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Noroviruses (NoVs) were first identified in humans in 1972 on immune electron
microscopy observation of the stools of volunteers infected with filtrates of faecal
samples collected from a nonbacterial gastroenteritis outbreak occurred in 1968 in
Norwalk, Ohio, USA.1 Nonenveloped, small, rounded viruses (SRVs), 27 nm in size,

ere observed in the fecal filtrates and specific antibodies were detected in both
xperimentally and naturally infected individuals, suggesting that the particles were
he etiologic agent of Norwalk gastroenteritis.

On genetic characterization, NoVs have been classified as a distinct genus of the
aliciviridae family.2 NoVs have been now recognized as the major etiologic agent of

nonbacterial acute gastroenteritis worldwide and they are estimated to cause more than
1 million hospitalizations and up to 200,000 deaths in children younger than 5 years on an
annual basis.3 NoVs have been also identified in cows, pigs, mice, and carnivores, and
he role of some animal species as potential source of novel human NoVs via interspecies
ransmission and eventually recombination has been hypothesized.4

ETIOLOGY

Caliciviruses are nonenveloped SRVs with a single-stranded, positive-sense, poly-
adenylated RNA genome of 7 to 8.5 kb.5 Based on their genetic relationships and

enome organization, caliciviruses have been classified into 4 genera: namely
esivirus, Lagovirus, Sapovirus, and Norovirus.5 More recently, other caliciviruses

have been discovered and proposed as members of distinct genera: Nebraska-like
viruses6 (Nebovirus) in cows, rhesus caliciviruses,7 Saint Valerienè–like viruses in
wine,8 and avian caliciviruses.9 Caliciviruses have been associated to a variety of

clinical signs, ranging from gastroenteric disease to exanthematic lesions, to severe
systemic diseases and hemorrhagic forms, and they are recognized as important
pathogens in both humans and animals.
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1172 Martella et al
NoVs are important human enteric pathogens3 and they have also been detected
in the stools of livestock animals, although their role as pathogens in these animals
remains controversial.10,11 In mice, NoV is able to invade the central nervous system
CNS) in STAT1-deficient animals, causing fatal disease.12 Mouse NoV has also been
adapted to in vitro growth, thus providing an excellent model/surrogate for the study
of human NoVs, which are noncultivatable.13,14

NoV genome is 7.5 to 7.7 kb in length and contains 3 distinct open reading frames
(ORFs).5 ORF1 encodes a large polyprotein that is post-translationally cleaved into 6
onstructural proteins, including the RNA-dependent RNA polymerase (RdRp). ORF2
ncodes the capsid protein VP1, while ORF3 encodes a small basic protein, VP2
Fig. 1).5 The viral capsid contains 180 copies of VP1 protein and a few copies of VP2.
he VP1 contains 2 main domains, S and P. The S (shell) domain is highly conserved
nd connected through the P1 subdomain to the highly variable P2 (protruding)
ubdomain.15,16 The P2 region possesses several motifs that control binding to the

host cell and virus antigenicity.17,18

NoVs are genetically and antigenically highly heterogeneous. Accumulation of
punctate mutations and recombination drive their evolution, generating an impressive
diversity. The highly conserved ORF1/ORF2 junction region is a preferential site for
NoV recombination.19 Recombination may create chimeric viruses with intermediate

enetic features between the parental viruses, generating inconsistencies in the
lassification/nomenclature. A consistent and reliable classification of NoVs is based
n the analysis of the complete capsid gene.20 Strains within the same genotype (or
luster) share greater than 85% amino acid identity, while strains of different
enotypes within the same genogroup share 55% to 85% amino acid identity.20

Humans NoVs belong to genogroups (G) I, II, and IV.4 In addition, NoVs classified as
GII have been detected in pigs,21,22 and GIII NoVs in large and small ruminants.23,24

NoVs proposed as GV have been detected in mice.12

CALICIVIRUSES IN DOGS

Unlike calicivirus infections in cats,25 canine caliciviruses are not regarded as
important pathogens and they are not usually included in diagnostic algorithms for
canine infectious diseases. Calicivirus-like particles have been occasionally identified
by electron microscopy in specimens from dogs with fluid diarrhea and, in some
instances, glossitis, balanitis, or vesicular vaginitis. Most isolates were feline calicivi-
ruses (FCVs) and were likely acquired from cats.26–30

Thus far, there are only 2 documented reports on the identification of authentic
canine caliciviruses in dogs. In 1985 a calicivirus was isolated from the feces of a
4-year-old dog with bloody diarrhea and central nervous system disturbance in

ORF1 ORF3

ORF2
(6950-7588)(5-5374)

