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Summary

Viral neutralization tests (VNTs) have long been considered old‐fashioned tricks in
the armamentarium of fundamental virology, with laboratory implementation for a

limited array of viruses only. Nevertheless, they represent the most reliable sur-

rogate of potency for passive immunotherapies, such as monoclonal or polyclonal

antibody therapy. The recent interest around therapy with convalescent plasma or

monoclonal antibodies for the Covid‐19 pandemic has paralleled the revival of
VNTs. We review here the available methods by dissecting variations for each

fundamental component of the VNT (i.e., virus type and dose, replication‐competent
cell line, serum, and detection system).
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1 | INTRODUCTION

The magnitude of neutralizing antibody (nAb) responses to SARS‐
CoV‐2 is extremely variable, and a significant fraction of convales-
cent individuals have comparatively low to undetectable levels of

plasma nAb.1,2 Exact quantification of nAb has implications for

studying duration of immunity (acquired either by natural infection

or vaccination), and selection of convalescent plasma (CP) donors,3 or

relative potency4 and durability5 of monoclonal antibody therapies.

In fact, neutralizing potency of sera was found to be greater in

patients who went on to resolve infection, compared with those that

died from Covid‐19,6 and CP therapy is more efficacious in patients
receiving units with highest titres of nAb.3

SARS‐CoV‐2 Spike (S) protein is the main surface protein of
SARS‐CoV‐2 and the target of neutralizing activity: it consists of an
N‐terminal S1 subunit responsible for virus—receptor binding and a
C‐terminal S2 subunit responsible for virus—cell membrane fusion. S1
itself consists of an N‐terminal domain and a receptor‐binding domain
(RBD). Most coronavirus nAb target the RBD, while a few target re-

gions in the S2 subunit or the S1/S2 proteolytic cleavage site.7 By

depleting sera of subunit‐specific antibodies to determine the
contribution of these individual subunits to the antigen‐specific nAb
response, Steffen et al. demonstrated that epitopes within RBD are

the target of a majority of the nAb in the human polyclonal antibody

response.8 Barnes et al. classified nAbs into three categories1: VH3‐53
hNAbs with short CDRH3s that block angiotensin‐converting enzyme
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2 (ACE2) and bind only to up RBDs,2 ACE2‐blocking hNAbs that bind
both up and down RBDs and can contact adjacent RBDs,3 hNAbs that

bind outside the ACE2 site and recognize up and down RBDs.9

S variants that resist commonly elicited nAb are now present at

low frequencies in circulating SARS‐CoV‐2 populations.10 While
vaccines are still under development and reinfection from next

pandemic waves is still under observation, CP donor selection

represents the most urgent challenge.

To date more than 90,000 patients across the world have already

been treated with CP, mostly in non‐randomized studies (65,000 in
the United States only thanks to expanded access programs

approved by FDA11). The efficacy of CP therapy is believed to rely on

nAb content.3 Convalescent patients should hence be screened for

the presence of nAb levels, and donations collected only from

convalescent individuals with high nAb titres. In the setting of

Covid‐19, several regulatory authorities recommend threshold
values, but none of them specifies nAb assay details that could alter

test output: FDA says that ‘when a measurement of nAb titres is

available, we recommend nAb titres of at least 1:160. A titre of 1:80

may be considered acceptable if an alternative matched unit is not

available. When the measurement of nAb titres is not available,

consider storing a retention sample from the CP donation for

determining antibody titres at a later date.12 The ECDC basically

endorse FDA recommendations, suggesting that immunocompro-

mised recipients are transfused with CP units having a titre ≥1:320.13

As previously said, those thresholds have poor meaning unless details

are disclosed, making trial results poorly comparable.

Neutralizing antibody assessment has historically been per-

formed using time‐consuming and hazardous methods that required
high technical skills. While high throughput platform surrogate tests

having substantially shorter turnaround time and good correlations

with nAb are heavily under study, old‐fashioned methods remain the
gold standard for exact nAb quantification. The Covid‐19 pandemic
has had the side benefit of expediting research on nAb testing up-

grades. This manuscript reviews the principle behind classical nAb

testing by dissecting each key component (as depicted in Figure 1),

and the developments that have been released in the last years.

1.1 | The replication‐competent cell line

The virus—serum mixture is generally added onto confluent cell

monolayer. In the case of SARS‐CoV‐2, several cell lines naturally
express high levels of ACE2: the—by far—mostly frequently used

cells are African green monkey (Chlorocebus sabaeus) Vero E6 (a.k.a.

