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Abstract: In recent years, various deep learning models have been developed for the fault diagnosis
of rotating machines. However, in practical applications related to fault diagnosis, it is difficult to
immediately implement a trained model because the distribution of source data and target domain
data have different distributions. Additionally, collecting failure data for various operating conditions
is time consuming and expensive. In this paper, we introduce a new transformation method for the
latent space between domains using the source domain and normal data of the target domain that can
be easily collected. Inspired by semantic transformations in an embedded space in the field of word
embedding, discrepancies between the distribution of the source and target domains are minimized
by transforming the latent representation space in which fault attributes are preserved. To match the
feature area and distribution, spatial attention is applied to learn the latent feature spaces, and the
1D CNN LSTM architecture is implemented to maximize the intra-class classification. The proposed
model was validated for two types of rotating machines such as a dataset of rolling bearings as
CWRU and a gearbox dataset of heavy machinery. Experimental results show the proposed method
has higher cross-domain diagnostic accuracy than others, therefore showing reliable generalization
performance in rotating machines operating under various conditions.

Keywords: fault diagnosis; domain adaptation; attention mechanism; feature space transformation;
gearbox; vibration measurement

1. Introduction

Heavy equipment is commonly employed at large construction sites such as mines
and quarries. Its failure directly affects productivity, which can cause great losses to
both customers and corporations. Therefore, identifying eminent failures in advance and
minimizing downtime are essential for both manufacturers and customers. The advent
of the Industry 4.0 era has also increased demand for diagnosis and prognostics with
use of smart sensors. Under the slogan “Industry 4.0”, the development of intelligence
applications is accelerating at various industrial sites [1]. Fault diagnostics for parts
susceptible to damage such as sun, planetary, and ring gears—major components of
heavy machinery—rely on detecting and monitoring changes in the magnitude of fault
frequency. However, the complex kinematics of planetary gearboxes generate complex
vibration signals, making it difficult to identify characteristic error frequencies. A failure in
a planetary gearbox can shut down the entire vehicle, resulting in major economic losses
and even human casualties. Condition monitoring and initial fault diagnosis aim to prevent
accidents and save costs for planetary gearbox users.

Machine learning technology has had a number of successes in the field of fault diagno-
sis in recent years. Previous studies tended to consider autoencoders (AEs), convolutional
neural networks (CNNs), and recurrent neural networks (RNNs) [2,3]. RNNs are a type of
deep learning architecture designed for time-series data—i.e., data in which the current
output is heavily dependent on the data that preceded it, such as in language. Generally,
output from the current time step comprises all or part of the input for the next time step
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operation [4]. However, early RNNs had a problem of quickly forgetting the impact of
previous data after only a few iterations (vanishing gradient problem). Long Short-Term
Memory (LSTM) networks were developed to solve this problem [5]. Hence, most modern
RNNSs are LSTM implementations and are extensively used to identify gradual and time-
dependent machine faults [6,7]. In particular, fault diagnosis for a rotating component,
an essential aspect of various applications, has received a lot of attention in industry. For
bearing failure diagnosis, a method of indirectly using the starter current rather than data
collected from a rotating body was proposed [8]. In addition, the feature extraction method
based on pre-learning, which can more robustly extract the fault features of a rotating body,
has been successfully applied [9].

However, most existing studies are generally conducted under the assumption that
the source and target data have similar distributions [10]. This means that training and
testing data must be obtained using the same equipment under the same working condi-
tions. Unfortunately, in general, the operating speed or load of an actual rotating body
will constantly change, creating an abnormal vibration signal and error frequency with
time-varying characteristics, making fault diagnosis more complicated. Therefore, this
assumption is difficult to meet in practice and variations in operating conditions create
significant disparities in the distribution of the target domain data [11,12]. As a result, the
learned fault diagnosis knowledge does not generalize well in the test area due to domain
shift issues. A method of solving these problems that has recently attracted attention is
transfer learning, which transfers knowledge between different areas [13-15]. Transfer
learning methods can be summarized into four main categories: (1) Instance-based transfer
learning, which rearranges the weights of the learning model through retraining with
the target data; (2) feature-based transfer learning to find domain-invariant features by
reducing the distribution mismatch between the source and target domains; (3) relationship-
based transfer learning, which transfers mutual knowledge based on the similarity between
the interactions of two domains; and (4) in model-based transfer learning, in which param-
eters are transferred directly or fine-tuned by a classifier for the target domain.