5’ 3’N-terminal NTPase P19 VPg Proteinase Poly 2PVesarem

N S P1 P2 P1

(5358-6950)
g y

Fig. 1. Norovirus (strain Norwalk, accession M87661) genome organization. Proteolytic
clivage map of the non-structural polyprotein encoded by ORF1. The NH2-terminal portion
(N) of the highly conserved shell (S) domain and the protruding region (P) subdomains (P1
and P2) are also indicated.15
Tennessee, USA. The virus was found to replicate in experimentally infected dogs and
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1173Canine Noroviruses
to elicit seroconversion, although disease was not reproduced. Also, the virus was
antigenically unrelated to FCV and antibodies against the virus were identified in 76%
of the canine sera collected.31 However, it was not characterized molecularly and its
axonomic status remains uncertain. In 1990, another calicivirus was identified in
apan in a 2-month-old pup with intermittent watery diarrhea.32 The virus, strain 48,

was found to be antigenically and genetically unrelated to FCV and was tentatively
proposed as a “true” canine calicivirus (CaCV) and included in the Vesivirus ge-
nus.33,34 Antibodies to CaCV 48 have been detected in 57% of dogs in Japan35 and
n 36.5% of dogs in Korea.36

NOROVIRUSES IN DOGS

The first evidence of NoV in carnivores was documented in 2006 in a captive lion cub
that died of severe hemorrhagic enteritis at 4 weeks of age in Pistoia, Italy.37 The
nimal tested negative to all potential lion viral pathogens, and on bacteriologic

nvestigations it was found to be infected by toxigenic Clostridia. Unexpectedly, NoV
NA was detected in the intestinal tract and, on genomic characterization, the virus
as found to resemble human GIV NoVs (Alphatron-like), with 69.3% to 70.1% amino
cid identity in the full-length capsid protein, and it was proposed as a distinct NoV
enotype, GIV.2, while human Alphatron-like NoVs are GIV.1. Human GIV.1 NoVs are
sually identified only sporadically in the human population, although they may be
ommonly detected in sewage samples from treatment plants,38,39 indicating that

there are open gaps in the understanding of their ecology and in the diagnosis.
As lions are susceptible to the majority of canine and feline pathogens, the

detection of NoV in lions raised the question of whether domestic carnivores
represented the source of infection for the captive lion cub. By expressing in
baculovirus the capsid protein of the lion NoV, virus-like particles (VLPs) were
produced and used to set up an ELISA, revealing specific antibodies in 16.1% of
feline and 4.8% of canine sera.40 Also, by screening a collection of stools from dogs
with gastroenteritis in Italy in 2007, NoV was detected in 2.2% (4 of 183) of the
pups.41,42 The age of the pups ranged between 60 and 70 days and 3 of 4 pups were
also co-infected by canine parvovirus. These direct and indirect pieces of evidence
confirmed that domestic carnivores might harbor NoVs.

Shortly after the first identification, additional evidence about the circulation of
NoVs in dogs has been documented. During an epidemiologic study in 2008 in
Greece, a cluster of NoV infection was identified in a kennel in Thessaloniki in 6 pups,
2.5 to 3 months old, that were housed together,43 suggesting the highly infectious
ature of canine NoVs for young pups. All the NoV-infected animals were also
o-infected by canine coronavirus.

In a 1-year survey in Portugal in 2008 of dogs from municipal shelters, veterinary
linics, and pet shops, NoV was detected in the stools of 25 of 63 (40%) of dogs with
iarrhea and 4 (9%) of 42 asymptomatic animals. In most cases, the NoV-infected
ogs displayed mixed infections by either canine parvovirus or coronavirus or both.44

Also, NoV RNA was detected in 3 of 106 stools collected from pups with parvovirus
gastroenteritis in 2007 in the United Kingdom (Martella and colleagues, unpublished
information, 2011). These findings indicate the canine NoVs circulate in several
European countries.

GENETIC HETEROGENEITY IN CANINE NoVs

Thus far, 6 canine NoV strains have been analyzed molecularly. Sequence information

has been gathered on the RdRp region, at the 3= end of ORF1, the full-length capsid



s
2
i
b
a

i
p
c
p

m
v
d
a
i
N
t
s
c
p
s
s

1174 Martella et al
protein (ORF2), and the minor basic protein (ORF3). The prototype canine NoV
train, Bari/170/07/ITA,41 resembles the virus lion NoV Pistoia/387/06/ITA, as the
viruses share 96.7% amino acid identity in the RdRp and 90.1% amino acid identity

n the capsid protein. Likewise, the Greek strain Thessaloniki/30/2008/GRC resem-
les the canine virus Bari/170/07/ITA, both in the RdRp (100% amino acid identity)
nd the capsid gene (99.4% amino acid identity).43

A large insertion of 20 residues can be observed in the P2 hypervariable domain of
GIV.2 animal NoVs with respect to GIV.1 human viruses. By homology modeling and
3-dimensional alignment, the P insertion appears to form a loop protruding from the
compact barrel-like structure of the P2 subdomain and exposed on the outer surface
of the capsid.

