Sieve tube structural variation in Austrobaileya scandens and its significance for lianescence

Juan M. Losada ${ }^{1,2,3} \odot \quad \mid \quad$ Zhe $\mathrm{He}^{2,3} \mid \quad \mathrm{N}$. Michele Holbrook ${ }^{2,3}$ ©
${ }^{1}$ Institute for Mediterranean and Subtropical Horticulture 'La Mayora'-CSIC-UMA, Avda. Dr. Wienberg s/n, Algarrobo-Costa, Málaga 29750, Spain
${ }^{2}$ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
${ }^{3}$ Arnold Arboretum of Harvard University, Boston, Massachusetts, USA

Correspondence

Juan M. Losada, Institute for Mediterranean and Subtropical Horticulture 'La Mayora'-CSIC -UMA, Avda. Dr. Wienberg s/n, AlgarroboCosta, Málaga 29750, Spain.
Email: juan.losada@csic.es

Funding information

National Science Foundation, Grant/Award Number: IOS 1456845; Fundación General CSIC, Grant/Award Number: ComFuturo Second Edition; DaRin Butz Foundation, Grant/Award Number: Research internship at the Arnold Arboretum; Consejo Superior de Investigaciones Científicas, Grant/Award Number: LINKB20067; Ministerio de Ciencia e Innovación, Grant/Award Number: RTI2018-102222-A-100

Abstract

Lianas combine large leaf areas with slender stems, features that require an efficient vascular system. The only extant member of the Austrobaileyaceae is an endemic twining liana of the tropical Australian forests with well-known xylem hydraulics, but the vascular phloem continuum aboveground remains understudied. Microscopy analysis across leaf vein orders and stems of Austrobaileya scandens revealed a low foliar xylem:phloem ratio, with isodiametric vascular elements along the midrib, but tapered across vein orders. Sieve plate pore radii increased from $0.08 \mu \mathrm{~m}$ in minor veins to $0.12 \mu \mathrm{~m}$ in the petiole, but only to $0.20 \mu \mathrm{~m}$ at the stem base, tens of metres away. In easily bent searcher branches, phloem conduits have pectin-rich walls and simple plates, whereas in twining stems, conduits were connected through highly angled and densely porated sieve plates. The hydraulic resistance of phloem conduits in the twisted and elongated stems of A. scandens is large compared with trees of similar stature; phloem hydraulic resistance decreases from leaves to stems, consistent with the efficient delivery of photoassimilates from sources under Münch predictions. Sink strength of a continuously growing canopy might be stronger than in self-supporting understory plants, favoring resource allocation to aerial organs and the attainment of vertical stature.

KEYWORDS

ANA-grade, pectins, phloem, sieve-tubes, vessels, xylem

1 | INTRODUCTION

Lianas constitute about 40% of the woody individuals in tropical forests and make an outsize contribution to forest productivity and response to disturbance (Gerwing \& Farias, 2000; Schnitzer et al., 2012). Contributing to this is the ability of lianas to elevate a dense
leaf canopy tens of metres aboveground with a minimal investment in self-support (Baillaud, 1962; Darwin, 1875; Rosell \& Olson, 2014). Anatomical features that allow lianas to meet the evaporative demands of their leaves despite having slender stems include large diameter xylem vessels, and thus greater hydraulic efficiency, compared with co-occurring trees and shrubs (Carlquist, 1991; Chen

[^0]highly contorted stems. To better understand vascular transport in large-bodied lianas, we studied the phloem of leaves and stems, so far missing in this species. The central goal of this study was to understand whether phloem structural and chemical features described in other woody species are also present in A. scandens, and relate them with (1) axial transport of carbohydrates from the sites of photosynthesis through the slender stems; (2) mechanical demands of climbing.

2 | MATERIALS AND METHODS

2.1 | Plant material

We used the germplasm resources of the Arnold Arboretum of Harvard University, which includes greenhouse-grown A. scandens plants ranging in age from 20 to ~ 25 years old. The leaf area of seven terminal branches from different plants was measured by photographing each opposite leaf pair from the branch tip to the seventh node (total $n=84$ nodes), above which leaves reached the maximum size.

2.2 | Leaf anatomy

Five mature leaves were used to determine the area occupied by the vascular elements of the leaf midrib: consecutive hand transverse sections were cut with a micro scalpel at three different positions in the leaves: the petiole, the mid part of midvein and about 2 cm back from leaf tip. Each section was stained with $0.1 \% \mathrm{w} / \mathrm{v}$ aniline blue in $\mathrm{PO}_{4} \mathrm{~K}_{3}$ (pH 10) (Linskens \& Esser, 1957), observed with a Zeiss Axiophot epifluorescent microscope using the DAPI narrow filter band (excitation 365 nm , bandpass 12 nm ; dichroic mirror 395 nm ; barrier filter 397 nm), and photographed with an AxioCam 512 Color linked to the AxioVision software (Zeiss). The cross-sectional area of xylem and phloem was measured with the Image J software (totalling 45 measures for each tissue) and, for the 27 cross sections in which all vascular elements were visible, the number of vascular elements in each tissue were counted.

Five additional leaves were selected for measurements of individual sieve tubes and xylem vessels. To physically separate the individual vessel elements, longitudinal sections of the petiole, midrib, second, third and fourth order veins were obtained with a scalpel, placed in a solution containing acetic acid: hydrogen peroxide $1: 1 \mathrm{v} / \mathrm{v}$, left incubating at $60^{\circ} \mathrm{C}$ for 2 days, and then mounted onto glass slides for microscopy observation and image acquisition ($n>250$ total vessel elements measured). Similar areas were used to obtain fresh longitudinal sections (less than 1 mm thick), mounted onto slides, stained with 0.1% aniline blue, counterstained with calcofluor white for cellulose (Hughes \& McCully, 1975), photographed and measured (at least 35 sieve tubes per vein order, $n=250$).