Vero 1008, ATCC® CRL‐1586™) or Vero CC‐81 (a.k.a. Vero CCL‐81
or Vero WHO, ATCC® CCL‐81™) kidney epithelial cells. At a dose of
3 � 103, 1.5 � 104 or 3 � 104 cells/well monolayers that are 70%,

80%, and 90% confluent, respectively, are generated in 24 h with

both cell lines. Vero CCL‐81 result in about 2 folds higher foci for-
mation per well relative to Vero E6, despite releasing less viral

genome copies as detected by RT‐quantitative polymerase chain
reaction (qPCR).14 Alternatively, human lung epithelial cells CALU‐3,

human hepatoma (Huh7.5 and Huh7), human gastric adenocarcinoma

AGS and MKN have proven as effective as Vero cells.14

Mammalian cell lines not expressing human ACE2 can be trans-

duced or plasmid‐transfected with ACE2 (e.g., human lung epithelial
cells A549,15 human embryo kidney [HEK] 293T16,17 or 293FT, or

BHK2118,19 or human connective tissue HT108020). Rodent 3T3 and

SHHC17 cell lines are instead not permissive.14

Stable introduction of the S activating Transmembrane protease,

serine 2 (TMPRSS2) further enhanced susceptibility to infection by

5–10 folds.19,21

Schmidt et al. have reported that HT1080/ACE2cl.14 and Huh7.5

cell lines are significantly more adherent than 293T‐derived cell lines
and are hence recommended (for HIV‐1 and vesicular stomatitis virus
[VSV] pseudotype assays, respectively; see paragraph below) in high

throughput situations, as great care is necessary when using

293T‐derived cells whose adhesive properties during washing steps
are suboptimal.20

1.2 | The viral challenge and virus quantification

Intact virions or several different surrogates can be used to represent

the viral challenge, as detailed below.

1.2.1 | Intact virions

The challenging dose has variable amounts of virus. Virus quantity

can be determined with protein assays (such as haemagglutination

assays for influenza viruses, the colorimetric bicinchonic acid assay,

or single radial immunodiffusion assay), plaque assays (reported as

plaque‐forming units [PFU] per ml), endpoint dilution assay (reported
as median tissue culture infectious dose [TCID50] or cell culture in-

fectious dose [CCID50], that is, the amount of virus required to kill

50% of infected host cells or to produce a cytopathic effect [CPE] in

50% of inoculated tissue culture cells).

Plaque assays have both an immunostaining variant (focus‐
forming assay, with virus quantity reported as focus‐forming unit per
ml) and, for firefly luciferase‐tagged recombinant viruses,22 a lumi-
nometric variant (with quantity reported in relative light units).17

More modern methods of virus quantification include trans-

mission electron microscopy, tuneable resistive pulse sensing, flow

cytometry, quantitative PCR, or ELISA: they have shorter turn-

around times but do not provide information about virus viability.

Hence, it is easily inferred that TCID is generally preferred to

define the challenging dose,23 and the challenging value is generally

100 TCID50 of input virus per well,
24 presenting a difficulty for

viruses which replicate to low titre in cell culture (such as the

majority of recent A [H3N2] isolates). Assuming that the same cell

system is used, that the virus forms plaques on those cells, and that

no procedures are added which would inhibit plaque formation,

according to Poisson distribution, 1 TCID50 is approximatively

0.69 PFU.
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1.2.2 | Pseudotyped viruses

SARS‐CoV‐2 has been classified as a category B pathogen, but
biosafety caution applicable to the category A pathogens are

encouraged when handling it. Manipulation of SARS‐CoV‐2 should
only be carried out in a biosafety level 3 (BSL3) facility with negative

air pressure. Cell culture procedures are carried out in BSL2 and

moved to BSL3 when ready for viral infection.25

Pseudotyped viruses provide a safe viral entry model because

of their inability to produce infectious progeny virus. In the

pseudoparticle neutralization test (ppNT; a.k.a. pseudovirion

neutralization assay [PsVNA]), a single‐cycle, replication‐defective
virus (e.g., retroviruses such as replication‐defective HIV‐1, third‐
generation lentiviral [pLV], or G‐protein‐deficient VSV18,20) is
pseudotyped with the surface protein from the virus against

