbiont of legumes, primarily Medicago
species. As a symbiont, Ensifer converts atmospheric N2 into a plant-usable form,
thereby providing plants with an essential nutrient and contributing to plant growth
and productivity (28). Because of the importance of N-fixation, most genetic analyses of
Ensifer have focused on genes responsible for the establishment and function of
symbiosis (reviewed in reference 29). These analyses have identified genes responsible
for attraction of rhizobia to plant roots, nodule establishment, and N-fixation (30).
However, which of these or other genes are segregating allelic variation responsible for
phenotypic variation in nature is an open question. Moreover, the genetic basis of other
traits that might be important in Ensifer ecology and survival outside the host has not
been well studied.

The primary objectives of this work were to evaluate the performance of phenotype-
genotype mapping in bacteria and to advance our understanding of the genetic basis
of phenotypic variation in Ensifer. We pursued these objectives using a collection of 153
strains of E. meliloti. We fully sequenced each strain to identify single nucleotide
polymorphisms (SNPs) and gene presence absence variants (PAVs) and phenotyped for
20 diverse symbiotic, metabolic, growth, and environmental tolerance traits. Because
the performance of association mapping depends on the population genomic charac-
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teristics of the sample, we first characterized genomic diversity and genome-wide LD.
We then used association analyses to characterize the number, minor allele frequency,
and effect sizes of variants contributing to phenotypic variation, using permutations to
identify those variants that had greater contribution than expected by chance.

RESULTS

We used the Illumina platform to sequence 153 Ensifer meliloti strains to a mean
depth of 19.5�, and then aligned reads to E. meliloti strain USDA1106 to identify
genomic variants. Across the three main replicons of the E. meliloti genome (�3.5-Mb
chromosome, �1.8-Mb megaplasmid pSymB, and �1.5-Mb megaplasmid pSymA), we
identified 439,288 segregating sites with �20% missing data, 96.2% of which were
biallelic, and 66,283 annotated genes that varied in whether they were present or
absent (PAVs) (706 genes were present in all strains, 1,219 genes were present in all but
one strain, and 31,787 genes were present in only one strain). Of these variants, 123,955
(110,603 SNPs and 13,352 PAVs) had a minor allele frequency (MAF) �5%. Consistent
with previous characterizations of genomic diversity in Ensifer (e.g., references 31 and
32), nucleotide diversity was less on the chromosome (196,881 SNPs, 1 per 19 bp, �W �

0.010, �� � 0.004) than either pSymB (146,268 SNPs, 1 per 11 bp, �W � 0.016, �� �

0.009) or pSymA (96,139 SNPs, 1 per 14 bp, �W � 0.013, �� � 0.009). Similar patterns
were obtained when including only those variants with MAF � 0.05 (chromosome
�W � 0.002, �� � 0.003; pSymB �W � 0.005, �� � 0.008; pSymA �W � 0.006, �� �

0.008). Most (10,318) of the common (MAF � 0.05) PAVs were not present in the
reference genome, and so we did not attempt to determine their genomic location. Of
the PAVs that were present in the reference, the replicon with the greatest proportion
of variable genes was megaplasmid pSymA (54% of the genes on pSymA, 860 genes),
followed by pSymB (46%, 780 genes), and the chromosome (37%, 1,394 genes).

Variants in strong linkage disequilibrium (LD) are nonindependent and thus statis-
tically indistinguishable in association analyses (e.g., reference 33). To identify noninde-
pendence among the �124,000 common variants (MAF � 0.05), we identified groups
of variants in high LD with one another. At an LD threshold of r2 � 0.95, approximately
20% of the SNPs (22,057) and 80% of the PAVs (10,764) were not grouped with any
other variants. However, the majority of variants were strongly linked to one or more
other variants. The median size of these groups was three variants, and most groups
contained only SNPs (8,364 groups) or only PAVs (632 groups) (Fig. 1), indicating that
association analyses conducted only on SNPs are unlikely to identify PAVs responsible
for phenotypic variation and vice versa.

LD tended to be more extensive on the chromosome than either megaplasmid. The
mean r2 between pairs of SNPs was 0.24 on the chromosome, 0.05 on pSymB, and 0.12
on pSymA (Table 1). Chromosomal LD groups with more than one SNP contained a
median of seven variants and spanned a median distance of �170 kbp (Table 1). In
contrast, on pSymB and pSymA, the median group size of groups with more than one
variant was three variants and the median spanned distance was 500 to 1,000 bp
(Table 1 and Fig. 1; see also Fig. S1C in the supplemental material). Thus, while
recombination has shaped the distribution of segregating variation on the chromo-
some, it has played a larger role on the megaplasmids. At a relaxed LD threshold of r2 �

0.80, there were fewer LD groups, but the distributions of LD group size and types of
variants contained were similar (Fig. S1A and B).