2.3 | Stem anatomy

Branches were classified according to both diameter and qualitative stiffness (see Figure 1): <2 mm (primary growth, flexible and easy to bend), $<2 \mathrm{~mm}$ (twisted around a support), 6-10 mm (green shoots with secondary growth), $11-15 \mathrm{~mm}$ (stems at the base of the vine with highly twisted-irregular bark). First, we evaluated the general anatomy of the stems in a subset of transverse sections from three axial locations (the widest stems could not be cut transversely to preserve the plants): searcher shoots $(2 \mathrm{~mm}$ diameter), attached thin branches (2 mm diameter) and mature stems ($6-10 \mathrm{~mm}$ diameter). Stem material was maintained in 1X

Tris-buffered saline (TBS), sectioned transversally at $50 \mu \mathrm{~m}$ with a Reichert-Jung Hn-40 sliding microtome (Austria), mounted onto glass slides, and stained with $0.1 \% \mathrm{w} / \mathrm{v}$ aniline blue that binds to callose of the sieve tubes, or with 0.1% of acridine orange in TBS buffer, which yields fluorescence of the lignified tissues (Robertson et al., 1992). To sample the phloem tissue, the external side of stems containing the bark were extracted with a sharp knife at the different positions described above, kept in buffer, sectioned longitudinally with a micro scalpel and stained with $0.1 \% \mathrm{w} / \mathrm{v}$ aniline blue. We measured the length and width of at least 30 sieve tubes per sampling location (total $n=107$), and the number of sieve areas per compound plate (total $n=45$).

FIGURE 1 (a) Simplified schematic representation of Austrobaileya scandens (coloured) attached to a tree (represented in grey). (b) Adult vines of A. scandens in the greenhouse. (c) Detail of the leaf canopy of A. scandens in the tropical rainforest of Queensland (Australia). (d) Apical part of a 'searcher' branch in the greenhouse (unattached tip in the scheme). (e) Branches twisted around a stable support without increasing their diameter (twining branch with leaves in the scheme). (f) The average leaf area at each particular node increased by fivefold up to the fully expanded leaves of the seventh node ($p<0.05$).
microscope using the $0.63 \times$ PlanApo objective and an AxioCam 512 Color camera connected to the AxioVision software. Despite multiple attempts, the movement of the dye could only be observed in two leaves. In both cases, fluorescence increased gradually downstream the vein a few minutes after the dye was applied. Velocity was measured by thresholding the images (Hue: 119-188; Saturation: 97-255; Brightness: $0-255 \mathrm{~nm}$), cleaning the dark outliers within 2 pixels' radius, and then calculating the time elapsed by pixel accumulation 2 cm away from the area where the dye was applied ($n=2$).

2.6 | Immunolocalization of a branched pectin epitope

The presence of a branched galactan pectin epitope in the sieve tubes of other woody angiosperms (Ray \& Savage, 2020), identified as a $\beta-1,6$ galactosyl substitution of 1,4 -galactan (Torode et al., 2018), led us to investigate whether it was present in the phloem of A. scandens with the LM26 monoclonal antibody (PlantProbes). Immunolocalizations were performed in the searcher stems, but not in twining stems, because they were much difficult to handle, and embedded poorly or when embedded were sectioned with a very poor preservation of the phloem. Segments of 0.5 cm from searcher shoots were fixed with $4 \% \mathrm{w} / \mathrm{v}$ acrolein (Polysciences) in a modified piperazine- $\mathrm{N}, \mathrm{N}^{\prime}$-bis (2-ethanesulfonic acid) (PIPES) buffer adjusted to pH 6.8 (50 mM PIPES and $1 \mathrm{mM} \mathrm{MgSO}_{4}$ from BDH ; and 5 mM ethyleneglycol bis($\left(\beta\right.$-aminoethylether)- $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$ tetraacetic acid for 24 h , then washed and dehydrated through a series of increasing aqueous acetone concentrations, 1 h each: $10 \%, 30 \%, 50 \%$, $70 \%, 90 \%, 100 \%$. After that, they were incubated in a solution containing the Technovit 8100 for at least 2 weeks, and then hardened in anoxic conditions at $4^{\circ} \mathrm{C}$. Longitudinal and transverse $4 \mu \mathrm{~m}$ sections were obtained with a Leica EM UC7 ultramicrotome (Leica Microsystems), mounted onto superfrost slides, and then used for immunolocalization. Preincubation with 5% bovine albumin serum (BSA), and three washes in 1X phosphate-buffered saline (PBS), were followed by incubation with the LM26 monoclonal antibody for 1 h . After washing the primary antibody with PBS, an anti-rat alexa488 secondary antibody, with a fluorescein isothianate marker-FITC was applied for 1 h . Samples were then washed and observed with a Leica DM2500 microscope equipped with epifluorescence and a Leica DM600 camera, combining the 405 filter for autofluorescence with the 488 filter for the specific signal of the FITC.

2.7 | Image analysis and statistics

The transverse areas of the leaf vascular tissues were manually outlined, individual tube number counts and length/width measurements evaluated on images with the Image J 1.51 d software (National Institutes of Health). Individual images from stem cross sections were aligned and merged into a composite image with the Photoshop software (Adobe Systems).

Averages from geometrical evaluations were compared using a one-way analysis of variance and the post hoc Turkey test at a $p<0.05$, using the SPSS software for statistics.

3 | RESULTS

3.1 | General anatomy of A. scandens

A. scandens are evergreen lianas with long stems, and opposite leaves and branches (Figure 1a-c; see also Bailey \& Swamy, 1949; Feild, Arens, et al., 2003; Metcalfe, 1987). The young apical branches are cylindrical, 2 mm diameter, and bend easily (noted as searchers, Figure 1a,d). These young stems harden around 10 cm back from the tip and acquire an elliptical shape, coincident with their coiling around a solid support (Figure 1c,e). Despite minimal increase in branch diameter, leaves expand exponentially along the coiled stems, reaching a maximum area at the seventh and older nodes, thus forming thick leaf canopy (Figure 1f).

3.2 | Vascular geometry in the leaves of A. scandens

Mature leaves of A. scandens (Figure 2a) are coriaceous, with a short petiole and an entire lamina. The vasculature of the petiole consists of adaxial xylem tissue composed mainly of squared tracheids, and abaxial phloem composed of sieve tubes (identified by the presence of callose), rays and parenchymatous tissue (Figure 2b). While fibre caps were lacking in the petiole, a massive protective perivascular fibre cap proliferated in the midrib (Figure $2 \mathrm{c}, \mathrm{d}$). The cross-sectional areas of both the xylem and the phloem were greatest in the petiole and narrowed linearly toward the tip of the major vein (Figure 2e; xylem: $y=-0.05 x+0.20\left(\mathrm{~mm}^{2}\right)$, phloem: $y=-0.04 x+0.15\left(\mathrm{~mm}^{2}\right)$). Strikingly, conduit diameter of both phloem and xylem were invariant along the midrib, but the number of conduits decreased by a factor of 2.6 from the petiole to the midrib tip (from 221.9 ± 32.6 SD vessels in the petiole to $84.1 \pm 17.1 \mathrm{SD}$ vessels in the midvein tip; from 127.8 ± 22.1 SD sieve tubes in the petiole to 48.3 ± 16.4 SD sieve tube elements in the midvein tip).