In this paper, we propose a new domain transformation-based diagnosis method for
diagnosing cross-domain failures of rotating machinery. Label data collected under specific
operating conditions and normal state data collected under different operating conditions
are used for model training. To emphasize the spatiotemporal information of the input
signal, the input signal is preprocessed using short-term Fourier transform (STFT). To
minimize the distribution mismatch between the source domain and the target domain, we
propose a semantic transformation algorithm in the latent space.

For feature extraction, a deep convolutional neural network with an attention mecha-
nism is adopted, and a domain shift algorithm is introduced to match the distribution of
data across the domain. The results indicate that the proposed method is an effective and
promising tool for diagnosing cross-domain defects in gearboxes. The main contributions
of this paper are as follows:

e A domain transformation method is proposed for cross-domain fault diagnosis in
rotating machines with significantly changing operating conditions.

e A feature extraction method is proposed that can focus on features related to failures
using STFT and attention mechanisms.

e  The results of the preferred dataset and the actual dataset prove the generalization
performance of the proposed method.

In the experiment, two types of dataset of a gearbox system, such as benchmark and
real machine data, are used for validation. Both datasets contain various types of failures
collected under different working conditions.

The paper is organized as follows: Section 2 describes related works. Section 3 defines
the sensing data and provides an overview of the learning model. Section 4 proposes an
in-depth learning diagnosis method to extract fault relevant features, also with a domain
space shifting method. Section 5 demonstrates the validity of the proposed approach and
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performance in two cases: a benchmark of a popularly used dataset and real equipment
dataset. Section 6 concludes the paper.

2. Related Works

Among the various transfer learning methods, the domain adaptation technique has
been widely adopted for fault diagnosis by assuming the same labeling operation for
the training and test data [16]. In general, domain adaptation approaches aim to extract
domain invariant features even if domains are moving. In particular, a deep learning-based
domain adaptation method that utilizes both powerful and transfer learning capabilities
has been successfully developed [17-19].

To diagnose defects in rolling bearings, a domain adaptation method was proposed
that improved the generalized class distance [20]. In addition, a domain adversarial
learning system is proposed, since adversarial training is a model for learning generalized
features across domains (DCTLN) [21].

Some researchers minimize domain differences between different working conditions
through maximum mean mismatch (MMD). MMD is a distance-based standard method
for minimizing discrepancies between two datasets [22,23]. In addition, a multi-kernel
based MMD has been proposed [24,25]. Unlike traditional distance-based methods (e.g.,
Kullback-Leibler divergence), an MMD can estimate nonparametric distances and does
not require calculating the median density of the distribution [26]. It has been proposed
to use an auto-encoder to project into the function shared subspace, and MMD distances
are used to minimize the inter-domain distance. Sufficient target data, not labeled via the
automatic encoder, also contribute to the learning of the function [27].

However, if the number of parameters of data required for training is small or difficult
to obtain, training itself cannot proceed. Therefore, minimizing the MMD distance cannot
be guaranteed to secure a common set of authentication functions for fault diagnosis. To
overcome these deficiencies, domain adversarial neural networks (DANNSs) have been
proposed [28].

A DANN introduces a gradient inversion layer to extract features that can determine
where the target domain is similar to the source domain. The Adversarial Identification
Area Adaptation (ADDA) method extends the Adversarial Domain Adaptation method to
provide a generalized view [29]. The Conditional Domain Adversarial Network (CDAN)
method was inspired by the Conditional Generative Adversarial Network (CGAN) and
used several linear conditions to capture the cross covariance between class prediction
and feature expression [30]. Adversarial learning, which extracts domain invariant feature
expressions through the adversarial training of feature extractors and domain classifiers,
can achieve better adaptability than most MMD-based methods [31,32].

However, the issue of modal stability in adversarial training remains [33,34]. In theory,
the adversarial training mode is expected to reach equilibrium to extract domain-invariant
feature representations. However, if the data distribution varies significantly across do-
mains, it is difficult to scale down the domain adaptation model. When diagnosing failures
in rotating machines, the data distribution is greatly affected by the working conditions.

As described above, both the distance-based approach and the adversarial learning
approach have a common problem that they require sufficient data from the target domain.
Therefore, we propose a domain movement method that uses normal data of the target
domain, which are relatively easy to collect, to reflect realistic conditions.

3. Preliminaries

Gearbox vibrations have a very complex structure. Figure 1 shows the location of a
typical sensor to measure vibrations in heavy equipment. The sensor is mounted outside
the gearbox and collects not only gearbox vibration but also vibration (noise) from other
equipment assets. We intentionally used a low-cost knock sensor commonly deployed
in automotive engines. These have only a moderate measurement range and resolution,
which may incur noise or missing values at the sensor. These sensors are typically used in
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real equipment, as they are much cheaper and less capable than those used in academic
experimental environments. The specifications of the vibration sensor are described in
Table 1. Vibration data were collected by the control unit with an analog-to-digital converter.