Phenotypic variation explained. Association analyses are more likely to identify
genes responsible for variation of Mendelian traits than for traits with continuous
variation determined by genetic variation at many loci with small effects (6). Given this
expectation, we selected five focal traits that capture a range of trait types and the
range of phenotypic distributions among the studied 20 traits (Fig. S2): the distribution
of plant biomass was approximately uniform, nodule number was approximately
normal, putrescine metabolism was truncated normal, spectinomycin resistance was
binary, and desiccation tolerance was multimodal (Fig. 2A). To estimate the proportion
of phenotypic variation explained (PVE) by genetic differences rather than microenvi-

GWAS in Ensifer meliloti

September/October 2018 Volume 3 Issue 5 e00386-18 msphere.asm.org 3

msphere.asm.org


ronmental differences the strains experienced during the phenotypic assays, we ap-
plied two “chip heritability” (34) approaches to each trait. First, we used a linear mixed
model (LMM) that assumes effect sizes are normally distributed and all variants
contribute to variation. In essence, this method estimates how much phenotypic
variation can be explained by genetic relatedness among strains and should be
powerful at explaining variation in highly polygenic traits. Second, we used a Bayesian
sparse linear mixed model (BSLMM) which includes a small effect for each variant, much
like the LMM, as well as larger effects for a limited number of variants (35). The BSLMM
should be more powerful than the LMM, because it can explain variation in highly
polygenic traits as well as traits with a few genes of large effect. Estimates of PVE

FIG 1 (A) Distribution of number of variants per LD group (at r2 � 0.95), (B) distribution of genomic
distance spanned by LD groups found on the chromosome or the megaplasmids (including only groups
found only on one replicon), and (C) number of groups containing only PAVs, only SNPs, or both as well
as the number of LD groups found within and across replicons. There were 22,057 SNPs and 10,674 PAVs
that were not grouped with other variants and 9,501 LD groups with a median of three variants per
group, and the largest group contained 6,970 variants. Half of all variants are in groups that contain �12
variants. Only variants used for association testing (minor allele frequency � 5%, missingness � 20%)
were grouped.

TABLE 1 Mean r2, a measure of nonindependence between segregating variants, is generally low between pairs of variants of different
types or on different replicons, while the median size and spanned distance of LD groups is less on the megaplasmids than on the
chromosome

Variant type or location
Mean r2 between
variants

No. ungrouped
variants

No. of LD
groups

Median no. of variants
per LD group

Median LD group
spanned distancea

All 0.06 32,821 9,501 3 N/A
SNPs only 0.07 22,057 8,364 3 N/A
PAVs only 0.02 10,764 632 2 N/A
Between SNPs and PAVs 0.03 N/A 505 7 N/A
Chromosome SNPs 0.24 789 900 7 173,406
pSymB SNPs 0.05 13,671 4,478 3 518
pSymA SNPs 0.12 7,597 2,912 3 1,063
aSpanned distance calculated only for LD groups with SNPs that were all on the same replicon.
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differed widely among these traits, ranging from nearly 100% for spectinomycin
resistance to �10% for putrescine utilization. For all traits except spectinomycin
resistance, the LMM and BSLMM estimates were similar (Fig. 2B), suggesting either that
the traits are controlled by many small effect variants or that there are large effect
variants but they are found in closely related strains.

To verify that the estimates of PVE exceed what is expected by chance, we created
100 permuted data sets in which we randomly assigned phenotypic values to geno-
types and reran the PVE analyses, resulting in an empirical null distribution of PVE
estimates. For nearly all traits, genetic variation explained �25% of the variation in the
permuted phenotypes (Fig. 2B). However, for spectinomycin resistance the upper
bound of the BSLMM null distribution, but not the LMM null distribution, was nearly
100%, suggesting that BSLMM is overestimating PVE. This overestimate might be
because there are relatively few spectinomycin-sensitive strains, resulting in a high
probability that there are noncausative variants having alleles that match the distribu-
tion of resistance-sensitivity. The overestimate also indicates the need for cautious
interpretation of PVE estimates for highly imbalanced phenotypic data.

Single-variant associations. The PVE analyses estimate the proportion of pheno-
typic variation that has a genetic basis but do not identify the causal variants. To
identify causal variants, we conducted single-variant association analyses in which a
measure of pairwise strain relatedness, the K-matrix, is used as a covariate and the

FIG 2 (A) Phenotypic distributions of the focal traits and (B) proportion of phenotypic variance explained
(PVE) by relatedness among strains (i.e., the K-matrix) alone, as predicted by a linear mixed model, and by
both relatedness and large-effect variants through a Bayesian sparse linear mixed model (BSLMM) imple-
mented in GEMMA. PVE was calculated for all variants, only SNPs, and only PAVs. The gray lines indicate
the lower 95% of the empirical null distributions from permuted data sets.
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effect of relatedness is statistically removed before testing each variant. Before analyz-
ing the empirical data, we generated null expectations, i.e., empirical false discovery
expectations, for the strength of variant-phenotype associations for each trait using the
same data permutations we used to evaluate the performance of the LMM and BSLMM.
Permutation tests are computationally intensive but produce null distributions that
match the properties (e.g., trait distribution, amount of missing data, LD patterns) of
each data set (36). The permuted data revealed that a substantial portion of phenotypic
variation can be associated with genomic variants even when there is no true relation-
ship between genotype and phenotype. The reason for this is simply that with more
than 40,000 LD groups, one expects to find a considerable number of chance associ-
ations.