Xylem and phloem conduits varied in size across vein hierarchies (Figure 3a), gradually decreasing in size from major to minor veins, except in the petiole, where tracheids were shorter and narrower than those of the midrib (Figure 3b). Although sieve tube elements were also shorter in the petiole, they were larger in diameter compared to in the sieve tube elements in the midrib (Figure 3C). Sieve plate pore radii varied from $0.12 \mu \mathrm{~m}(\pm 0.007 \mathrm{SE})$ in the petiole to less than $0.08 \mu \mathrm{~m}(\pm 0.006 \mathrm{SE})$ in the minor veins (Supporting Information: Figure S1). Functionally, foliar phloem architecture correlated with a low bulk velocity of the mobile dye tracer esculin hydrate in vivo (Figure 4a-d; Supporting Information: Video S1), compared with dye tracing in other species, revealing an average rate of $11 \mathrm{~mm} \mathrm{~s}^{-1}$ in the second order veins $(n=2)$.

3.3 | Ontogeny of the phloem in the stems of A. scandens

Cross sections of stems at different axial positions revealed ontogenetic differences in the eustele, which correlated with stem mechanical properties. In the searcher shoots, a large pith was surrounded by discontinuous primary xylem traces consisting of only a few tracheids, which have no autofluorescence and therefore are not easily distinguished in cross sections (Figure 5a), but a more continuous phloem layer (Figure 5b). Twining correlated with a sharp increase in the toughness due to lignification of the pith and the development of pericyclic fibers (Figure 5c). In wider stems (which are also the ones that traverse the longest distances), the central pith constituted the largest fraction of the cross-sectional area, and the axial secondary phloem displayed a wavy morphology (Figure 5d,e), with sieve tubes closer to the vascular cambium and separated from the pericyclic fibers by parenchyma (Figure 5f).

In line with the mechanical demands for climbing, a $\beta-1,6-$ galactosyl substitution of 1,4 -galactan epitope, previously related to wall deformation of sieve tubes (Torode et al., 2018), localized in the sieve tube walls of the searcher stems of A. scandens (Figure 6; note that we could not perform immunolocalization in the secondary phloem due to poor preservation of the twining stems). Different cell morphologies compose the stems in cross section (Figure 6a), but signal from this epitope showed the scattered distribution of sieve tubes (Figure 6b,c). Upon closer inspection, the signal of the antibody corresponded with the areas of the sieve tubes between the plasma membrane and the cell walls (Figure 6d-f). In longitudinal section, the epitope was helpful in distinguishing sieve tubes from other phloem cell types (Figure 6g), which highlighted their longitudinal silhouette (Figure 6h,i), showing slightly tangential sieve plate connections (Figure 6j-l).

In the stems supported by twining, and concomitant with leaf expansion, the morphology of the sieve elements varied, gradually increasing the tangential area of sieve plate connections at the end of the conduits (Figure 7a,b). In the thickest stems, sieve elements had extremely angled tangential connections with a large substantial proportion of the tubes covered by sieve plate pores (Figure 7b,c). Numerous small pores ($0.20 \mu \mathrm{~m}$ on average, $n=600$), whose radius was similar to those of the leaf petioles, populated the sieve plates (Figure 7c,d; Behnke, 1986). In addition to morphology, sieve conduit dimensions increased from thinner ($2-4 \mathrm{~mm}$ diameter) to thicker stems ($6-8 \mathrm{~mm}$ diameter), but their length was shorter at the base of the vine ($9-11 \mathrm{~mm}$ diameter, Figure 7e).

3.4 | Phloem hydraulic resistance from leaves to stems of A. scandens

Anatomical data (average sieve tube radii, and pore radii/length at each location along the transport pathway in both leaves and stems) was used to estimate phloem hydraulic resistance, supposing a continuous pipe-like cylindrical tubing system formed by sieve

FIGURE 2 Vascular anatomy of the continuum petiole-midvein of Austrobaileya scandens leaves. (a) Mature leaf of A. scandens. (b) Vascular tissues of the fibreless petiole. (c) Vasculature in the mid part of the major vein showing a massive layer of pericyclic fibres surrounding the xylem and the phloem. (d) Vasculature at the tip of the midvein. (e) Cross-sectional areas of the vascular tissues at the three positions in the midvein: while the cross-sectional areas of xylem (red squares) and phloem (yellow circles) decreased linearly toward the tip ($p<0.05$), the fibers (grey ribbons) occupied a wide cross-sectional area in the leaf lamina, but not in the petiole. (b)-(D) Cross sections stained with aniline blue to detect callose of the sieve tube elements. Scale bars: $(a)=1 \mathrm{~cm}$; $(b)-(d)=200 \mu \mathrm{~m}$. [Color figure can be viewed at wileyonlinelibrary.com]
elements connected in series, as modelled previously for vines and trees (Knoblauch et al., 2016; Savage et al., 2017). The Hagen-Poiseuille equation was the reference to understand the axial resistance of the sieve tube. Due to the difficulty of measuring the actual length of the twisted stems, we calculated the total resistance per tube length (Pasm^{-4}) at the defined axial positions along the transport path from leaves to the base of the stem. The
poor preservation of the thinner twining stems allowed only a few measurements of sieve plate pore sizes, which revealed an average radius of $0.19 \mu \mathrm{~m}$. However, the radius of the sieve plate pores at the base of the stem was quite similar $(0.20 \mu \mathrm{~m})$, where we obtained a substantial number of measurements ($n=600$ pores measured). The following assumptions were made for calculations of the hydraulic resistance: (1) sieve plates and pore density were equal to the midrib