which NAb should be measured. This activity can be run in BSL2

facilities. For SARS‐CoV‐2, the expression of full‐length S protein
was enhanced over 10‐fold by deleting the last C‐terminal 1818

or 1919,26 amino acids of the cytoplasmic tail, or by codon

optimization.17 Such methodology has previously been used to

produce pseudotyped viruses for SARS‐CoV‐127 and MERS‐
CoV.28 Modification of a single amino acid in the Furin cleavage

site of S (R682Q) enhanced infectious particle production another

10‐fold. With all enhancing elements combined, the titre of
pseudotyped particles reached almost 106 infectious particles/

ml.19 Nevertheless, lower Spike densities in pseudotypes viruses

could affect the avidity of bivalent antibodies, particularly those

that are unable to engage two S‐protein monomers within a
single trimer and whose potency is dependent on engaging 2

adjacent trimers.

1.2.3 | VSV pseudotypes

Assembly of the VSV occurs at the plasma membrane and involves

budding of virions from the cell surface. During budding, VSV acquires

an envelope consisting of a lipid bilayer derived from the plasma

membrane and spike proteins consisting of trimers of the

VSV‐glycoprotein (VSV‐G). When the VSV‐G is absent and the
glycoprotein from a heterologous virus is complacently expressed in

cells infected with recombinant vesicular stomatitis virus with protein

G deletion (rVSV‐dG), the glycoprotein of the heterologous virus
could be assembled into the VSV membrane (30). Recently, VSVdG‐
luc bearing S chimeras has been used to study the cell entry and

receptor usage for SARS‐CoV‐2 and other lineage B betacor-
onaviruses.29 A PsVNA assay for SARS‐CoV‐2, which consists of
pseudotyped VSV bearing the full‐length Sprotein of SARS‐CoV‐2 and
Huh7 cell, has been successfully tested.30 Interestingly, the absence of

proof‐reading activity in VSV‐L polymerase has been exploited to
generate virus stocks with greater diversity (especially in S protein)

than authentic SARS‐CoV‐2.10 The assay provides results in 12–16 h.
Because single‐cycle, replication‐defective pseudotypes viruses

do not allow for any viral spread and this could impact the sensitivity

of the VNT, replication‐competent VSV/SARS‐CoV‐2 chimeric vi-
ruses have been generated for usage in multicycle replication‐based
assays.20

1.2.4 | Lentiviral pseudotypes

Lentiviral pseudotype bearing the truncated spike protein of SARS‐
CoV‐2 was also constructed and used to study the virus entry and its
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immune cross‐reactivity with SARS‐CoV‐1.20,31,32 In one study,
Moloney murine leukemia virus (MMLV) was able to pseudotype the

VSV‐G glycoprotein efficiently but was unable to pseudotype the
SARS‐CoV‐2 Spike protein.16 However, in a different study, MMLV
was able to pseudotype the SARS‐CoV‐2 Spike protein.24 These dif-
ferences could be due to the constructs used to express the Spike

protein with the former study expressing a full‐length Spike protein,
whilst the latter study expressed a Spike protein with a deletion in the

C‐terminal 19 amino acid (aa) that could aid better expression as
alluded to earlier.33 In contrast, pLV pseudotyped both glycoproteins

efficiently; however, much higher titres of pLV‐G particles were pro-
duced. Among all the tested mammalian cells, HEK 293Ts expressing

human ACE2 (hACE2) were most efficiently transduced using the

pLV‐S system.16 The neutralizing activity of both CP and human
monoclonal antibodies measured using each virus correlated quanti-

tatively with nAb measured using an authentic SARS‐CoV‐2 neutral-
ization assay. The assay provides results in approximatively 48 h.

1.2.5 | Engineered viruses

Genetically engineered viruses harbouring a reporter gene that is

exploited for the detection system (see dedicated chapter below)

have been developed by several research groups: examples include

luciferases (firefly, Renillareniformis or nanoluciferase15), green fluo-

rescent protein34 or mNeonGreen integration into ORF7.35 Among

luciferases, Gaussia princeps luciferase, the smallest known to date, is

naturally secreted into mammalian cell culture media, thus avoiding

the cell lysis step.36 The results can be obtained by automatically

counting positive cell number at 5–12 h after infection, making the

assay convenient and high‐throughput. In the case of mNeonGreen,
VNT in Vero CC‐81 cells have shown high correlation with VNT using
intact virions.37 When a chemiluminescent reporter is used, the assay

is called chemiluminescence reduction neutralization test (CRNT).38

1.2.6 | Nonviral alternatives

SARS‐CoV‐2 Spike trimer fused to a constitutively fluorescent
protein (Gamillus, isolated from Olindias formosus) has also been

developed, providing a versatile tool for high‐throughput screening
and phenotypic characterization of SARS‐CoV‐2 entry inhibitors.39