By comparing variants identified for each trait to the empirical null expectations, we
determined which associations were stronger than expected by chance. For example,
for A17 plant biomass (reflective of the symbiotic benefit each strain provides the host),
the cumulative effects of the 10 most strongly associated variants explain more
variation than is expected by chance (Fig. 3A); however, this cumulative effect is due
primarily to only the top three variants (Fig. 3B). Similarly, among the other focal traits,
only one variant clearly exceeds the null expectation for spectinomycin resistance and
desiccation tolerance (Fig. 4). In contrast, for A17 nodule number and use of putrescine
as a carbon source, the most strongly associated variants explain no more of the
phenotypic variance than expected by chance (Fig. 4). We extended this analysis to the
15 nonfocal traits (Fig. S3) and found that seven had stronger genotype-phenotype
associations than expected by chance (formic acid and 2-aminoethanol as C sources;
gentamicin, streptomycin, biomass of the R108 host; and annual precipitation [AP] and
annual mean temperature [AMT]). For all but two of these traits (2-aminoethanol as C
source and AMT), the PVE by the polygenic modeling was also significantly greater than
the empirical null expectation (Fig. S4), indicating that for half of the traits there was
statistical power to identify candidate genes (Table 2). The number of nodules formed
on the R108 host was unusual in that the most strongly associated variants did not
explain more variation than the empirical null, but the polygenic modeling did. For all
traits except use of 2-aminoethanol as C source, however, the polygenic model
estimate of the PVE was greater than that from the top variants (Table 3), indicating that
phenotypic variation also was influenced by undetected variants of small effect or

FIG 3 Evaluation of the expected proportion of variance explained (PVE) for A17 biomass by the most
strongly associated variants as determined by association testing and forward model selection. Panel A
shows the cumulative PVE explained by the 10 most strongly associated variants (black line, more than
10 variants rarely explained more variation than expected by chance) as well as the cumulative PVE from
each of 100 randomly permuted data sets that make up the empirical null distribution (gray lines). For
A17 biomass, the actual data explain more variance than the permuted data; however, panel B shows
that only the first 3 variants explain more of the residual PVE (i.e., after accounting for PVE of the previous
variants) than expected by chance. In panel B, the vertical gray lines represent the lower 95% of the null
distribution.
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unmodeled sources of genetic variation (e.g., copy number variants and epistatic
interactions).

For the ten traits for which we had power to identify candidate genes, we performed
additional analyses. First, we compared the mean minor allele frequency (MAF) of the
candidates to the MAF of the variants most strongly associated with the permuted data.
This analysis revealed that candidates most strongly associated with variation in A17
biomass, and, to a lesser extent, annual mean temperature, were highly enriched for
intermediate frequency variants (Fig. S5). We conducted a similar analysis on LD group
size. We found that for five traits (A17 biomass, R108 biomass, annual mean temper-
ature, streptomycin resistance, and spectinomycin resistance), the most strongly asso-
ciated candidates were in larger LD groups than the most strongly associated variants
from the random permutations (Fig. S5), suggesting that epistatic interactions may
contribute to variation in these traits. Last, we compared the relative importance of
SNPs and PAVs, by counting the number of SNPs and PAVs among the 10 LD groups
most strongly associated with phenotypic variation. Although it is likely that not all ten
of the candidates we analyzed for each trait truly underlie phenotypic variation,
inclusion of false candidates is expected to make the analysis conservative. For three
traits (biomass of A17 and R108 hosts and annual mean temperature), these LD groups
were strongly enriched for SNPs (P � 0.01) relative to the empirical null distribution,
and for five other traits the LD groups were slightly to moderately enriched for SNPs
(P � 0.20) (Fig. S5). These results suggest that SNPs contribute more to naturally
occurring phenotypic variation than PAVs.

DISCUSSION

Genome-wide association analyses provide a potentially powerful approach for
identifying the functional role of naturally occurring allelic variation in bacterial pop-
ulations (12, 14). As such, these analyses complement forward and reverse genetics as

FIG 4 The proportion of remaining phenotypic variance of the focal traits explained by adding each
additional top variant, as in Fig. 3B.
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well as experimental evolution, all of which rely primarily on de novo mutation, for
understanding gene function and genomic diversity. The association analyses we
conducted on the model rhizobium Ensifer meliloti help to evaluate the potential
success of these analyses in bacterial lineages and identified candidate genes that may
underlie phenotypic variation in important ecological and agronomic traits.