FIGURE 3 Geometrical scaling of the vascular elements in the leaves of Austrobaileya scandens. (A) General view of the leaf veins showing the sampling areas (double headed arrows), including a close-up of the smaller veins. (b)-(d) Length (squares) and radius (circles) of the individual vessel elements (red), and sieve tube elements (yellow) across vein orders; error bars represent standard error at a $p<0.05$. Inset in panel (a) shows a fluorescence image section of the leaf stained with the Feulgen reactive, cleared and cuticle dissected. Fou, fourth order veins; pet, petiole; pri, primary vein; sec, secondary vein; ter, tertiary vein. Scale bar $=500 \mu \mathrm{~m}$. [Color figure can be viewed at wileyonlinelibrary.com]
value for higher vein orders; (2) sieve plate pore sizes at the tip of the stems were similar to those measured at the vine base. The latter assumption is very conservative, and likely underestimates the resistance of the upper stem, given that previous reports showed smaller pore sizes at the tips of vine stems compared with their base (see Knoblauch et al., 2016). Sieve tube resistance varied about one
and a half orders of magnitude from the branch tips to the base of the stems. Compared with trees of similar height, the top of the vine displayed similar sieve tube resistance, but this resistance dropped more moderately than in trees, resulting in two orders of magnitude higher resistance of A. scandens vines at ground level (Clerx et al., 2020; Losada \& Holbrook, 2019; Savage et al., 2017). The small pore

FIGURE 4 Velocity of the phloem sap in Austrobaileya scandens leaves. Time-lapse images of a secondary vein showing a 2 min advancement of esculin hydrate dye from $0 \mathrm{~min}(\mathrm{a}), 2 \mathrm{~min}$ (b), 4 min (c), to 6 min (d). Insets show the thresholding applied to the sequential images for the calculation of velocity, with a gradual accumulation of the dye within the veins. Scale bars $=1000 \mu \mathrm{~m}$. [Color figure can be viewed at wileyonlinelibrary.com]
radii of sieve plates were a major factor contributing to this high resistance (Figure 8), although compensated by an increasing number of sieve areas in the compound sieve plates from top to bottom (i.e., a higher total number of pores), thus overcoming resistance penalties associated with length. Monotonic decrease of axial resistance due to axial conduit structural variation encounters an exception at the base of the vine, where conduits were shorter.

4 | DISCUSSION

4.1 | Phloem ontogeny and lianescence

During stem ontogeny of an adult liana that relies exclusively on twining for climbing, such as A. scandens, apical branches transition abruptly from self-support, known as searchers, to more lignified axis that grow in close contact with a solid support (note that this applies to the ontogeny of adult plants, not to the life history of lianas, where an initial juvenile period of self-support is common, including A. scandens [Losada et al., 2017; Speck \& Rowe, 1999, Rowe, Isnard, et al., 2004; Wagner et al., 2012]). In A. scandens, the photosynthetic, nonlignified searcher branches contain more phloem than xylem tissue, likely because both the immature leaves and the tips of searcher branches have little demand for water, but a significant need for carbohydrates. This limited xylem implies that pith turgor might be the major contributor to the mechanical stability of searcher
branches, as reported in other twining vines (Isnard \& Silk, 2009). Morphologically, the tube-like primary sieve elements that dominated the vasculature of searchers suggested a lack of lateral transport, but directional sap flow toward growing branch tips. Chemically, sieve tube walls of searcher stems were composed of a galacturonan-rich pectin, which has been described in a handful of species such as in leaves of Beta vulgaris (Torode et al., 2018), or in the seasonally renewed sieve tubes of Populus (Ray \& Savage, 2020). These previous works strongly emphasized that the chemistry of the cell walls connect with mechanics of the sieve tube wall (Torode et al., 2018). Thus, this wall related epitope may contribute to the flexibility of searcher branches, and it may also be present in sieve tubes in the secondary phloem. Recent studies support the presence of galactans in the gelatinous fibers involved in mechanical properties of plants (Gorshkova et al., 2018), and their prevalence in twining vines compared with other climbers (Chery et al., 2022). Nevertheless, our finding of this epitope in the primary sieve tubes of A. scandens demonstrates that this distinctive pectin is shared in the sieve tubes of angiosperms with different life histories, growth habits and phylogenetic backgrounds.

Despite the untapered twining stems at the branch tips, leaf area increased and reached full expansion by approximately the seventh node. Basipetally, the phloem in the twining stems acquired a lobed topology and the sieve tubes an increasing number of areas making up the tangential compound sieve plate connections, features that suggest an increase in transport efficiency (i.e., more total number of

FIGURE 5 Anatomy of the Austrobaileya scandens stems. (a), (c), (e): Cross sections of stems stained with acridine orange, which displays fluorescence of the lignified tissues in fluorescent green and nonlignified tissues in reddish colour; (b), (d), (f): cross sections of the stems stained with aniline blue for callose in the sieve tube elements of the phloem; insets depict the magnified phloem areas from the larger image, but do not correspond with the exact location labelled by the yellow rectangle. (a) Cross section of a 2 mm diameter 'searcher' branch tip with primary growth, with an extensive central pith. (b) Same stem showing callose in the continuous phloem ring (fluorescent green) and single xylem traces (red arrow). (c) Cross section of a twisted 2 mm diameter branch showing a dramatic increase in lignification of the pith, the xylem and a pericyclic fibre cap (fluorescent green). (d) The phloem forms a thin layer between the xylem and the fibre cap. (e) Wider stems (8 mm diameter) with a high degree of lignification in all central tissues, wide vessels of the xylem and enlarged areas between the xylem and the fibre cap. (f) The fascicular phloem tissue was separated by axial multilayered phloem parenchyma and the active tubes were in the vicinity of the vascular cambium. F, fibers; p, pith; phl, phloem; xyl, xylem. Scale bars: (a)-(f) = 1 mm ; insets $=100 \mu \mathrm{~m}$. [Color figure can be viewed at wileyonlinelibrary.com]
pores at the end of the tubes). In fact, the complex division patterns (i.e., tangential longitudinal) of the secondary phloem of A. scandens were evaluated in detail about 50 years ago (Srivastava, 1970), and these differ from axial longitudinal divisions observed in other woody
angiosperms, suggesting a correlation with the helical gyres of the lianoid growth habit. In line with these observations, we further noticed that, in areas of high rotation at the base of the stems, the sieve tube elements were shorter (Silk \& Holbrook, 2005), reinforcing

FIGURE 6 (See caption on next page)
the idea that the vascular cambium activity is influenced by the mechanics of lianoid stems (Pace et al., 2015, 2018). How this mechanical (un)stability affects function has been studied for the lianoid xylem, which enhances hydraulic efficiency through
more volumetric vessels despite the strong torsional pressures such as twisting and bending (Gentry, 1991; Putz \& Holbrook, 1992; Rowe et al., 2006; Speck \& Rowe, 1999), but not for the phloem.

