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Overview

The complexity and diversity of microbial colony morphologies have contributed to the identi-

fication of pathogenic microbes for decades. Even as biomarker-based approaches are adopted

for diagnosis of fungal infections, culture-based methods remain valuable for the identification

of specific etiological agents and determination of antifungal susceptibility [1]. Thus, when

obtainable, infectious organisms are observed as macroscopic colony biofilms in clinical set-

tings. We define macroscopic morphologies (a strain’s morphotype) as the collective pheno-

types of form and/or structure attributed to a group of organisms of the same species within a

defined area such as a colony. Clinical isolates of Aspergillus fumigatus, Cryptococcus neofor-
mans, and Candida spp. have been reported for decades to be morphologically variable within

and between patients [2–4]. Similarly, diverse population-level macroscopic morphologies of

bacterial pathogens have been observed in clinical samples [5,6]. A key question is whether

observed microbial morphotypes tell us anything about their virulence. Below, we discuss the

intrinsic and extrinsic factors that contribute to macroscopic morphological variation in fungi

and bacteria. We then discuss fungal and bacterial examples linking macroscopic morphology

with virulence and the challenges faced with studying this relationship. Finally, we discuss the

importance of investigating recurring and distinct fungal macroscopic morphologies for fur-

thering our understanding of host–fungal interactions.

What features of population-level growth contribute to

macroscopic morphologies?

Microbial populations are most often observed as macroscopic colonies with defined morphol-

ogies on a solid surface. Underlying features of macroscopic microbial colonies include the

production and secretion of extracellular matrix (ECM) [7], quorum sensing [8], surface

appendages [9], pigmentation [10,11], and cellular morphology [12]. Importantly, these fea-

tures often, but not always, impact a given strain’s macroscopic morphology. For example,

quorum sensing in Pseudomonas aeruginosa regulates the production of phenazines that,

under permissive conditions, contribute to colony pigmentation and topography [8]. The pro-

duction of the long filamentous pilus is reflected in the colony morphology of Neisseria gonor-
rhoeae, in which colonies without a pilus are flat and lack a distinct colony edge [9]. However,

while some features may broadly impact microbial colony morphologies, others are species-

specific. For example, the ECM of Vibrio cholerae is necessary for the rugose colony morphol-

ogy [7], but in the pathogenic filamentous fungus A. fumigatus, loss of the primary ECM com-

ponent galactosaminogalactan does not impact colony morphology [13].
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In yeast, the ECM influences fungal colony topography such as in Candida albicans, C. neo-
formans, and Saccharomyces cerevisiae [14]. The mucoid colony morphotype of C. neoformans
coincides with increased thickness of the surface capsule, a key virulence attribute of this yeast

[15]. In addition to ECM, colony morphotypes of Candida spp., C. neoformans, and S. cerevisiae
are impacted by the presence of various cell morphologies, including yeast, pseudophyphae,

and hyphae [14]. Yeast cellular-morphology–based colonies are smooth and structureless, while

colonies that contain pseudohyphae or hyphae are wrinkled or fluffy and highly structured [14].

Colonies of A. fumigatus reflect cell morphology changes as well, in which vegetative hyphae

become conidiophores. These specialized structures produce pigmented conidia, and the pat-

tern of conidiation is a prominent and quantifiable feature of A. fumigatus colony morphology

that reflects changes in cellular physiology [13]. Notably, many of these macroscopic colony fea-

tures are involved in pathogenesis and virulence, discussed further below.

What genetic factors contribute to features of macroscopic

morphologies?

Example genetic mechanisms that impact macroscopic morphology include loss or gain of

function alleles, reversible phenotype switching, phase variation, and aneuploidy. Among bac-

teria, a few of the best-characterized molecular mechanisms underlying macroscopic morpho-

logical variation include loss of function alleles of the quorum sensing transcriptional

regulator lasR of P. aeruginosa [8], reversible induction of the vps (vibrio polysaccharide)

operon of V. cholerae [7], and phase variation of pilin proteins of N. gonorrhoeae [9].

Among fungi, the molecular mechanisms underlying macroscopic morphologies are also

diverse. C. albicans undergoes phenotype switching in two dimensions at the cellular level,

which impacts population-level morphologies. The yeast-to-hyphae transition is one example,

induced by transcriptional regulators EFG1, BRG1, and NDT80, among others [12]. Secondly,

white–gray–opaque phenotype switching alters the yeast cellular morphology and colony mor-

photypes as a result of transcriptional rewiring [14]. C. albicans also generates macroscopic

morphotype variation as a result of chromosome instabilities and aneuploidies [16]. Ploidy has

also been observed to impact colony morphotypes of S. cerevisiae, in which isogenic haploid

and diploid colonies are morphologically distinct [17]. For C. neoformans, chromosome insta-

bilities do not consistently correlate with variation in colony morphology, and the molecular

mechanism(s) facilitating phenotypic switching in this yeast remain largely unknown [15].