Vibration qignal of failure
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Figure 1. Sensor mounting location and measurement vibration signals.

Table 1. The specification of the knock sensor used in actual machines.

Classification Knock Sensor
Manufacturer Continental Automotive
Model No. Customized for use

Purpose Shock events
Type Piezoelectric (Flat response)
Frequency Range 3 to 26 kHz

1.7 t0 3.7 mV(m/s2) at 5 kHz
Output@5 kHz + 15% at 8 kHz
Output@5 kHz + 30% at 13 kHz
Output@5 kHz + 100% at 18 kHz

Sensitivity

3.1. Measurement Mechanism for the Vibration Signal

For the dataset of the real equipment used in the experiment, the vibration signal was
measured using a knock sensor at a 25 kHz sampling rate. Since there was no tachometer
to measure the rotational speed, vibrations were measured at high frequencies. The data
measured from the actual equipment were collected under the same conditions running in
the field. To verify the failure type, the same type of failure was reproduced as that used
for training.

Defect areas are difficult to determine, because defect signals are measured irregularly
at various rotation speeds. Figure 2 shows the measured vibration signals for each status.
Depending on the operating condition, the pattern of the fault signal can change greatly; in
the case of a specific fault, it has a subtle change like an impulse signal.

Source Target A Target B
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Figure 2. The vibration signal for each status in various operation conditions.
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3.2. Overall Idea

We have a labeled dataset {Xg, Y5} extracted from the source domain, { X} } from the
target domain and unlabeled target domain data { X7}. Figure 3 conceptually describes
the domain shifting problem. Domain shifting due to noise interference and fluctuations
in the working conditions can significantly degrade the classification performance in the
target domain.
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Figure 3. Visualization of the distribution concept for each domain dataset. (a) Before domain transformation; (b) the goal

of domain adaptation; (c) training dataset of the proposed model.

Generally, applying a trained model to a new environment requires a new way of
generalizing information from the new domain. Inconsistency with new data can be
minimized through distance-based learning between available data by active research in
recent machine learning-based research [35]. This distance-based discrepancy learning
method has been applied successfully in many research tasks such as human activity
recognition and human re-identification [36,37].

All the above-mentioned studies assume that the target domain can collect enough
data for learning. However, it may not be realistic in a real-world setting, because collecting
fault data takes a lot of time and money. On the other hand, normal data can be more easily
collected from other domains. Therefore, we propose a method of solving the domain
mismatch through a learning method that only includes normal data of the target domain.
Inspired by Natural Language Processing called "word embedding", we propose a method
of moving feature spaces between domains.

We applied a reconstruction-based stacked autoencoder model that can represent the
input signal in a low-dimensional shared space to move the feature vectors of the input
data in space. An autoencoder is a deep learning architecture that can efficiently code data.
The latent space learned by an autoencoder is that which can best compress and express
the features of data; it was proposed to solve the domain adaptation problem by adjusting
the latent space.

3.3. Short-Time Fourier Transform (STFT)

The frequency characteristics of a signal can be investigated based on a Fourier series,
Fourier Transform, and Discrete Fourier Transform (DFT). STFT is used in the frequency
tracking of a tacholess system to represent the spectrogram of the signal. The vibration
signals of mechanical systems are often non-stationary. Hence, there is a need for tools for
the analysis of time-based frequency content. FFT and DFT allow the investigation of a
signal immediately, and temporal-specific information is lost. STFT allows the computation
of multiple frequency spectrums by performing successive DFT on a windowed signal.
Therefore, it adds a new dimension, defined by

[e0)

S(f, ) :/ x(Hw(t — 7)e P dt 1)

—00

where w(t — T) is the window that moves along the signal x(t). In practice, STFT is used to
compute the spectrogram of the signal. It is a time-frequency map where the square of the
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amplitude |S(f, T)|? is plotted over frequency f and time 7. Even though it is a simple tool,
there is a trade-off between the time and frequency resolution, which relate to each other as

A= @

where Af and At are the frequency and the time resolutions, respectively. Therefore,
striving for a better time resolution could reduce the frequency accuracy and vice versa. In
this paper, the window size was defined as 512 and the overlapping size as 128.

3.4. Attention Mechanism

An attention mechanism is proposed to enable learning the alignment between the
source and the target tokens to improve the neural machine translation performance [38].
Attention mechanisms have mainly been used in language and image fields to find focused
words and images, and several studies have used basic and modified attention mechanisms
for time series. LSTM using an attention mechanism is proposed for multivariate time
series, employing the following attention mechanism transition functions.