Our measurements also revealed that sieve tube geometries are more conserved across species, and A. scandens displays radii of sieve elements $(7-13 \mu \mathrm{~m})$, which fall within parameters measured in the slender stems of I. nil ($10-20 \mu \mathrm{~m}$) (Knoblauch et al., 2016), or the trunks of canopy dominant trees $(6-24 \mu \mathrm{~m})$ (Liesche et al., 2017; Savage et al., 2017). The radii of the sieve tube elements increase basipetally at long distances, as observed in tall trees (Jensen, Liesche, et al., 2012; Jensen, Mullendore, et al., 2012; Savage et al., 2017). Strikingly though, the average sieve plate pore size of A. scandens ($0.20 \mu \mathrm{~m}$ radius) was smaller than in stems of other species, and varied little axially. Because pore size is the factor that affects phloem hydraulics the most, A. scandens has high phloem resistance in the stem, compared with other species (BarcelóAnguiano, Holbrook, et al., 2021; Clerx et al., 2020; Liesche et al., 2017; Savage et al., 2017), but within the parameters observed in other Austrobaileyales of the understory (Losada \& Holbrook, 2019). To compensate for the small sieve plate pore size, the secondary phloem of A. scandens has an unusually high number of individual sieve areas in the tangential compound plates at the extremes of the phloem conduits. Compound sieve plates have been correlated with growth form in height across woody species that reach the forest crowns (BarcelóAnguiano, Holbrook, et al., 2021; Barceló-Anguiano, Hormaza, et al., 2021; Clerx et al., 2020; Knoblauch et al., 2016; Liesche et al., 2017; Losada \& Holbrook, 2019; Pace et al., 2015; Savage et al., 2017). Reasons behind the particular phloem morphology of A. scandens (lobed arrangement in cross sections, tapered tubes with angled plates and different sieve element lengths) may reflect life history traits associated with the liana growth form, such as the imbalance of carbon allocation between the leaf canopy and stem tissues. Thus, a reduced number of below-canopy sink tissues and higher canopy sinks favour a more functional phloem aboveground, whereas in the understory, the mechanics of twining constrains the morpho-functional aspects of phloem (e.g., the length of the sieve tubes).

4.2 | Vascular scaling in leaves of Austrobaileyales and other angiosperms

Within leaves of A. scandens, the geometry of vascular elements (tracheids and sieve tube elements) vary across vein orders. Hierarchical scaling of the xylem has been documented in the
reticulate leaves of angiosperms, suggesting that the efficiency of water distribution across the continuous xylem conduits follows laws of energy conservation, such as Murray's law (Carvalho et al., 2017a; McCulloh et al., 2003; Murray, 1926; Scoffoni et al., 2017). In contrast, the scaling of sieve tube elements in leaf veins of woody plants remains poorly characterized. Recent work in leaves with different branching patterns, such as the dichotomously branched veins of Ginkgo (Carvalho et al., 2017b), or reticulate-veined leaves of Populus and Illicium (Carvalho et al., 2017a; Losada \& Holbrook, 2019), strongly suggest universal variation of the geometry of phloem conduits across leaf vein orders. Yet, an unexplored feature in the leaves of angiosperms is the size of pores connecting sieve tubes in the leaves. Our work provides evidence that pore sizes vary in accordance with sieve tube dimensions, from $0.08 \mu \mathrm{~m}$ in minor veins to $0.12 \mu \mathrm{~m}$ in the petiole. As a result, variation of both the geometry of tubes and size of pores enhance bulk export of photoassimilates toward the petiole under the pressure-flow predictions (Münch, 1930).

We further report a 1:1.25 xylem to phloem ratio of areas of the major vein in Austrobaileya leaves, balanced in favour of the phloem compared to the general range of 1:4-1:10 reported in leaves of deciduous trees (Artschwager, 1926; Waisel et al., 1966). Additionally, the isodiametric sieve tube elements in the midrib linearly increased in number toward the petiole. The dimensions of sieve elements in the major leaf veins remains poorly explored in angiosperms, but they are well documented in the single veined needles of conifers (Ronellenfitsch et al., 2015), in which photo assimilate export is favoured by the increasing number of isodiametric phloem conduits from the tip to the base of the needles. This suggests a convergent strategy between conifer needles and A. scandens midrib, but whether this occurs in other angiosperm leaves, needs further testing. The isodiametric tracheids of the midrib linearly increased in number toward the petiole, supporting predictions on the uniformity of xylem conduit diameter within the same vein order (Gleason et al., 2018; McCulloh et al., 2003, 2009). Among the scarce studies documenting xylem allometry in single veins, variation in conduit diameter along the midrib has been studied in Fraxinus (Petit et al., 2016) and Acer (Lechthaler et al., 2019). The shortening of tracheids toward the petiole of A. scandens suggests a reduction in xylem conductivity that contrasts with the highly

FIGURE 6 Immunolocalization of a $\beta-1,6$-galactosyl substitution of 1,4-galactan pectin epitope in the sieve tube elements of searcher branches of Austrobaileya scandens with the LM26 monoclonal antibody. (a) Transverse section showing autofluorescence (405 nm) in multiple colours, distinguishing a multicellular arrangement of the different tissue layers, including three isolated tracheids that compose the primary xylem (red arrowheads). (b) Same section displaying the sieve tube elements of the primary phloem forming a continuous ring (yellow arrows). (c) Merged images. (d) Close up of the phloem in cross section. (e) The profile of the sieve tubes in cross section after immunolocalization (yellow arrows). (f) Merged images. (g) Longitudinal section of the branch displaying he external part in the top and the internal tissues at the bottom. (h) Longitudinal profile of the sieve tube element wall after immunolocalization, yellow arrowheads define the connection between tubes. (i) Merged images. (j) Detail of the sieve tube connections. (k) Sieve plate in the primary sieve tubes are slightly tangential (yellow arrowhead). (I) Merged images. Four micrometres thick transverse (a)-(f) or longitudinal (g)-(l) sections of the searcher shoots displaying autofluorescence with the 405 nm filter ($\mathrm{a}, \mathrm{d}, \mathrm{g}, \mathrm{j}$), immunolocalized with the LM26 monoclonal antibody ($\mathrm{b}, \mathrm{e}, \mathrm{h}, \mathrm{k}$) and merged images ($\mathrm{c}, \mathrm{f}, \mathrm{i}, \mathrm{l})$. Ct, cortical tissue; phl, phloem; sp, sieve plate; vc, vascular cambium; xyl, xylem. Scale bars: (a)-(c) $=50 \mu \mathrm{~m}$; (g)-(i) $=25 \mu \mathrm{~m}$; (d)-(f), (j)-(l) $=10 \mu \mathrm{~m}$. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Morphology of the sieve tube elements in the stems of Austrobaileya scandens. Schemes in A and B depict a simplified version of the sieve tube morphological variation between searcher shoots and twining stems respectively. (a) Longitudinal view of a sieve tube element from a searcher shoot, 2 mm diameter, showing simple sieve plate connections (arrows). (b) Sieve tube element of an 8 mm diameter stem showing compound sieve plate connections between tubes (arrows). (c) Longitudinal view of the highly tangential-highly porated end of a sieve tube element observed with scanning electron microscopy (note that some plates are broken due to processing). (d) Close ups of the top part of the sieve plate, with details of individual areas and pores. (e) Sieve tube element length (squares), and width (circles) across axial stems of different diameter ranges; bars represent the standard error at a $p<0.05$. (a) and (b) Longitudinal hand sections of the stems stained with aniline blue to detect callose (bright fluorescence); (c) and (d) scanning electron microscopy images showing the sieve plates and the sieve pores in detail. Scale bars: (a)-(c) $=50 \mu \mathrm{~m}$; $(\mathrm{d})=5 \mu \mathrm{~m}$. [Color figure can be viewed at wileyonlinelibrary.com]
conductive stems, pointing to hydraulic segmentation of the xylem between the stems and the leaves. In contrast, the sieve tube elements of the petiole reduced their length, but not their diameter, thus maintaining a stable transport capacity. We previously showed a
similar trait in the leaves of Illicium parviflorum (Carvalho et al., 2018; Losada \& Holbrook, 2019), a pattern confirmed in leaves of five tree species: Acer saccharum, Liriodendron tulipifera, Catalpa speciosa, Liquidambar styraciflua, and Quercus rubra (unpublished).