Diversity and linkage disequilibrium. The potential success of association analy-
ses depends on having a sample of strains that is genetically variable and on having
individual variants that can be statistically distinguished, i.e., in which linkage disequi-
librium (LD) is not extensive. Our sample exhibits extensive nucleotide and gene

TABLE 2 Candidate genes tagged by variants in LD groups that explained more variation than expected based on the empirical null
distribution (see Fig. S7 for QQ-plots)

Trait Replicon Positiond Annotation (MaGea locus tag)

2-Aminoethanol pSymA 52580 fixI: nitrogen fixation protein FixI (SMEL_v1_mpb0065)
Formic acid pSymA 38256 napA: nitrate reductase, periplasmic, large subunit (SMEL_v1_mpb0048)
Gentamicin pSymA 796714 Transcriptional regulator, ROK family (SMEL_v1_mpb0963)

pSymA 263510 nifH: nitrogenase Fe protein (SMEL_v1_mpb0322)
pSymA 282760 Putative aldehyde dehydrogenase (SMEL_v1_mpb0345)

Spectinomycin pSymA PAV Conserved protein of unknown function (SMEL_v1_mpb0259)
Streptomycin Chrom. PAV Multisensor signal transduction histidine kinase (SMEL_v1_0575)
Desiccation pSymB 1161576 Putative aldehyde or xanthine dehydrogenase (SMEL_v1_mpa1160)
A17 biomass pSymA 269841 nifA: Nif-specific regulatory protein (SMEL_v1_mpb0330)

269869
270090
270096
270157
270283
270292

pSymA 271348 nifA: (SMEL_v1_mpb0330); unknown (SMEL_v1_mpb0331)
pSymA 274195 Unannotated
pSymA 276359 gabD: succinate-semialdehyde dehydrogenase I, NADP-dependent (SMEL_v1_mpb0338)

276443
276563

pSymB 1231268 queC: 7-cyano-7-deazaguanine synthase (SMEL_v1_mpa1230)
pSymB 1376015 Diguanylate cyclase/phosphodiesterase (SMEL_v1_mpa1374)
pSymB 669804 Sulfotransferase family (SMEL_v1_mpa0678)

R108 biomass pSymA 305290 fixN: cytochrome c oxidase subunit 1 homolog (SMEL_v1_mpb0374)
305308
305353

AMTb pSymA 648346 Diguanylate cyclase/phosphodiesterase (SMEL_v1_mpb0802)
649133

APc pSymA PAV fixS: FixS2 nitrogen fixation protein (SMEL_v1_mpb0492)
ahttp://www.genoscope.cns.fr/agc/microscope/home/index.php.
bAnnual mean temperature.
cAnnual precipitation.
dVariants are sorted by genomic position, not ranking or LD group.

TABLE 3 For most traits, phenotypic variance explained by genome-wide relatedness
(“PVE LMM”) was greater than the phenotypic variance explained by just the top variants

Trait PVE top variantsa PVE LMMb

2-Aminoethanol 0.05 0.00
Gentamicin resistance 0.14 0.49
Spectinomycin resistance 0.43 0.50
Streptomycin resistance 0.34 0.58
Annual mean temperature 0.09 0.12
Annual precipitation 0.10 0.23
Formic acid 0.08 0.30
Desiccation tolerance 0.19 0.31
A17 biomass 0.33 0.74
R108 biomass 0.19 0.53
R108 nodule number 0.06 0.19
aMaximum cumulative PVE among 1 to 25 variants chosen by model selection after subtracting the median
of the empirical null distribution obtained from random permutations.

bAfter subtracting median of the null distribution.
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presence-absence variation (PAV), with more than 100,000 common (MAF � 0.05) SNPs
and more than 10,000 genes with common PAVs, and a pangenome that contains
nearly 67,000 genes. The number of SNPs used for association mapping here is
comparable to other bacterial association studies—Earle et al. (18) identified 100,000 to
330,000 SNPs with MAF � 0.05 among 241 Escherichia coli, 176 Klebsiella pneumoniae,
and 992 Staphylococcus aureus strains and Porter et al. (15) identified �200,000 SNPs in
47 Mesorhizobium strains. The level of gene presence-absence variation is especially
high in our sample, though most of the variably present genes are found in only one
strain—Earle et al. (18) found only �15,000 to 25,000 genes in the pangenomes of their
samples, even though their S. aureus sample was much larger than our sample. The
large pangenome of our strains may be the result of having a worldwide sample from
a species that lives in both soil and hosts (37, 38).