The Promega HiBiT/LgBiT® system can be exploited for HiBiT‐
tagged VNT (hiVNT): genome‐free virus‐like particles are incorpo-
rated with a small luciferase peptide (HiBiT) and their entry into

LgBiT‐expressing target cells reconstitutes NanoLuc luciferase
readily detected by a luminometer within 3 h.40

1.3 | The patient’ serum

It is important to heat‐inactivate serum or plasma samples from
Covid‐19 patients at 56°C for 30 min to 1 h before performing the

assay to destroy residual viral particles: this step is less crucial for

SARS‐CoV‐2 because of rare and low‐titre viremia. It has been
reported that complement deposition on virus envelope may lead to

infection‐enhancement which may mask the neutralizing effects of
Abs contained in serum or plasma samples.41 Although many

laboratories start with a 1:10 dilution, for serum or plasma samples it

is recommended starting with a 1:100 dilution to avoid potential

impurities that may affect the sensitivity of the assay. Dulbecco's

minimal essential medium (DMEM) supplemented with NaHCO3,

hydroxyethylpiperazine ethane sulfonic acid (HEPES) buffer, peni-

cillin, streptomycin, and 1% foetal bovine serum, also used as cell

culture medium, is typically used for the dilutions. In the case of

mAbs, 10 µg is a commonly used starting dose: however, this will

depend on the neutralizing capability of the mAb.

Since EDTA chelates calcium and blocks the complement

cascade, EDTA‐anticoagulated plasma samples cannot be used in
VNT that detect CPE induced by complement‐dependent cytotoxicity
(e.g., PRNT). On the contrary, CRNT can instead use whole blood.38

1.4 | The detection system

The classical plaque reduction neutralization test (PRNT) is

performed in a 24‐well format in duplicate for each serum dilution.
The virus‐serum‐cell mixture is left for 1 h at 37°C in a 5% CO
incubator.42 Then, the supernatant is removed and the cells overlaid

with 1% agarose in cell culture medium (generally Minimum Essential

Medium with 2% foetal bovine serum). After 3–5 days incubation at

36.5°C in a 5% CO2, the plates are fixed and stained. Positive and

negative controls and a virus back‐titration are included in each
assay. A microscope is used to detect plaques due to CPE on the

replication‐competent cell line (RCCL) monolayer.43 Antibody titres
are defined as reciprocal of the highest serum dilution that resulted

in>90% (PRNT90) or > 50% (PRNT50) reduction in the number of
plaques. When PRNT is run in 96‐well plates it is called micro-
neutralization (MN) assay (or when, pseudotyped viruses are used,

pseudotype MN [pMN] assay).44

In the alternative focus neutralization reduction test (FRNT)

cells, the development of visible spots is dependent on the time it

takes for viral protein production to occur (rather than to cause

lysis as in PRNT) and for infectious virus to spread to neighbouring

susceptible cells. Cells (as explained above, Vero WHO cells are

preferred) are hence stained after 24–48 h incubation using an

antiviral serum as the primary antibody and a secondary horse-

radish peroxidase‐labelled IgG targeting the Fc of the primary
antibody.14 The signal can be developed using a precipitate forming

3,3′,5,5′‐tetramethylbenzidine substrate, and the number of

infected cells per well are counted using an ELISpot analyser

(e.g., ImmunoSpot® 5 Image analyser, CTL Europe GmbH45). Again,

antibody titres are defined as reciprocal of the highest serum

dilution that resulted in>90% (FRNT90) or > 50% (FRNT50) reduc-
tion in the number of foci. The FRNT is also amenable to a 96‐well
plate format.
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Alternatively, the infrared staining technique (relying on sec-

ondary Ab IRDye 800CW to stain virus‐infected cells, and
DRAQ5TM Fluorescent Probe Solution stain the nucleus) holds the

advantage of its capability to measure cell viability (in addition to

measuring antiviral activity) using readings at 700 nm (800CW,

measuring viral infection) and 800 nm (DRAQ5, measuring cell

viability) on the Odyssey Sa Infrared Imaging System.45

As previously stated, when the firefly luciferase reporter gene is

inserted in the viral construct, cells are lysed and assayed for lucif-

erase expression.17,22

The evaluability of the PRNT technique may be further improved

by overlaying the cells with cellulose or by using specific antibodies

to detect remaining viral antigens in the cells.46

1.5 | Correlation with high‐throughput serological
platforms

Many studies have investigated correlations between PRNT and

other serological assays. While several studies only correlated PRNT

with in‐house ELISAs,21,47–50 Table 1 summarizes studies comparing
PRNT with other marketed serological platforms based on enzymes