4.3 | Contrasting vascular strategies between leaves and stems of lianas in the understory

Our measurements, although limited in number, suggest that the velocity of the phloem in A. scandens is one order of magnitude slower than Ipomoea and in trees (Babst et al., 2013; Knoblauch et al., 2016; Windt et al., 2006), but similar to the rates observed in I. parviflorum (Losada \& Holbrook, 2019). While the radii of the phloem conduits were similar in petioles and searcher branches, the hydraulic resistance from leaves to stems followed a continuum, differing by three orders of magnitude from the minor veins to the base of the plants. Yet, this is a smaller difference than that reported between the top and the bottom of tree stems of comparable heights (Savage et al., 2017). Our calculations, which assume a constant viscosity of $1.7 \mathrm{mPa} \mathrm{s}^{-1}$, would not allow transport at long distances with faster velocities. For example, the pressure required to transport the sap 3 m from the leaves would be 1.4 MPa , suggesting that longer distances could impair transport. In conclusion, with constant viscosity and velocity, the export of carbohydrates from the leaves is facilitated by the geometry of the phloem, but encounter architectural limitations in the stems (i.e., tiny pores in the sieve plates). What this may imply is that the export of photoassimilates may easily be redirected toward the continuously growing canopy. This is possible because the stem girth is maintained constant for long distances, but enlarges typically at the base of the vine. Additionally, the stems of A. scandens are photosynthetic along their length, pointing to the possibility of self-sustaining, at least partially, the limited secondary growth, and root elongation.

The vesselless leaves of A. scandens were previously suggested as having a simpler anatomy than other angiosperms, such as the absence of palisade parenchyma, low stomatal density with slow responses to VPD changes (Feild, Arens, et al., 2003), which correlated with a physiology associated to the understory environment (Brodribb \& Field, 2010). Similarly, woody members of the ancestral ANA grade (Amborellales, Nymphaeales, Austrobaileyales), such as Amborella trichopoda, are vessel free and lack reaction wood (Feild \& Arens, 2005; Feild \& Wilson, 2012). Taken together, our results, which include a strong hydraulic segmentation of the xylem and a high resistance of phloem to sap transport, correlate with the slow growth rate of this species in the understory conditions (Feild \& Wilson, 2012).

Exploring the phloem of extant members of the ancestral angiosperm grade ANA is particularly relevant, given that fossils, when available, rarely preserve this tissue. Thus, living members allow for the inference of the varied hydraulic solutions evolved-and perhaps maintained-by angiosperms during their initial radiation. A. scandens, the only extant member of the Austrobaileyaceae family, itself one of the three lineages composing the ANA grade, a sister grade to all flowering plants (Mathews \& Donoghue, 1999; Parkinson et al., 1999; Qiu et al., 2000; Soltis et al., 1999, 2018), has been historically used to speculate on the primitive growth habits of the first angiosperms. In particular, one of the critical questions is when
and how flowering plants reached the canopy (Jud et al., 2018). Our work contributes to understanding long distance transport in woody lianas with simple body plans, and the constraints associated with their life histories. Woody lianas, semiclimbers and shrubs (rarely trees) dominate the extant forms of the earliest angiosperm lineages Amborellales and Austrobaileyales. Woodiness, considered the symplesiomorphic condition of angiosperms as a whole, was likely required to colonize the vertical niche during the Cretaceous, previously dominated through millions of years by gymnosperms. The question remains as to which angiosperm growth form reached the canopy first, and whether climbers, typically considered highly derived, could have been among the most successful of the earliest angiosperms.

ACKNOWLEDGEMENTS

We are grateful to William E. (Ned) Friedman for kindly sharing plant material and lab facilities and to the staff of the Arnold Arboretum of Harvard University for continuous support. This study was funded by the National Science Foundation IOS 1456845 research grant to N. M. Holbrook. Z. He was awarded with a research internship program from the DaRin Butz Foundation at the Arnold Arboretum of Harvard University. J. M. Losada is a ComFuturo researcher at the IHSM La Mayora, funded by FGCSIC, a RTI2018-102222-A-I00 grant from the Spanish Ministry of Science and Universities, and a LINKB20067 from CSIC.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Data are available upon request to the corresponding author.