Our sample also shows clear evidence of historical recombination, with mean
genome-wide r2 of �0.06, and r2 � 0.12 between variants on each of the megaplasmids
(Table 1). The generally small size of LD groups (half contain three or fewer variants)
means that association analyses have the potential to finely map variants responsible
for phenotypic variation. Nevertheless, there are some large LD groups that limit the
resolution of association mapping. Although there has been extensive work to char-
acterize recombination rates in bacterial species (39), few studies have characterized
genome-wide LD such as we have here, and thus, it remains unclear if the extent of LD
we find in Ensifer is typical. As such, we cannot make any general statements about the
expected complications of LD for conducting association analyses in bacteria. However,
LD decays within 10 kb among closely related strains of S. aureus, and the median
length of linkage blocks in two samples of Streptococcus pneumoniae was less than
200 bp (40), suggesting that fine-mapping of causative variants is possible in at least
some other bacterial lineages. In other bacterial species or samples, such as Mycobac-
terium tuberculosis, which has very little recombination (41), samples of recombining
bacteria with strong population structure (18, 42), and samples drawn from rapidly
expanding epidemic populations (26), LD will likely be too extensive to permit fine
mapping of causal variants.

Genetic architecture. The twenty traits we used for association analyses were all

phenotypically variable (Fig. S2); however, we did not detect a genetic basis for all of
this variation. For approximately half of the traits, the proportion of phenotypic
variance explained by all variants (Fig. S4) or the most strongly associated variants
(Fig. S3) was well within the empirical null distribution. Phenotypic variation in these
traits is presumably due to microenvironmental variation during growth or assaying.
That only half of the traits had strong support for harboring natural genetic variation
underscores that prior to conducting association analyses it is valuable to estimate the
proportion of phenotypic variation that is due to genotypic variation, i.e., heritability. All
else being equal, the higher the heritability, the greater the power to link phenotype
to genotype.

For the eleven traits for which there was evidence of genetic variation, the ability to
identify specific SNPs or PAVs responsible for the phenotypic variation varied widely.
For example, the mostly strongly associated variants explained a large amount of
variation in A17 biomass and resistance to spectinomycin or streptomycin. In contrast,
the most strongly associated variants for resistance to gentamicin and use of formic
acid as a carbon source explained only slightly more variation than expected by chance
(Fig. S3), even though the polygenic PVE analyses indicated a fairly strong genetic basis
for these traits (Fig. S4). The disparity between variance explained by just the top
variants and by all variants may indicate that variation in these traits is primarily the
result of small effects by a large number of genetic variants, suggesting that highly
polygenic traits are found in prokaryotes as well as eukaryotes (2). Alternatively, there
may be large-effect alleles that are closely aligned with strain relatedness. In this case,
the association analyses that we used, which remove the effect of relatedness before
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testing for the effects of individual variants, would be unable to detect the causative
variants.

The characteristics of association candidates can provide some insight into genetic
architecture and past selection. The candidates underlying variation in A17 biomass,
the trait showing the strongest associations, were segregating alleles at a frequency
much closer to 0.5 than is expected by chance (i.e., high minor allele frequency [MAF])
and were found as part of LD groups that are larger (i.e., include a greater number of
variants) than expected by chance (Fig. S5). Candidates underlying variation in strep-
tomycin and spectinomycin resistance, annual mean temperature, and R108 biomass
also were members of LD groups that are larger than expected by chance (Fig. S5). High
MAF is consistent with selection maintaining allelic polymorphism, possibly reflecting
frequency-dependent or spatially variable selection acting on symbiosis genes (e.g.,
references 43 and 44). Candidates being part of large LD groups, in contrast, suggests
epistatic interactions between multiple genes. Epistasis poses a challenge for associa-
tion analyses because testing for pairwise interactions typically requires large sample
sizes and greatly increases the computational burden while making it more difficult to
filter out false associations and correct for multiple tests (1, 45). For prokaryotic
lineages, in which epistasis can be particularly important (46) and long-distance LD
blocks can be relatively easily identified, the number of variants in the LD groups
provides a possible signature of epistasis. Such signatures may provide a means to
characterize the extent to which epistasis contributes to phenotypic variation, even if
it does not provide a means to identify the causative genes.

Interestingly, only one of the candidates we identified was found on the chromo-
some (Table 2), despite the fact that the chromosome comprises approximately half of
the genome and harbors half of the genes. Chromosomal genes have been identified
as being primarily involved in housekeeping functions (47), and the traits we charac-
terized were primarily related to nonhousekeeping functions. However, it is possible
that the lack of variation is biased by phenotyping being conducted in single-strain,
noncompetitive environments; approximately half of the variants identified by a
“select-and-resequence” experiment as underlying variation in nodulation ability in
competitive conditions were found on the chromosome (48).