Among the human pathogenic molds, molecular mechanisms driving colony morphology

are beginning to emerge. For A. fumigatus, reverse genetic approaches have identified genes

that simultaneously impact colony morphology and cell wall biosynthesis. These include the

polysaccharide synthase cpsA that contributes to cell wall integrity, the chitin synthases chsC
and chsG, and the β-1,3-glucan glycosyltransferase gel2 [18]. Additionally, the induction of a

subtelomeric gene cluster through a hyperactive allele of its putative regulator hrmA modifies

the macroscopic morphology of A. fumigatus colonies [13]. As mentioned above, developmen-

tal transcriptional rewiring also impacts colony morphology of A. fumigatus. For example,

transcriptional regulators of asexual development such as stuA, brlA, and others are molecular

contributors to macroscopic morphology [19]. Additionally, mycovirus infection has been

observed to modulate A. fumigatus colony morphology; however, the mechanisms remain

unknown [20]. Which of these molecular mechanisms contribute to the natural macroscopic

morphotype variation among clinical isolates of A. fumigatus and other fungi remains to be

discovered.

Taken together, it seems clear that the genetic factors that influence macroscopic morphol-

ogies are equally as diverse as the underlying physiological pathways. The question is thus
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raised: is the altered colony morphology responsible for changes in virulence, or is it other

functions of the underlying perturbed genetic factor? The answer may not be mutually exclu-

sive, and this question represents a challenge when understanding macroscopic morphology

and its potential association with virulence. In either case, the change in macroscopic colony

morphology may be indicative that a key genetic factor associated with virulence has been

changed in the microbe under study. Thus, defining the genetic mechanisms driving morpho-

logical change should be an important goal for future research.

What environmental factors influence macroscopic morphologies?

Another complex question to appreciate in order to understand the relationship between mac-

roscopic morphology and virulence is the impact of the environment. Fungal macroscopic

morphologies are often highly dependent on environmental conditions. Extrinsic factors such

as carbon and nitrogen sources and abundance, oxygen availability, agar concentration, and

proximity to other microorganisms are known to impact morphology. Are the culture condi-

tions in which the distinct morphotype is observed at all similar to the in vivo infection micro-

environment? Understanding the environmental impact on macroscopic morphology may

yield important insights into underlying pathogenesis associated mechanisms.

For example, extrinsic inducers of pseudohyphal or hyphal growth for yeast such as C. albi-
cans, C. neoformans, and S. cerevisiae impact macroscopic morphotypes [14]. For S. cerevisiae,
glucose starvation in the presence of a rich nitrogen source results in highly structured, wrin-

kled colonies characteristic of pseudohyphae formation [17]. For C. albicans, growth in low

oxygen is one of several inducers of hyphal growth and results in a switch from smooth colo-

nies at ambient oxygen to wrinkled, filamentous colonies at 1% oxygen [21]. Biotic extrinsic

factors also impact C. albicans colony morphotypes. C. albicans colonies grown in close prox-

imity to P. aeruginosa under hyphae-inducing conditions transition from a wrinkled to

smooth morphotype [22]. For Cryptococcus spp., phenotype switching occurs stochastically at

a basal rate in vitro, but also occurs inside a mammalian host [14]. A. fumigatus colony mor-

photypes are similarly impacted by diverse abiotic factors. The reference strain AF293 of A.

fumigatus forms phenotypically distinct morphotypes on different media at ambient oxygen

(Fig 1). In response to low oxygen on minimal media, A. fumigatus strains develop an array of

morphotypes [23]. For the majority of strains, low oxygen induces colony furrows (Fig 1), but

in others, such as the reference strain CEA10, a fluffy colony morphotype is generated [23].

Another clinically relevant environmental feature that can impact A. fumigatus and yeast mor-

photypes is antifungal drug treatment. For example, the echinocandin caspofungin has dose-

dependent effects on A. fumigatus colony morphotypes [24]. Future research should identify

other environmental factors that impact fungal morphotypes. One specific area for study that

is likely to reveal novel insights is interactions with host- or other-microbial–derived metabo-

lites at sites of colonization and infection.

Why should we care about fungal macroscopic morphologies?