ORCID

Juan M. Losada (iD http://orcid.org/0000-0002-7966-5018
N. Michele Holbrook (iD http://orcid.org/0000-0003-3325-5395

REFERENCES

Artschwager, E. (1926) Anatomy of the vegetative organs of the sugar beet. Journal of Agricultural Research, 33, 143-176.
Babst, B.A., Karve, A.A. \& Judt, T. (2013) Radio-metabolite analysis of carbon-11 biochemical partitioning to non-structural carbohydrates for integrated metabolism and transport studies. Plant \& Cell Physiology, 54, 1016-1025.
Bailey, I.W. \& Swamy, B.G.L. (1949) The morphology and relationships of Austrobaileya. Journal of the Arnold Arboretum, 30, 211-226.
Baillaud, L. (1962) Les mouvements d'exploration et d'enroulement des plantes volubiles. Handb Pflanzenphysiologie, 17, 635-715.
Barceló-Anguiano, M., Holbrook, N.M., Hormaza, J.I. \& Losada, J.M. (2021) Changes in ploidy affect vascular allometry and hydraulic function in Mangifera indica trees. The Plant Journal, 108, 541-554. https://doi.org/10.1111/tpj. 15460
Barceló-Anguiano, M., Hormaza, J.I. \& Losada, J.M. (2021) Conductivity of the phloem in mango (Mangifera indica L.). Horticulcture Research, 8, 150. https://doi.org/10.1038/s41438-021-00584-1

Barral, A., Gomez, B., Feild, T.S., Coiffard, C. \& Daviero-Gomez, V. (2013) Leaf architecture and ecophysiology of an early basal eudicot from
the Early Cretaceous of Spain. Botanical Journal of the Linnean Society, 173, 594-605.
Behnke, H. (1986) Sieve element characters and the systematic position of Austrobaileya, Austrobaileyaceae-with comments to the distinction and definition of sieve cells and sieve-tube members. Plant Systematics and Evolution, 152, 101-121.
Brodribb, T.J. \& Field, T.S. (2010) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 13, 175-183.
Carlquist, S. (1991) Anatomy of vine and liana stems: a review and synthesis. In: Putz, F.E. \& Mooney, H.A. (Eds.) The biology of vines. Cambridge: Cambridge University Press, pp. 53-71.
Carlquist, S. (2001) Observations on the vegetative anatomy of Austrobaileya: habitat, organographic and phylogenetic conclusions. Botanical Journal of the Linnean Society, 135(1), 1-11.
Carvalho, M.R., Losada, J.M. \& Niklas, K.J. (2018) Phloem networks in leaves. Current Opinion in Plant Biology, 43, 29-35.
Carvalho, M.R., Turgeon, R., Owens, T. \& Niklas, K.J. (2017a) The hydraulic arnnchitecture of Ginkgo leaves. American Journal of Botany, 104, 1285-1298.
Carvalho, M.R., Turgeon, R., Owens, T. \& Niklas, K.J. (2017b) The scaling of the hydraulic architecture in poplar leaves. New Phytologist, 214, 145-157.
Chen, Y.J., Bongers, F., Zhang, J.L., Liu, J.Y. \& Cao, K.F. (2014) Different biomechanical design and ecophysiological strategies in juveniles of two liana species with contrasting growth habit. American Journal of Botany, 101(6), 925-934.
Chery, J.G., Glos, R.A. \& Anderson, C.T. (2022) Do woody vines use gelatinous fibers to climb? New Phytologist, 233, 126-131.
Chery, J.G., Pace, M.R., Acevedo-Rodríguez, P., Specht, C.D. \& Rothfels, C.J. (2020) Modifications during early plant development promote the evolution of nature's most complex woods. Current Biology, 30(2), 237-244.
Clerx, L.E., Rockwell, F.E., Savage, J.A. \& Holbrook, N.M. (2020) Ontogenetic scaling of phloem sieve tube anatomy and hydraulic resistance with tree height in Quercus rubra. American Journal of Botany, 107, 852-863.
Darwin, C. (1875) On the movements and habits of climbing plants. London: John Murray, Longman, Green.
Ewers, F.W., Fisher, J.B. \& Fichtner, K. (1991) Water flux and xylem structure in vines. In: Putz, F.E. \& Mooney, H.A. (Eds.) The biology of vines. Cambridge: Cambridge University Press, pp. 127-179.
Feild, T.S. \& Arens, N.C. (2005) Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. New Phytologist, 166(2), 383-408.
Feild, T.S. \& Arens, N.C. (2007) The ecophysiology of early angiosperms. Plant, Cell \& Environment, 30, 291-309.
Feild, T.S., Arens, N.C. \& Dawson, T.E. (2003) The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. International Journal of Plant Sciences, 164, 129-142.
Feild, T.S., Franks, P.J. \& Sage, T.L. (2003) Ecophysiological shade adaptation in the basal angiosperm, Austrobaileya scandens (Austrobaileyaceae). International Journal of Plant Sciences, 164(S3), 313-324.
Feild, T.S. \& Wilson, J.P. (2012) Evolutionary voyage of angiosperm vessel structure-function and its significance for early angiosperm success. International Journal of Plant Sciences, 173, 596-609.
Fisher, J.B. \& Blanco, M.A. (2014) Gelatinous fibers and variant secondary growth related to stem undulation and contraction in a monkey ladder vine, Bauhinia glabra (Fabaceae). American Journal of Botany, 101, 608-616.
Geiger, D.R., Saunders, M.A. \& Cataldo, D.A. (1969) Translocation and accumulation of translocate in the sugar beet petiole. Plant Physiology, 44, 1657-1665.