- W,H
M = tanh[ W,0,-¢, ] 3)
o = softmax (wTM) 4)
and
r = HaT 5)

where H = {hy,hy,...,h,} is a matrix containing features h; extracted by the prediction
model, e, € R" is a vector of ones, « is a vector of attention weights for features in H; v, is
the embedding aspect for the attention mechanism, and r is the output from the attentive
neural network as weighted features H [39].

4. Proposed Model

We extracted time and space information from the original signal through STFT
pre-processing and classified the fault type from the input signal using an autoencoder
with attention mechanism and 1D CNN LSTM classifier. In addition, we used feature
space transformation for domain adaptation in this paper to improve the cross-domain
classification performance. Bearing vibration signals collected from a knock sensor are
usually 1D, so it is recommended to use 1DCNN for vibration signal processing. In
addition, most of the physical failure signals are generated by impulse signals with periods
generated by specific gears or bearings [40]. Therefore, a learning model is designed to
localize the impulse signal with 1IDCNN and extract contextual features with LSTM. Figure
4 shows the architecture of the learning and domain transformation algorithm. The whole
model consists of an attentional autoencoder for latent vector representation and a 1D CNN
LSTM-based classifier for classifying failure types from latent vectors. In the inference
stage, a latent vector shift stage is added to transform the input data.

4.1. Understanding Latent Space

Figure 5 shows the data distribution of three statuses under two different working
conditions. We can confirm that the distribution between the source domain and the
target domain is significantly different. However, we can see that the alignments of the
distributions for each category are similar. Based on the above logic, the model trained on
the source domain data encodes the target domain data around the most similar features.
Therefore, the target domain alignment does not deviate from the source domain alignment.



Sensors 2021, 21, 1417

7 of 18

Source Domain Data
(All Categories)

Target Domain Data
(Normal Category)

|

r

—

—_—_—————— e — — —

1D CNN LSTM

1
1
|
|
|
A .
1
Latent Vector a =V Wl
— — = 1
H z a8l X Fault 0.5
| S A I Fault 1.0
1 2| ! ! Ly Fault2.5
] 1 1 1
1 1 1 1
H I 1 ) I
i . p 188x10@1  188x8@1 1
----------- o e e e 1 ] 1
|

— Learning

i
1
1 1
"""" {Normal " Vormal 17 TToo =l p bmmmmmmm oo

| St I — 1 All Categories 1
i I of Target Data 1

1 S D 1 1 o 4
j Source Data | Target Data | .
7 & i
1
1

Latent Vector Shift for
Domain Adaptation

Inferencing
(Domain Shifting)

Figure 4. The architecture of the proposed model including a latent vector shifting algorithm.
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Figure 5. A data distribution plot for the failure modes of a gearbox with two working conditions
in a real machine dataset. The source domain data is denoted S_Normal, S_Fault_0, S_Fault_1; the
target domain data is denoted T_Normal, T_Fault_0, and T_Fault_1.

Therefore, the weights of a deep neural network are divided into two categories such
as basic projection and specific projection. The weight of the base projection is to extract
the base features from the input data. Although the basic features are different, they are
the basic components involved in the distribution of data and similar. Conversely, the
weights of a particular projection can learn many representative features for each category.
Therefore, features are extracted to follow a similar shape for newly collected data due
to the default projection weights. We try to distribute the feature spatial distribution of
newly collected data as similarly as possible to the previously learned data. Therefore, by
calculating a specific projection weight that includes the difference between the domains
from the normal data, we can reduce the difference between the two by moving the
domains [41].

4.2. Encoder with Spatial Attention

We propose using an autoencoder with an attention mechanism model to represent the
features that focus on failure-relevant signals in the latent space. A spatial attention layer
for the proposed autoencoder model is inserted between each layer in the encoder, as shown
in Figure 6. Each attention score is applied in the next layer using its dot product with the
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input vector. The autoencoder is an unsupervised model that learns data representation by
generating outputs that are similar to its inputs. Inputs are encoded in latent representation
by a high-density layer.

1 1D Conv / Pooling Encoder

Figure 6. Attention mechanism-based encoding module.

Finally, the latent representation is passed to the decoder to restore back to the same
characteristic dimension as the original input. Autoencoder models are generally well-
known for their use in noise cancelling and data interpolation [42,43]. Therefore, by leverag-
ing the two features of an autoencoder, we devised a more powerful feature representation
method that combines the attention mechanisms.