Candidate genes. Association analyses were developed to identify the genes and
alleles responsible for phenotypic variation. The candidates we identified (Table 2)
included genes previously identified through forward genetic approaches as well as
genes without previously identified functions. In particular, several of the SNPs asso-
ciated with plant biomass are in genes known to be important for symbiotic nitrogen
fixation. These include nifA, which regulates the expression of nitrogenase genes (49);
fixN, which is part of a cytochrome c oxidase that is necessary for respiration under the
low-oxygen conditions in nodules (50); and queC, which is necessary for queuosine
production (51), which is essential for effective N-fixing symbiosis (52). Other genes
associated with plant biomass have not been previously shown to be directly involved
in symbiosis but have functions that may be linked to symbiosis or nitrogen fixation.
These included a diguanylate cyclase/phosphodiesterase, which regulates c-di-GMP
levels, which in turn affect cell surface polysaccharides (53, 54); gabD, which is highly
expressed in Rhizobium leguminosarum nodules (55) and may play a role in energy
production (56); and a sulfotransferase. Sulfotransferases are necessary for the synthesis
of effective nitrogenases and can modify nod factors, which affect interactions with
legume hosts (e.g., reference 57).

The genes discussed above are potentially responsible for variation in the benefit
rhizobia provide to their hosts when there are not any other strains present. A recent
study using the same plant genotypes and many of the same E. meliloti strains used a
select and resequence (“S and R”) approach to identify genes potentially responsible for
variation in the ability of rhizobia to extract benefits from the host under competitive
conditions (48). Interestingly, while both studies identified known and novel candidates
for rhizobium-legume interactions, the list of genes only partially overlapped. Both
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studies identified queC and nifA as candidates, and the select and resequence study
identified copies of diguanylate cyclase/phosphodiesterase and a cytochrome c oxidase
subunit 1 that were different from the copies identified here, as well a gene in the same
cytochrome c complex as the fixN identified here. In addition, the fixL and fixJ genes,
which regulate fixN (49), were identified by the S and R study, though the top SNPs in
these genes were not in the top 100 LD groups in this study. While both studies
identified N-fixation-related candidates, only the S and R study identified candidates
related to motility (e.g., flagellin B) or communication with the host (e.g., exopolysac-
charide production). Thus, variants that make a rhizobium good at competing for
limited nodulation opportunities are not necessarily the same variants that make a
rhizobium good at fixing nitrogen for the host.

In contrast with the host benefit traits, our association analysis did not identify any
genes with functions related to mechanisms previously implicated in resistance to the
three aminoglycoside antibiotics we studied. These mechanisms include alteration of
the ribosomal target through mutations in gidB; aminoglycoside modification by
N-acetyltransferases, O-adenyltransferases, or O-phosphotransferases; and reduced up-
take or increased export of the antibiotic (reviewed in reference 58). Instead, for
spectinomycin, we found associations with the presence of a gene of unknown
function; for streptomycin, a gene encoding a signal transduction protein; and for
gentamicin, SNPs in genes encoding a ROK family regulatory protein, a nitrogenase iron
protein (nifH), and an aldehyde dehydrogenase (Table 2). Association analyses might
not find associations with previously identified genes because these genes are not
segregating functionally important variants in natural populations. However, in gidB
there were 13 common (MAF, �5%) SNPs segregating in our sample, although none of
these changed amino acid residues that are known to affect streptomycin resistance in
E. coli (60), and the associations with resistance were weak (all P � 0.001 compared to
P � 0.00003 for top candidates, and all rankings �400). Similarly, we found six common
PAVs annotated as aminoglycoside resistance genes, but these also were not strongly
associated with aminoglycoside resistance (all P � 0.05), and all strains carried at least
three genes annotated as aminoglycoside resistance genes. That we did not detect
strong associations with previously identified resistance genes underscores the need to
view genome annotations with caution and suggests that there may be unidentified,
naturally occurring mechanisms of aminoglycoside resistance. It is also possible that
some of the genes that do show strong associations are statistical false positives.
For example, it is surprising that variation in nifH, a gene that encodes part of the
nitrogenase enzyme, is found to be associated with antibiotic resistance rather than
nodule number or plant biomass. The genes we identified should be viewed as
candidates for further functional characterization. They may not contain the causative
alleles but rather be in LD with causative alleles that did not meet our criteria for
testing.

The five other phenotypes have not been well studied previously, and thus, there
are not strong a priori candidates. Nevertheless, it is striking that for three of these
phenotypes nitrogen fixation or metabolism genes (fixI for 2-aminoethanol utilization,
napA for formic acid utilization, and fixS for annual precipitation) are associated with
phenotypic variation. GWAS can also be used to find genetic variants associated with
the climate of origin (i.e., candidates for local adaptation). For instance, Yoder et al. (59)
identified (and validated) genetic variants associated with temperature and moisture at
the site of origin for one of the plant host species of Ensifer. Using a similar approach
on the bacterial partner, we identified two candidates potentially underlying adapta-
tion to temperature and precipitation.