Losada, J.M. \& Holbrook, N.M. (2019) Scaling of phloem hydraulic resistance in stems and leaves of the understory angiosperm shrub Illicium parviflorum. American Journal of Botany, 106, 244-259.
Mathews, S. \& Donoghue, M.J. (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science, 286, 947-950.
McCulloh, K.A., Sperry, J.S. \& Adler, F.R. (2003) Water transport in plants obeys Murray's law. Nature, 421, 939-942.
McCulloh, K.A., Sperry, J.S., Meinzer, F.C., Lachenbruch, B. \& Atala, C. (2009) Murray's law, the 'Yarrum' optimum, and the hydraulic architecture of compound leaves. New Phytologist, 184(1), 234-244.
Metcalfe, C.R. (1987) Anatomy of the dicotyledons. Volume III. Magnoliales, Illiciales, and Laurales, 2nd edition. Oxford: Clarendon Press.
Moya, R., Gondaliya, A.D. \& Rajput, K.S. (2017) Stem anatomy and development of interxylary phloem in Strychnos bredemeyeri (Loganiaceae). Anales de Biología, 39, 75-87.
Mullendore, D.L., Windt, C.W., Van As, H. \& Knoblauch, M. (2010) Sieve tube geometry in relation to phloem flow. Plant Cell, 22, 579-593.
Münch, E. (1930) Die stroffbewegungen in der pflanze. Germany: Jena, G. Fischer.
Murray, C.D. (1926). The Physiological Principle of Minimum Work. Proceedings of the National Academy of Sciences, 12(3), 207-214. https://doi.org/10.1073/pnas.12.3.207
Pace, M.R., Acevedo-Rodríguez, P., Amorim, A.M. \& Angyalossy, V. (2018) Ontogeny, structure and occurrence of interxylary cambia in Malpighiaceae. Flora, 241, 46-60.
Pace, M.R., Alcantara, S., Lohmann, L.G. \& Angyalossy, V. (2015) Secondary phloem diversity and evolution in Bignonieae (Bignoniaceae). Annals of Botany, 116, 333-358.
Pace, M.R., Lohmann, L.G. \& Angyalossy, V. (2011) Evolution of disparity between the regular and variant phloem in Bignonieae (Bignoniaceae). American Journal of Botany, 98, 602-618.
Parkinson, C.L., Adams, K.L. \& Palmer, J.D. (1999) Multigene analyses identify the three earliest lineages of extant flowering plants. Current Biology, 9, 1485-1491.
Petit, G., Savi, T., Consolini, M., Anfodillo, T. \& Nardini, A. (2016) Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees. Tree Physiology, 36(11), 1310-1319.
Putz, F.E. \& Holbrook, N.M. (1992) Biomechanical studies of vines. In: The biology of vines. Cambridge, UK: Cambridge University Press, pp. 73-99.
Qiu, Y.L., Lee, J., Bernasconi-Quadroni, F., Soltis, D.E., Soltis, P.M., Zanis, M. et al. (2000) Phylogeny of basal angiosperms: analyses of five genes from three genomes. International Journal of Plant Sciences, 161, 3-27.
Ray, D.M. \& Jones, C.S. (2018) Scaling relationships and vessel packing in petioles. American Journal of Botany, 105, 667-676.
Ray, D.M. \& Savage, J.A. (2020) Immunodetection of cell wall pectin galactan opens up new avenues for phloem research. Plant Physiology, 183(4), 1435-1437.
Robertson, A.G., Jang, H.F. \& Seth, R.S. (1992) Three-dimensional visualization of confocal images of wood pulp fibres. Journal of Materials Science Letters, 11, 1416-1418.
Ronellenfitsch, H., Liesche, J., Jensen, K.H., Holbrook, N.M., Schulz, A. \& Katifori, E. (2015) Scaling of phloem structure and optimality of photoassimilate transport in conifer needles. Proceedings of the Royal Society, B, Biological Sciences, 282, 20141863.
Rosell, J.A. \& Olson, M.E. (2014). Do lianas really have wide vessels? Vessel diameter-stem length scaling in non-self-supporting plants. Perspectives in Plant Ecology, Evolution and Systematics, 16, 288-295. https://doi.org/10.1016/j.ppees.2014.08.001.
Rowe, N.P., Isnard, S., Gallenuller, F. \& Speck, T. (2006) Diversity of mechanical architectures in climbing plants: an ecological perspective. In: Herrel, A., Speck, T. \& Rowe, N.P. (Eds.) Ecology and
biomechanics: a mechanical approach to the ecology of animals and plants. Boca Raton, FL, USA: Taylor and Francis, pp. 35-59.
Rowe, N., Isnard, S. \& Speck, T. (2004). Diversity of mechanical architectures in climbing plants: an evolutionary perspective. Journal of Plant Growth Regulation, 23, 108-128.
Savage, J.A., Beecher, S., Clerx, L., Gersony, J.T., Knoblauch, J., Losada, J.M. et al. (2017) Maintenance of carbohydrate transport in tall trees. Nature Plants, 3, 965-972.
Schnitzer, S.A., Mangan, S.A., Dalling, J.W., Baldeck, C.A., Hubbell, S.P., Ledo, A. et al. (2012) Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS One, 7(12), e52114.
Scoffoni, C., Albuquerque, C., Brodersen, C., Townes, S.V., John, G.P., Cochard, H. et al. (2017) Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist, 213(3), 1076-1092.
Silk, W.K. \& Holbrook, N.M. (2005) The importance of frictional interactions in maintaining the stability of the twining habit. American Journal of Botany, 92(11), 1820-1826.
Soltis, D.E., Soltis, P.S., Endress, P., Chase, M.W., Manchester, S., Judd, W. et al. (2018) Phylogeny and evolution of the angiosperms: revised and updated edition. Chicago, USA: University Press.
Soltis, P.S., Soltis, D.E. \& Chase, M.W. (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 402, 402-404.
Speck, T. \& Rowe, N.P. (1999) A quantitative approach for analytically defining size, growth form, and habit in living and fossil plants. In: Kurmann, M.H. \& Hemsley, A.R., eds. The evolution of plant architecture. Kew, UK: Royal Botanic Gardens. pp. 447-479.
Srivastava, L.M. (1970) The secondary phloem of Austrobaileya scandens. Canadian Journal of Botany, 48(2), 341-359.
Torode, T.A., O'Neill, R., Marcus, S.E., Cornuault, V., Pose, S., Lauder, R.P. et al. (2018) Branched pectic galactan in phloem-sieve-element cell
walls: implications for cell mechanics. Plant Physiology, 176(2), 1547-1558.
Wagner, S.T., Isnard, S., Rowe, N.P., Samain, M.-S., Neinhuis, C. \& Wanke, S. (2012). Escaping the lianoid habit: evolution of shrublike growth forms in Aristolochia subgenus Isotrema (Aristolochiaceae). American Journal of Botany, 99(10), 1609-1629. Portico. https://doi.org/10.3732/ajb. 1200244
Waisel, Y., Ilana, N. \& Fahn, A. (1966) Cambial activity in Eucalyptus camaldulensis Dehn. II. The production of phloem and xylem elements. New Phytologist, 65(3), 319-324.
Windt, C.W., Vergeldt, F.J., De Jager, P.A. \& Van As, H. (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant, Cell \& Environment, 29, 1715-1729.
Wyka, T.P., Oleksyn, J., Karolewski, P. \& Schnitzer, S.A. (2013) Phenotypic correlates of the lianescent growth form: a review. Annals of Botany, 112, 1667-1681.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Losada, J.M., He, Z. \& Holbrook, N.M. (2022) Sieve tube structural variation in Austrobaileya scandens and its significance for lianescence. Plant, Cell \& Environment, 45, 2460-2475.
https://doi.org/10.1111/pce. 14361

[^0]: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
 © 2022 The Authors. Plant, Cell \& Environment published by John Wiley \& Sons Ltd.