Inspired by [44], the average pooling and max pooling are performed through the
channel dimension and then a 1 x 1 convolution is applied to feature representation. In

aft =0y (Mean (x;” : (x{”)T) ), 0y is a softmax activation function. Here, the role of the local

attention is to localize the fault signals from the raw signal and £} = [a/"; x"] € R™ ™.
In addition, as described above, a context vector is the output obtained from the dot-
product attention score function using the input signal. Using the proposed input attention
mechanism, the encoder can selectively focus on certain input series instead of treating all
input series equally.

The decoder reconstructs the latent vector into a similar signal to the input, as shown
in Figure 7. The decoding process operates in reverse order of the encoding. Furthermore,
the attention layer is not included in the decoder for the purpose of stable learning.

ID Conv Decoder
/ Upsampling

N

a2t aRat)

Decoded Input
XI

3

Sl =i = b

=

Figure 7. Decoding process for reconstructing the input.
The reconstruction error is
L= ‘am.xm - (x’)m‘ (6)

The output of the dot product of the attention score and the input layer emphasizes
the part on which the model should focus. In addition, Algorithm 1 describes the training
procedure of the autoencoder.
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Algorithm 1 Autoencoder Training

Input: Input data X = xq, xp, - - - , X, number of epochs 7, learning rate A, amount of batches T.
0 = {w, b} is the parameters of an autoencoder.
Output: Trained model E, D, latent vector E(-).

1 begin
2 Initialize parameters for E, D
3 fort=1—ndo
4: # extract latent vector and reconstruction at each timestep
5: fori=0—T do
6: a; = o(Mean (x;-xT))
7 J?,' = K X;
8 %= o(w-X;+D)
9 Compute the reconstruction loss according to (6)
T
10: L(x;, %) = Zl[xilﬂgfi + (1 —x;)log(1 — £;)]
i=
11: Compute the gradient of the loss with respect to 6
12: for 6;,g; do
13: 91' = 91' — Agz
14: end for
15: end for
16: end for
17: end procedure

4.3. Classifier Based on 1D CNN LSTM

Figure 8 shows the conceptual architecture of a classifier. In the classifier, the 1D CNN
LSTM structure was adopted to learn the contextual features. The architecture consists
of 10 layers, including two convolutional layers, two 1D CNN LSTM layers with kernel
sizes at 10 and 8, respectively, two batch normalizations with dropout layers, and three
dense layers.

1D CNN LSTM

Latent = Normal
Vector =" Fault 0.5
X = Fault 1.0
> Fault 2.5

50x 65 x10@1 50x 65 x8@1 4@l

Figure 8. The classifier based on 1D CNN LSTM.

The size of the latent vector taken for the data preprocessing process is (None, 50, 65,
and 8), and then the output shape changes into (None, 50, 65, and 10). The second layer is
the CNN LSTM layer. There are 64 neurons in this layer, and the output shape of this layer
is (None, 50, 65, 64). The next layers consist of batch-normalization and dropout, and the
above layers are repeated twice. The main purpose of having a dropout layer is to reduce
over-fitting, and a softmax layer is used at the end for classification.

4.4. Domain Transformation on Latent Space for Inference

We describe how to use Neural Linear Transformation (NLT) model to allow “domain
transformation” in this section. The goal of domain transformation is to transfer the target
domain to the source domain distribution to successfully utilize the trained model. In the
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word embedding area, vector representation is usually used for word analogies to embed a
word (i.e., Kings and queens magic).

“King — Man + Woman ~ Queen” 7)

According to this vector operation, we can assume that a vector representation of the
s

word “queen” is possible if the words “king”, “woman”, and “man” are known. Figure 9
shows the 2D representation of the semantic analogies.

Operation

gender Condition T-S
King ?ueen A kx% XSA XU
! royal Status
\royal . Status
gmdtr
Ma Woman sgre———> X’II\‘I X'Il\"]

Operation
Condition

(a) (b) ()

Figure 9. 2D representation of the semantic analogies. Word analogies for (a) vector operation, (b) latent vector operation,

and (c) latent vector operation of unknown input data.

Inspired by word inference, we propose an algorithm to allow for transformation
between domains.
X§' = Xq' ~ X - X7 ®)

where XY, Xg‘ is the encoded vector of the normal and abnormal states in the source
domain, respectively, and XN, X? is the encoded vector of the normal and abnormal
states in the target domain, respectively. These data are encoded through the proposed
autoencoder. Thus, these data are represented in latent space. Abnormal means a dataset
of whole failure status X4 = {X?1 , X?, eer, X;” }, where 7 is the number of failure cases.
To apply the concept of transformation by inserting a vector into a word inference as seen
above, a feature expression method capable of expressing the source and target data in
a specific space is required. Therefore, our proposal aims to move the data of the target
domain by constructing a latent space containing the normal state data of the target domain
through an attentional autoencoder structure.