Interestingly, another canine NoV strain, Bari/91/07/ITA, although sharing the same
pol (RdRp) type as strains Dog/Bari/170/07/ITA and Lion/Pistoia/387/06/ITA, pos-
sesses a novel ORF2 gene, with the highest identity (57.8% amino acid) to the
unclassified human strain Chiba/040502/04/JAP. This canine virus is distantly related
(36.0%–54.5% amino acid identity) to all other NoVs,42 suggesting the existence in
dogs of NoVs with a novel capsid genotype. The UK strain FD210/07/GBR resembles
both in the RdRp (98.5% amino acid identity) and the capsid (95.0% amino acid
identity) canine virus Bari/91/07/ITA.

The Portuguese NoV strain Viseu/C33/08/PRT and the UK strain FD53/07/GBR
display a third capsid genotype. These viruses are related to each other (99.5% amino
acid identity in the RdRp and 98.6% amino acid in the VP1), while they have only
63.1% to 63.9% amino acid identity in the full-length VP1 to the strain Bari/91/07/ITA
and FD210/07/GBR (Fig. 2, Table 1).

PATHOGENIC POTENTIAL OF CANINE NoVs

The pathogenicity of canine NoVs in experimental infections in gnotobiotic or
specific-pathogen-free (SPF) animals has not been assessed. Viral shedding could be
monitored in a naturally infected pup with mixed infection by NoV and canine
parvovirus type-2. The pup recovered from the disease 4 days after hospitalization
but NoV was shed at detectable levels for 3 weeks.41 Prolonged NoV shedding after
nfection/disease has been documented for weeks or even months in human
atients.45,46 Likewise, murine NoV shedding can last for several weeks in immune-
ompetent mice,12,47 and this has been interpreted as a mechanism of virus
ersistence in the host population.
In most cases, NoV-infected dogs were also co-infected by other pathogens. That
ixed infections can elicit mechanisms of synergism, as observed between corona-

iruses and parvoviruses,48,49 cannot be ruled out. Interestingly, the frequency of
etection of NoV has been found to differ significantly between symptomatic and
symptomatic dogs in a 1-year survey in Portugal.44 Interpretation of these findings

s not clear, as several factors can influence the course of NoV infection. As canine
oVs appear to display a number of capsid genotypes, there could be differences in

he biological properties (eg, virulence, ability to bind to canine cellular receptors, and
o on) among the various NoV strains. In addition, mechanisms of genetic resistance
ould alter the outcome of NoV infection in some canine breeds, thus confounding the
icture. Experimental human infection studies with the prototype Norwalk virus (GI.1)
howed that the study participants were repeatedly susceptible or resistant to
ymptomatic infection following repeated virus challenge.50 Subsequent studies have

revealed that human NoVs recognize histoblood group antigens (HBGAs) as recep-
tors or co-receptors. HGBAs are complex carbohydrates present on the surface of

red blood cells and mucosal epithelia, or free in biological fluids such as milk and
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Fig. 2. Phylogenetic tree constructed on the full-length amino acid sequence of the capsid
protein. The tree was constructed using a selection of NoV strains representative of the

genogroups I to V. bo, bovine; po, porcine; mu, murine; hu, human.



Table 1
Classification of canine NoVs based on the full-length capsid protein VP1

Genogroup GI GII GIII GIV GV GVI Classification

Genotype GIV.1 GIV.2 GVI.1 GVI.2 GVI.3 ORF1 ORF2

Lion/Pistoia/387/06/ITA 41,6-37,8 49,7-45,8 36,6-36,5 69,2-68,9 90,1 36,9 50,0 54,4-54,5 54,1-53,8 GIV.2 GIV.2

Dog/Bari/170/07/ITA 41,1-36,9 50,2-45,9 35,9-35,1 68,0-67,7 90,1 36,6 50,0 54,3-54,0 53,8-53,4 GIV.2 GIV.2

Dog/Bari/91/07/ITA 40,8-38,0 54,4-50,2 37,7-37,0 54,4-54,2 54,5-54,4 36,0 57,8 95 63,8-63,2 GIV.2 GVI.2

Dog/FD/210/07/GBR 40,7-38,1 54,7-50,4 37,6-37,1 53,4-53,3 54,6-54,1 36,4 57,5 95 63,9-63,1 GIV.2 GVI.2

Dog/FD/53/07-2/GBR 41,5-38,4 53,4-48,8 39,6-38,1 53,7-53,5 54,1-53,8 36,7 55,2 63,9-63,8 98,6 GIV.2 GVI.3

Dog/C33-Viseu/07/PRT 41,2-38,1 53,9-48,6 39,3-37,8 53,4-53,2 53,8-53,4 36,4 54,9 63,2-63,1 98,6 GIV.2 GVI.3
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1177Canine Noroviruses
saliva. HGBAs are synthesized under the control of highly polymorphic ABO, Lewis,
and secretor gene families. Different NoV genotypes variously recognize these
antigens, and the recognition patterns have been found to correlate with susceptibility
to infection and illness.51–54 The global spread and predominance of pandemic GII.4
NoV variants have been related to the broad range of recognized HBGA types.51