(ELISA), chemiluminesce (CLIA), eletrochemiluminescence (ECLIA) or

chemiluminescent microparticle immunoassays, and targeting

different viral antigens in the setting of interventional65,66 or

observational26,42,46,51–55 trials.

Although several assays correlated better than others, even the

best performing serological assays had poor correlation results,

implying that anti‐SARS‐CoV‐2 nAb should be titrated using a VNT to
optimize CP therapy. One major cause could be that, despite IgM,

IgG, and IgA are capable of mediating neutralization, VNT titres

correlated better with binding levels of IgM and IgA1 than IgG.
67 In

addition, the quaternary structure of S protein available on infected

RCCL is hardly replicated by recombinant antigens bound on solid

substrates: for this reasons, alternative high‐throughput methods of
antibody quantification based on Spike expression in cell lines are

being developed,68 but no correlation studies with VNT have.

In the largest study to date, ROC analysis showed Euroimmune

anti‐S1 IgG ELISA AUC outperformed 6 different in‐house ELISAs
and pseudotyped PRNT at predicting PRNT titres >1:100 against the
native isolate. A cut‐off value of 9.1 S/CO in the Euroimmune ELISA
identified 65% of donations above the 1:100 nAb threshold with no

false identification of donations below this nAb threshold.42

1.6 | PseudoNAb ACE2‐competing assays

New‐generation, cell‐free, protein‐based pseudo‐nAb assays (a.k.a.
surrogate virus neutralization test [sVNT]) have been developed,

where cells are replaced by receptors, and the virus is replaced by

surface proteins. Among them, a competitive serological assay can

simultaneously determine an individual's seropositivity against the

SARS‐CoV‐2 S protein RBD and estimate the neutralizing capacity of
anti‐S antibodies to block interaction with the human ACE2 required
for viral entry.69 In an ELISA‐based assay, Zheng et al. presented
natively‐folded S protein RBD‐containing antigens via avidin‐biotin
interactions. Sera are then supplemented with soluble ACE2‐Fc to
compete for RBD‐binding serum antibodies, and antibody binding
was quantified. A comparison of signals from untreated serum and

ACE2‐Fc‐treated serum reveals the presence of antibodies that
compete with ACE2 for RBD binding.70 This test is performed on the

same platform and in parallel with an ELISA for the detection of

antibodies against the RBD.71,72

An entirely different approach is based on the antibody detec-

tion by agglutination PCR (ADAP) methodology. A cell‐free
neutralization polymerase chain reaction (PCR) assay using SARS‐
CoV‐2 S protein and human ACE2 receptor‐DNA conjugates has
been developed to quantify nAbs. Briefly, the neutralizing antibodies

in the specimen will engage with S1‐DNA conjugate in step 1 to
decrease S1‐DNA binding with ACE2‐DNA in step 2. Even this assay
can be run in BSL2 and provide results in 2� 3 h.73

1.7 | Clinical correlates for nAb titres

Sixty percent of 24 hospital personnel with mild Covid‐19 developed
nAb titres <1:20.54 Patients with mild Covid‐19 disease produced
stronger nAb responses than asymptomatic individuals.67,74 Signifi-

cantly higher nAb titres were accordingly observed in patients with

severe forms versus asymptomatic carriers.21 An infection without

fever had a negative predictive value of 92% for nAb titres

>1:200.56 Aziz et al. reported that a history of reduced taste or
smell, fever, chills/hot flashes, pain while breathing, pain in

arms/legs, as well as muscle pain and weakness were significantly

associated with the presence of nAb in those with mild to moderate

infection.75 Infection with the recently described S protein variant

614G produced higher levels of nAb when compared to viruses

possessing the 614D variant (6).