In Figure 9, the vector operation for moving according to the operating condition
(domain) of the machine is as in Equation (8). However, since we do not know X?, the
domain shifting algorithm is required to transfer X to XY, which is derived as shown in
Equation (9).

The target domain data is denoted as X!, because we do not know the state of the
target domain. Moving the target domain data to the source domain area of the learned
latent space is done through the Equation (9) operation. However, X! is not from the
source domain dataset XY ¢ Xs.

T—8: XY+ xy-—x¥ )

where XY means the input dataset. According to (9), depending on whether X! is normal
or abnormal, the space is moved as follows.

XU =xN  xU_,xN
{ T - S (10)

XU=x4, XxU-xd
The domain shift function f;, _,4, is defined as the following:

fay—a, (e, p(xs), p(xe)) = x + p(xs) — p(xe) = x5 (11)
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where x; and x; are the input and the transferred data that follow the distributions of
the target and the source domain, respectively. y denotes the average value of the unary
function. The u(xs) — p(x;) indicates a vector representing the direction from the target
domain to the source domain. Therefore, f;, .4, shifts the input data x; from the target
domain to the source domain, yielding the shifted latent vector that follows the distribution
of the source domain.

5. Experiments

To verify the performance of the proposed technique, experiments were conducted
with two fault diagnosis cases. The first case is an open benchmark data case for rolling
element bearing diagnostics. The second was for the fault diagnosis of a rotating gearbox
of heavy equipment.

We compared the proposed model with the state-of-the-art classification and CNN ar-
chitectures, which included the Deep Convolutional Transfer Learning Network (DCTLN)
[21], Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN) [45],
Domain-Adversarial Training of Neural Networks (DANN) [28], and Discriminative Ad-
versarial Domain Adaptation (DADA) [46]. For DANN [28] and DADA [43], the data
format is 2D, so Case 2 data was modified with 2D convolution. The detailed parameters
for each experiment are shown in Table 2. To verify the feasibility and practicality of the
heavy equipment failure diagnosis, the experiment for Case 2 was set to the same as the
actual operating conditions, including noise and other environmental factors. Table 3
shows the parameters of the encoder. We repeated each experiment five times and have
reported the average and the standard deviation of the accuracy.

Table 2. Parameter setting in each learning model.

Method Specific Parameter
— 2
DCTLN [21] A= [exp(T057) 1
WDCNN [45] A =1, =100, ¢ =0.001
DANN [28] A= W
— 2
DADA [46] A= TFexp(—T057) 1

Proposed model Filters=32, 16, 8, kernel size=6, 3

Table 3. Parameters of the encoder in proposed model.

No. Layer Output Shape Param #
1 Input (None, 50, 513, 2) 0
2 Convld_0_1 (None, 50, 513, 32) 160
3 Maxpooling (None, 50, 257, 32) 0
4 Dense_0 (None, 50, 257, 32) 1056
5 Multiply_0 (None, 50, 257, 32) 0
6 Convld_1_1 (None, 50, 257, 16) 1040
7 Maxpooling (None, 50, 129, 16) 0
8 Dense (None, 50, 129, 16) 272
9 Multiply_0 (None, 50, 129, 16) 0
16 Convld_8_1 (None, 50, 130, 16) 272
17 Upsampling (None, 50, 260, 16) 0
18 Convld_10_1 (None, 50, 258, 32) 1568
19 Upsampling (None, 50, 516, 32) 0
20 Convld_12_1 (None, 50, 513, 2) 258

5.1. Case Study 1: CWRU Dataset

The Case Western Reserve University (CWRU) bearing dataset is a benchmark dataset
collected under various operating conditions and was used to verify the performance of
the proposed method.
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Fan end
bearing

In particular, the defect data of the 12 k drive end bearing was selected as experimental
data [47]. There are four types of bearing fault locations: normal, ball fault, inner race
fault, and outer race fault. Each error type was available in three sizes, 0.007, 0.014, and
0.021 inches, respectively, so there are a total of 10 types of error labels. Each fault label
contains three types of driving conditions, 1772, 1750, and 1730 RPM motor speed (1, 2,
and 3 hp), respectively. Each sample was extracted from a single vibration signal as shown
in Figure 10.