Conclusions. The association analyses we conducted have identified strong
genotype-phenotype associations for several ecologically important E. meliloti pheno-
types, including benefit provided to host plants, antibiotic resistance, climate adapta-
tion, desiccation tolerance, and use of several carbon sources. These results clearly
demonstrate the potential power of association analyses in bacteria and suggest that

GWAS in Ensifer meliloti

September/October 2018 Volume 3 Issue 5 e00386-18 msphere.asm.org 11

msphere.asm.org


linkage disequilibrium will not prevent resolving associations down to relatively small
genomic regions. Given our success at identifying known and novel promising candi-
date genes for plant biomass, future association analyses in rhizobia may be able to
map variation in more mechanistic traits, such as nitrogenase activity, for a deeper
understanding of the basis of variation in legume-rhizobium interactions. Nevertheless,
the strongest associations for several traits did not exceed expectations from the
empirical null distribution, and several traits harbored no signal of a genetic basis for
phenotypic variation, underscoring that even in the presence of phenotypic variation,
association analyses may not be appropriate or will have limited power.

MATERIALS AND METHODS
We analyzed 153 E. meliloti strains originally collected from throughout the world (see files in Dryad

Repository [https://doi.org/10.5061/dryad.tn6652t/1]) using Medicago sp. trap plants. From each strain
DNA was extracted using a MoBio UltraClean microbial DNA isolation kit (12224), used to prepare
dual-indexed Nextera XT libraries, and sequenced using 300-bp paired-end runs on an Illumina MiSeq.
Strains were sequenced to a depth of 9.5 to 36.9 reads per base (mean � 19.5, 270,000 to 730,000 reads)
after trimming and alignment. Reads were trimmed with Sickle (61) using a quality score of �20 and
minimum length �127 bp. Paired-end reads were aligned to E. meliloti USDA1106, a strain that is similar
to Rm1021 but has �10% more coding sequence (62), using bwa mem (v0.7.17) (63) and SNPs were
called using parallel FreeBayes v1.0.2-16-gd466dde (64), both with default settings.

The raw variant call output from FreeBayes was filtered using utilities from vcftools (v0.1.15) (65),
bcftools (v1.3.1), and vcflib (available from https://github.com/vcflib/vcflib). In particular, we removed
SNPs with quality scores �20 and all indels, split sites with more than two alleles into multiple biallelic
entries (bcftools norm), converted heterozygous calls (�1% of variants, 0 to 2.2% for individual strains)
into missing data, and removed sites with missing genotype calls in more than 20% of the strains.
Because FreeBayes sometimes treats adjacent SNPs as a single multinucleotide polymorphism (MNP), we
retained each MNP as a single variant. For simplicity we refer to both MNPs and SNPs as SNPs. Only the
�110,000 SNPs with minor allele frequency (MAF) � 5% were included in association analyses. We
characterized the extent of nucleotide variation using two standard measures, Watterson’s theta
(�W)—an estimate of the number of variants per bp (66)—and ��—a measure of the number of pairwise
variants per bp (67). These diversity statistics were calculated using the libsequence analysis package
(v0.8.2) (68) on all sites with �2� coverage from �80% of the strains.

We identified presence-absence variants (PAVs) using de novo assemblies of each strain. The
assemblies were constructed using SPAdes (v3.6.2) (69) using recommended settings, and genes were
predicted using Glimmer (3.0.2) (70) and annotated using InterProScan (71). After omitting genes that
were exceptionally long (�5,000 bp), we clustered genes using CD-HIT (cd-hit-est; v4.6.8) (72, 73) with
minimum identity set to 90% and the -aL and -AL parameters (amount of sequence that must be
included in the match) set to 70%. Each of the 66,989 CD-HIT clusters was treated as a gene and
considered present in a strain if that strain had one or members in the cluster. We conducted the LD
grouping and association analyses using the 110,603 SNPs and the 13,352 PAVs with MAF � 0.05.

Phenotype measurements. We conducted association analyses on 20 traits selected from 180 traits
on which we had initially collected phenotypic data. The 180 traits included 95 quantitative Biolog plate
traits (Biolog, Hayward, CA, USA); 78 “binary” antibiotic resistance, stress tolerance, enzymatic activity,
and toxin tolerance traits; growth rate in liquid TY medium; two climatic variables describing where the
strains were collected; and four symbiosis traits. A full description of phenotyping methods is provided
in the supplemental methods (Text S1), and full trait data are in Dryad Repository (https://doi.org/10
.5061/dryad.tn6652t/1).