Distinct colony morphology variants have been associated with clinical isolates and worse clin-

ical outcomes for a number of human bacterial and fungal pathogens. Examples of bacterial

pathogens include V. cholerae [25], Burkholderia pseudomallei [5], nontuberculosis Mycobacte-
rium spp. [26,27], Clostridium difficile [28], P. aeruginosa [8,29], Staphylococcus aureus [30,31],

and N. gonorrhoeae [32] (Fig 2). Distinct bacterial and fungal colony morphotypes are also

observed in clinical samples from specific body sites. In particular, this observation from clini-

cal microbiology highlights the opportunity to define host-relevant factors that impact micro-

bial colony biofilm morphologies and potentially virulence [5,6].
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As mentioned above, for some of these bacterial species, the variation in morphotype has

been directly linked to known pathways implicated in pathogenesis, such as the pilus of N.

gonorrhoeae that is required for virulence [33]. In other cases, the physiology underlying an

association between colony morphotypes and virulence is less clear. As an example, the etio-

logical agent of melioidosis, B. pseudomallei, is capable of generating several distinct colony

morphotypes through largely unknown mechanisms [5]. The type II and type III morpho-

types, induced from type I through growth in nutrient-limited conditions for 21 days, are asso-

ciated with biofilm formation and biofilm structure and altered responses to hydrogen

peroxide and antimicrobial peptides, as well as differential replication within host cells

[5,34,35].

Examples of the association between fungal macroscopic morphologies and virulence

include the dimorphic yeast Paracoccidioides brasiliensis [36], the dimorphic yeast C. neofor-
mans [37,38], and the mold A. fumigatus [13] (Fig 2). One of the C. neoformans colony mor-

photype variants forms a mucoid-like colony that is hypervirulent, has an enlarged

polysaccharide capsule, and alters the host inflammatory response [38,39]. Perhaps a more

common C. neoformans morphology is the dull or smooth colony phenotype associated with

reduced or absent capsule production (for an excellent review of Cryptococcus morphological

Fig 1. A. fumigatus strain AF293 cultured on minimal and complex media for 72 hours. Representative images of 1,000 AF293 conidia spot-inoculated on 1%

glucose minimal media, Sabouraud complex media, or YPD complex media. For each media type, hypoxia exacerbates colony topographical features. Growth on

complex media sources results in colony furrows, whereas growth on minimal media does not under the same atmospheric conditions. YPD, yeast peptone dextrose.

https://doi.org/10.1371/journal.ppat.1008612.g001
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variants, see [15]). Importantly, both mucoid and smooth colony variants are isolated from

patient samples [40,41]. A morphotype recently described for A. fumigatus has characteristics

of colonies grown in hypoxia—conditions of oxygen limitation—and is referred to as a hyp-

oxia-locked morphotype (H-MORPH) [13]. H-MORPH strains result in diffuse fungal lesions

in vivo in a murine model, which is accompanied by massive inflammation and increased vir-

ulence [13]. While more H-MORPH strains need to be examined, the occurrence of the

H-MORPH colony morphology in vitro may correlate with increased immunopathogenesis in

vivo.

The investigation of in vivo cellular morphologies has been critical for gaining insight into

pathogenic mechanisms of fungi. The yeast-to-hyphal transition is essential for virulence of C.

albicans, and the generation of Titan cells of C. neoformans in vivo facilitates disease progres-

sion [42,43]. Thus, continued rigorous investigation of distinct population-level fungal mor-

photypes would be equally insightful. The presence of morphotypes in clinical specimens

associated with specific aspects of fungal physiology such as secondary metabolite production,

asexual development, or oxidative stress resistance could indicate pathways critical for fitness

in vivo. Additionally, the ability to infer physiological characteristics based on colony mor-

phology could reveal details of the infection and/or antimicrobial drug resistance. For exam-

ple, the altered in vivo lesions of A. fumigatus H-MORPH colony morphotypes indicate that

host morbidity is largely the result of increased inflammatory damage [13]. Similarly, constitu-

tive induction of the asexual development program in A. fumigatus severely attenuates patho-

genesis [44].

Looking forward, these observations discussed herein, when synthesized with additional

clinical data, could inform new treatment strategies. The possibilities are currently limited by

our understanding of the fungal or microbial physiology underlying specific morphotypes. As

alluded to, an important area for future research is a better understanding of in vivo microbial

morphologies. What does seem clear is that the “looks” of a fungal population should be con-

sidered important phenotypes worth reporting and investigating in further mechanistic depth.

While it remains unclear whether fungal macroscopic morphology virulence associations will

Fig 2. Virulence-associated macroscopic morphotypes of bacteria and fungi. Image summary of specific microbial colony morphologies associated with clinical

isolation, host–pathogen interactions, and disease outcomes for bacteria (V. cholerae and B. pseudomallei) and fungi (A. fumigatus and C. neoformans) discussed in the

text. H-MORPH, hypoxia-locked morphotype; LL-37, human cathelicidin family antimicrobial peptide; N-MORPH, normoxia-locked morphotype.

https://doi.org/10.1371/journal.ppat.1008612.g002
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be the exception or the norm, the potential ability to infer pathogenesis-related phenotypes

from an isolate’s morphotype is expected to continue to yield new insights into fungal biology

and virulence.
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