Electric
motor Drive end
bearing

Dynamometer

Figure 10. Measuring position of each vibration signal in the CWRU dataset.

We defined 70% of the vibration signal as a training sample and the rest as a test sample.
As shown in Table 4, each dataset was under different operating conditions, with loads of
1,2, and 3 hp, respectively. Each dataset contained 12,540 training samples and 3140 test
samples, respectively. As shown in Table 5, the CWRU dataset has a total of 10 classes, and
each fault is divided according to fault’s location and size. One of each dataset is defined
as the source data, and one of the other datasets is defined as the target domain.

Table 4. Description of the CWRU dataset.

Dataset A B C D
Rotating Speed (rpm) 1797 1772 1750 1730
Load 0 1 2 3
Count of train data 12,540 (Respectively)
Count of test data 3140 (Respectively)

Table 5. The task of the CWRU dataset.

Class Label 0 1 2 3 4 5 6 7 8 9
Fault Location NA IF BF OF IF BF OF IF BF OF
Fault Size (mils) 0 7 7 7 14 14 14 21 21 21

The proposed model performed similarly to or better than the state-of-art method in
most cases, as shown in Table 6. From the results, we found the following interesting fact:
when learning from the data obtained from a device rotating at high speeds, the evaluation
of low-speed data was quite satisfactory. However, when evaluating the data obtained
from a device rotating at low to high speed, reliability was slightly lower.
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Table 6. The comparison accuracy of the classification results with three new working condition domains on the

CWRU dataset.
Task WDCNN DANN DADA DCTLN Without Proposed
(Source— Target) Attention Model
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
A—B 71.47 0.01 67.76 0.01 63.27 0.01 56.23 0.06 62.14 0.01 84.43 0.01
A—C 72.87 0.02 68.96 0.01 62.86 0.01 57.78 0.01 68.07 0.01 86.43 0.01
A—D 71.90 0.01 69.81 0.00 66.97 0.00 54.11 0.02 67.54 0.01 85.67 0.01
B—A 69.91 0.01 66.73 0.01 67.82 0.01 52.56 0.01 68.14 0.00 84.67 0.00
B—C 67.48 0.01 64.96 0.01 70.95 0.00 56.67 0.01 62.14 0.01 85.35 0.01
B—D 67.58 0.01 69.65 0.01 68.93 0.01 58.12 0.01 67.48 0.00 82.43 0.00
C—A 68.88 0.01 59.70 0.00 62.99 0.01 59.12 0.02 69.47 0.01 83.34 0.01
C—B 70.15 0.00 64.40 0.01 59.55 0.00 54.32 0.01 68.11 0.01 82.45 0.00
C—D 65.83 0.01 69.82 0.00 59.62 0.01 52.13 0.01 67.45 0.00 82.21 0.01
D—A 68.14 0.01 58.62 0.01 57.89 0.01 57.45 0.03 56.47 0.01 81.24 0.01
D—B 65.17 0.01 57.41 0.01 62.53 0.01 58.23 0.04 53.88 0.01 80.67 0.01
D—C 69.90 0.01 58.98 0.01 59.90 0.01 46.12 0.01 52.54 0.01 80.67 0.01
AVG 69.11 0.01 66.15 0.01 63.61 0.01 55.24 0.02 63.62 0.01 83.63 0.01

5.2. Case Study 2: Real Machine Dataset

Unlike the CWRU dataset, the equipment data were collected from heavy equipment
actually operating under various conditions (speed, load, etc.) and exposed to different
noise environments, taking into consideration its complex and large structures. By doing
so, we demonstrated that our model remains robust even in a wide range of speeds and in
environments with high noise levels. The corresponding data does not contain accurate
speed information (measured without using a tachometer), and the tests were carried out
at the speeds of about 100%, 75%, 50%, and 25% based on user manipulation. In addition,
data were collected for some classes but not for all classes. Table 7 shows the operating
conditions and fault classes of the collected data. One of each dataset is defined as the
source data, and one of the other datasets is defined as the target domain.

Table 7. Description of the actual machine.

Dataset A B C D
Speed 100% 75% 50% 25%
Fault diameter (mm) 0.5,1.0,25 0.5,1.0 0.5,1.0,2.5 0.5,1.0
Train 14,688 3916 12,729 8486
Test 3671 979 3182 2121

The domain data from the new working condition, measured from the actual machine,
was used throughout the entire experiment. The proposed model performed better than
the state-of-art method in most cases, as shown in Table 8. The confusion matrix for
the experimental results is shown in Figure 11. Approximately 79~83% accuracy was
achieved for the target domain data. Moreover, we were able to confirm that the ability
to recognize the minimum failure (Abnormal_0.5/0.5 mm) and the abnormalities were
well distinguished.
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Table 8. The comparison accuracy of classification results on the real machine dataset.