We used a series of criteria to select the 20 traits for association analyses. First, we excluded Biolog
and binary traits for which there was no or very little variation. This included 16 Biolog traits with
variance � 0.01 (three environments with in which no strains grew and 13 sugar or sugar-alcohol
utilization traits that were correlated with sucrose, glucose, and fructose utilization and for which all the
strains grew vigorously), approximately 50 binary traits for which fewer than five strains were found at
each phenotype value, and 50 traits for which �10% of the phenotypic variance was attributed to
genetic differences among strains (PVE), as determined by a Bayesian sparse linear mixed model (BSLMM
(35), implemented in GEMMA v0.94.1 (74). From the remaining 56 traits, we picked 10 that were not
strongly correlated (Pearson’s r � 0.7) and had potential environmental relevance (e.g., antibiotic resis-
tance) or a link to biochemical pathways involved in symbiosis, nitrogen metabolism, or ecology (use of
L-fucose, 2-aminoethanol, N-acetylglucosamine, putrescine, and formic acid as carbon sources). We then
added the four symbiosis traits (nodule number and plant biomass in two plant genotypes), two climate
variables (Fig. S6), growth rate in liquid culture, and tolerance of high temperatures, desiccation, and salt.
For additional information on the traits, including sample sizes, summary statistics, and a brief descrip-
tion, see Table S1.

LD grouping. To identify variants in strong LD, we (i) sorted all variants by MAF, (ii) used the variant
with highest MAF and fewest ungenotyped individuals as a “seed” for an LD group, and (iii) grouped all
variants in LD with the seed. Steps 2 and 3 were repeated, using the next ungrouped variant as a seed.
To reduce computational time and eliminate unnecessary statistical tests, we performed association
analyses (below) on only the seed variant from each group, but then annotated groups based on all
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variants in the group (source code used to create LD groups in Dryad Repository, https://doi.org/10
.5061/dryad.tn6652t/1). We formed groups with two LD thresholds, r2 � 0.95 and r2 � 0.80.

Association analyses. We tested for an association between variants and phenotypic variation using
a linear mixed model (LMM) implemented with the -lmm option in GEMMA (v0.94.1) (74). We included
a standardized K-matrix (a measure of pairwise relatedness between strains calculated using the -gk 2
option), as recommended in the GEMMA manual, to lessen the effects of unequal relatedness among
strains. P values were calculated with a likelihood ratio test (-lmm 4 option).

There are several statistical biases that should be considered when interpreting results from associ-
ation analysis (75). One bias is that the apparent phenotypic effects from strongly associated variants will
be inflated because variants with overestimated effect sizes are more likely to show strong associations
(i.e., the “Winner’s Curse”). Association analyses also have greater power to detect large effect and
common loci relative to small effect and rare loci, respectively. To provide insight into the magnitude of
the effect of these biases, and to determine a significance cutoff value, we conducted association
analyses on randomly permuted data in which the phenotype values were randomly assigned to the
genotype. These permutation analyses provide an empirical null distribution to determine whether
variation explained in the actual data is greater than expected by chance (36, 76).

We estimated the proportion of phenotypic variance explained by genetic variants (PVE) using three
methods. First, to estimate the PVE explained by top variants, we performed linear regression with
forward model selection (implemented with base R [77] functions) with the phenotype as the response
and with 1 to 25 most strongly associated variants from the trait-specific association tests as the
predictors. We also regressed each variant on the residuals from the previously chosen variants to get the
proportion of remaining variance explained (PRVE). To identify candidate genes, we iterated through
the top variants as ordered by the model selection step, stopping when we reached a variant that
explained less remaining variance than the 95th percentile of the empirical null distribution. To
determine the total PVE by top variants (Table 3), we identified the model with the largest cumulative
PVE after subtracting the median PVE of the null distribution.

Second, we calculated the variance explained by just the K-matrix (the LMM “null model” estimate
from GEMMA BSLMM log files)—i.e., the amount of phenotypic variance that can be explained by
among-strain relatedness. This estimate is analogous to heritability, with a value of one indicating that
all phenotypic variation can be explained by the patterns of relatedness among strains. Third, we used
a Bayesian sparse linear mixed model (BSLMM) implemented in GEMMA to estimate PVE. BSLMM fits a
model with a few variants with larger effects in addition to the background effects captured by
relatedness. The analysis was run with the default options, 2.5-million-step burn-in, and 6 million steps
(continuous phenotypes), 25 million steps (most binary phenotypes), or 80 million steps (Cd tolerance)
after the burn-in. A preliminary analysis indicated that 6 million steps was sufficient for continuous
phenotypes, but binary phenotypes needed more steps to converge. The estimates were recorded every
500 steps, and we combined the results of 5 independent chains for each phenotype. The distributions
of the hyperparameters indicated that nearly all chains converged.

Data availability and accession number(s). Sequence data were deposited in the NCBI Sequence
Read Archive (SRA) under accession numbers SRR6055493 to SRR6055666 (https://www.ncbi.nlm.nih
.gov/sra) under BioProject PRJNA401434. Computer code, phenotype data, and full results files have been
deposited in Dryad (https://doi.org/10.5061/dryad.tn6652t/1).
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Supplemental material for this article may be found at https://doi.org/10.1128/
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