1.8 | nAb decline

While the overall antibody responses for other beta coronaviruses

typically declines after 6–12 months,76 SARS‐CoV‐specific nAb usu-
ally persist for 2 years.77 In most of Covid‐19 inpatients, nAb reached
a plateau 2 weeks post‐symptom onset and then declined, reaching a
low or undetectable level ≥40 days post‐symptom onset.21 In less
severe cases, nAb in serum reached a peak about 4 weeks after

disease onset but dropped to a lower level about 6 weeks later.78 An

earlier IgG antibody response against the S2 domain of the S protein

could better mediate virus neutralization, as previously suggested for

SARS‐CoV‐1 nAb targeting the S2 domain.26,79–81 Analyses at a
1‐month interval on 31 convalescent individuals showed that RBD‐
specific IgG slightly decreased between 6 and 10 weeks after
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symptoms onset but RBD‐specific IgM decreased much more

abruptly. Similarly, a significant decrease in the capacity of CP to

neutralize pseudo particles bearing SARS‐CoV‐2 S wild‐type or its
D614G variant has been reported.82

The magnitude of the nAb response is correlated with disease

severity, but this does not affect the kinetics of the nAb response.

Whilst some individuals with high peak ID50 (>10,000) maintained
titres >1000 at >60 days after onset of symptoms, some with lower
peak ID50 had titres approaching baseline within a 94 days follow‐
up.83 Neutralizing activity increased with time after the onset of

symptoms, reaching a peak at 31–35 days. At this point, the number

of sera having nAb titres ≥160 was about 93% (PRNT50) and 54%
(PRNT90). Sera with high SARS‐CoV‐2 antibody levels (≥960 in‐
house ELISA RBD titres) showed maximal activity, but not all high

titre sera contained nAb.48

Sterling et al. reported that while the specific antibody response

to SARS‐CoV‐2 included IgG, IgM, and IgA, the latter contributed to a
much larger extent to VNT titre, as compared to IgG, but declined

after just 1 month.84 In 27 patients Ma et al. estimated that conva-

lescent patients' RBD‐specific IgG reach an undetectable level
approximatively 273 days after hospital discharge, while the

predicted decay times are 150 and 108 days for IgM and IgA,

respectively.85

Wajnberg et al. reported that more than 90% of infected in-

dividuals with mild‐to‐moderate Covid‐19 experience robust IgG
antibody responses against S protein, based on a dataset of 19,860

individuals screened at Mount Sinai Health System in New York City,

which were stable for at least a period approximating 3 months, and

correlated with neutralization of authentic SARS‐CoV‐2.86 In another
series of 30 patients, Wang et al. reported that SARS‐CoV‐2‐specific
nAb titres were low for the first 7–10 days after symptom onset and

increased after 2–3 weeks. The median peak time for nAbs was 33

days after symptom onset. nAb titres in 93.3% (28/30) of the patients

declined gradually over the 3‐months study period, with a median
decrease of 34.8% (IQR 19.6%–42.4%). NAb titres increased over

time in parallel with the rise in IgG antibody levels, correlating well at

week 3 (r ¼ 0.41, p < 0.05).87 Similarly, Crawford et al. reported in a
series of 34 patients that nAb titres declined an average of about

four‐fold from one to four months post‐symptom onset.88 The
decline in anti‐RBD antibodies was not related to the number of
donations but strongly correlated with the number of days after

symptoms onset (r ¼ 0.821).89

The rapid decline in nAb may be attributed to the rapid decay of

IgM in the acute phase. However, the relative contribution of IgG to

nAb increased and that of IgM further decreased after 6 weeks after

symptom onset.12 Accordingly, Lei et al. reported that the titres of

neutralizing antibodies in asymptomatic individuals gradually

vanished in 2 months.74

Gontu et al. reported that robust IgM, IgG, and VNT responses to

SARS‐CoV‐2 persist, in the aggregate, for at least 100 days post‐
symptom onset. However, a notable acceleration in decline in virus

neutralization titres ≥160, a value suitable for CP therapy, was
observed starting 60 days after first symptom onset.90

2 | CONCLUSIONS

The assays described above are adaptable to high‐throughput and
are useful tools in the evaluation of serologic immunity conferred by

vaccination or prior SARS‐CoV‐2 infection, as well as the potency of
CP or human monoclonal antibodies.

Endorsing specific protocols and disclosing them in guidelines

and recommendations will largely facilitate a comparison between

clinical trials.
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