Similar mechanisms appear to influence genetic resistance of pigs to NoV infection
under experimental conditions.55

DIAGNOSIS

Several sets of primers have been designed for molecular diagnosis of human NoVs
in different diagnostic regions (A–C) spanning the ORF1 and ORF2.56 Diagnostic tools
can be greatly affected by NoV genetic diversity.57 In most cases, diagnosis of canine

oV was accomplished using broadly reactive primers sets targeting diagnostic
egion A within the RdRp, such as p289-p290 or JV12Y/YV13I.58,59 However, it has

been shown that designing more specific primers can allow increasing significantly
the detection rates of canine NoVs (from 1.9% to 27.6%).60

Several unsuccessful attempts have been made to adapt to in vitro cultivation the
prototype canine NoV strain Bari/170/07/ITA, using both canine and feline cell lines
and primary cells. With the exception of murine NoVs,13 NoVs appear to be
noncultivatable in vitro.14,61 Replication of human NoVs in vitro has been demon-
strated in a 3-dimensional organoid model of human small intestinal epithelium,
displaying a high level of cellular differentiation.62 However, these results have not
been reproduced in other laboratories.

An ELISA has been set up using the baculovirus-expressed capsid protein of the
GIV.2 lion NoV.40 This assay was successfully used to assess exposure of domestic
arnivores to NoVs. However, considering the extent of the genetic heterogeneity of
anine NoVs, generating synthetic antigens based on other capsid genotypes (GVI.2
nd GVI.3) would be necessary to portray a more precise picture.

ZOONOTIC POTENTIAL OF CANINE NoVs

Dogs are regarded as vectors of viral, bacterial, or parasitic zoonosis,63 but the risks
inked to transmission of enteric viruses are almost ignored. However, several pieces
f evidences indicate that enteric viruses may have a zoonotic potential: (1) infection
f young children by rotavirus strains of canine and feline origin has been documented
epeatedly64; (2) having dogs in or near a home has been recognized as a risk factor
or acquisition of IgA antibodies specific for NoV in infants in a seroepidemiologic
tudy conducted in rural Mexico65; and (3) a calicivirus gastroenteritis outbreak
ccurred in a nursing home in Exeter, UK, in 1983 and was found to be epidemio-

ogically linked to the household dog. Acute gastroenteric disease in the dog occurred
4 hours before the human index case and antibodies specific for the human
aliciviruses were identified in the dog, thus suggesting a possible association.66 (4)
lso, under experimental conditions, NoVs have been found to be able to cross the
ost species barriers. A GII.4 human NoV was able to infect and induce diarrhea in
notobiotic piglets and calves,11,10 thus indicating that heterologous infections can

occur. (5) In addition, NoV strains genetically similar to the canine virus Bari/91/07/ITA
(88.9% nucleotides and 98.9% amino acid identities in a short fragment spanning the
5= end of ORF2) have been detected in oysters destined for raw consumption in Japan
(strains Yamaguchi/C34/03/JAP, Yamaguchi/24B/02/JAP, and Yamaguchi/24C/02/
JAP67). This could indicate that canine-like GVI NoVs are common in some geo-
raphic settings and that they can contaminate the coastal areas and accumulate at
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detectable levels in bivalve molluscs destined for raw consumption. Contamination of
shellfish by animal (porcine and bovine) enteric caliciviruses, alone or in conjunction
with human viruses, has been demonstrated in 22% of oysters in United States.68

However, while the impact of sewage pollution on the water environment by livestock
may be relevant, especially in the areas of high livestock production, it is difficult to
explain the presence of canine-like NoVs in oysters. A possible explanation for this is
that similar viruses are harbored in other animal species or in settled human
populations. (6) Finally, human GIV (Alphatron-like) NoVs are genetically much more
related to animal GIV NoVs (GIV.2) than to GI and GII human NoVs, suggesting points
of intersection during their evolution. The modalities of this intersection are uncertain
but likely they were favored by the strict social interactions between humans and
pets.

SUMMARY

NoV are regarded as emerging pathogens in humans, and the creation of worldwide
surveillance networks has allowed the researchers to gather important epidemiologic
information and to gain unforeseen insights into the mechanisms of NoV evolution.
The discovery of NoVs in carnivores and the genetic relationship between them and
some human viruses raise interesting questions inherent in the ecology of these
viruses and the possibilities of interspecies transmission. Also, it will be interesting to
assess whether and to which extent NoVs impact on pet health.
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