Task WDCNN DANN DADA DCTLN I:Vﬂ‘et:zz; Proposed Model

(Source—Target) Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
A—B 67.47 0.02 68.76 0.03 67.27 0.08 52.24 0.02 62.14 0.07 83.76 0.08
A—C 72.87 0.03 72.96 0.08 70.86 0.03 50.4 0.01 65.80 0.09 85.16 0.05
A—D 71.90 0.08 73.81 0.12 68.97 0.02 55.28 0.23 67.54 0.12 83.23 0.02
C—A 62.88 0.08 71.70 0.07 72.99 0.12 50.32 0.11 69.47 0.01 78.21 0.03
C—B 73.15 0.03 74.40 0.10 72.55 0.09 50.52 0.13 67.11 0.03 79.56 0.07
C—D 68.83 0.02 68.82 0.11 69.62 0.07 51.36 0.23 65.45 0.07 82.56 0.09
AVG 69.52 0.04 71.74 0.09 70.38 0.07 51.68 0.12 66.25 0.07 82.08 0.06

Confusion matrix Confusion matrix

Normal 4710 0 0 0 Normal 4710 0 0 0

© | 2043 2196 0 0 o | 208 BEEEM 314 56

o o

w v

Ig 10 4239 0 0 0 |§ 104 355 1237 0
> & o ) > & o o
& J N ~ v

<€ ~ v &
S N
(a) Without domain adaptation (b) Proposed model

Figure 11. The confusion matrix of the classification results of the proposed model or without
attention model.

In all cases, the proposed model outperformed other models and proved to be an
effective technique for diagnosing failures in a rotating body. Figure 12 is the results
of comparing the effects of the proposed model through the t-SNE results of the A—B
transformation case of the CWRU dataset. Before the domain transformation is applied,
the source domain and the target domain are clearly separated, but through domain
transformation, the failure data of the target domain not used for learning also shares
the source domain and the distribution area. In Figure 13, it can be seen that the domain
distribution is similarly close to the actual equipment data in the A—B transformation
case. However, in the case of the green area in Figure 13b, it appears that the distance is
not close. Considering that the fault classification performance shows high results, it is
judged that it is located in the area where the fault can be identified. In addition, since
CWRU data is data acquired through limited experiments in a laboratory environment,
there is no significant difference in discrepancy between the source and target domain data.
However, in the real equipment case, we found that the distances between the distributions
are unpredictable and markedly different. Nevertheless, it is encouraging that the proposed
model can achieve the desired performance.
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Figure 12. The t-SNE visualization of the feature at the latest hidden layer for each domain data, such as the source and
target, and each class in CWRU.
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Figure 13. The t-SNE visualization of feature at latest hidden layer for each domain data such as source and target and each
class in real machine.

5.3. Evaluation on A Real Machine

We used data collected from the actual equipment to verify reliability of the proposed
learning model. Since we did not know the real operating conditions, the raw data looked
like unseen data that contained various trends. Figure 14 shows a program developed to
evaluate the data received at 1500 Hz in real time and to diagnose the most frequently
occurring actual fault conditions. The system used occurrence count as a criterion to
minimize false alarms.
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Figure 14. Verification on a real machine using the embedded software that included the proposed learned model.

We physically disassembled the gearbox of the machine, compared the estimation type
of the program with the actual failure type, and obtained the same results as the failure
type estimated by the program. Therefore, the proposed system is suitable for practical
applications and has great significance in the large-scale mining machinery industry.
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6. Conclusions

This paper presents a domain transformation method for diagnosing faults in rotating
machines operating under various operating conditions. The proposed algorithm success-
fully performs domain transformation using only the general data of the target domain to
solve real problems for which it is difficult to obtain failure data under various conditions.
An autoencoder with an attention mechanism was applied to extract features containing
relevant fault information, and a new latent vector transformation method inspired by
word embedding was proposed.

The proposed model was verified with widely used public data and data collected
from real equipment and showed an accuracy above 83%, resulting in a significant per-
formance improvement over the existing method. In addition, the proposed model was
mounted on an embedded board and verified under actual equipment operation, demon-
strating that it can effectively diagnose faults in a new environment. Attempts to apply the
system to monitor actual excavator operation have been successful, and the system accu-
rately identified existing defect cases without prior knowledge. Therefore, the proposed
system is suitable for practical applications and has great significance in the large-scale
mining machinery industry.
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