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Abstract 
      Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis 
of epithelial tumors is epithelial-to-mesenchymal transition (EMT), during which cells dedifferentiate 
from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often 
associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the 
increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. 
The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the 
foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that 
use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas (TCGA), have 
defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer 
and glioblastoma. However, recent analyses have shown that gene expression-based classifications 
of mesenchymal subtypes often do not associate with poor survival. This “paradox” can be ameliorated 
using integrated analysis that combines multiple data types. We recently found that integrating mRNA 
and microRNA (miRNA) data revealed an integrated mesenchymal subtype that is consistently associated 
with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 
major miRNAs and 214 mRNAs. Among the 8 miRNAs, 4 are known to be regulators of EMT. This review 
provides a summary of these 8 miRNAs, which were associated with the integrated mesenchymal subtype 
of serous ovarian cancer.  
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      Cancer is a complex and dynamic disease that defies the normal 
differentiation process in which pluripotent embryonic stem cells are 

differentiated into almost all cell types; this process is driven mostly 
by epigenetic nuclear programming events such as DNA methylation 
and selective expression of a series of non-coding RNAs[1]. However, 
the extensive nuclear reprogramming that accompanies genetic 
events such as mutation and gene copy number alterations confers 
remarkable plasticity on cancer cells[2], particularly regarding the 
phenotypic switches often found in cancer[3]. Epithelial cells can 
adopt mesenchymal features, mesenchymal cells can adopt epithelial 
features, and mesenchymal cells can become endothelial cells[3,4]. 
The most well-studied cell fate switch is epithelial-to-mesenchymal 
transition (EMT), a process whereby epithelial cells lose both polarity 
and cell-to-cell contacts, thus acquiring increased motility and 
invasiveness. This pathophysiological transition is necessary for the 
conversion from a benign tumor to an aggressive, highly invasive 
carcinoma; it is the mechanism that allows tumor cells to escape 
from the primary tumor, evade into neighboring normal parenchyma, 
and enter lymphatic and blood circulation to initiate lympho-
hematogenous metastasis. The early escape of certain epithelial 
cells in tumors was noticed and documented by pathologists more 
than 100 years ago in drawings[5].  EMT properties are acquired as a 
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result of complex changes in cancer cells and their microenvironment 
that lead to the dissolution of intracellular junctions and detachment 
from the basolateral membrane; changes in the interactions between 
cancer cells and the extracellular matrix also contribute to EMT.
      The phenotypic switch from epithelial to mesenchymal is 
characterized by profound morphologic changes, such as the 
loss of apico-basal polarity and reorganization in the distribution 
of organelles and cytoskeleton components that are related to 
a mesenchymal switch in the expression of cell lineage–specific 
genes and levels of proteins. The levels of epithelial proteins (e.g., 
E-cadherin, claudin, occluding, cytokeratins) progressively decrease 
while the levels of mesenchymal proteins [e.g., N-cadherin, vimentin, 
alpha-smooth muscle actin (α-SMA), fibronectin] increase.
      In addition to these well-known marker genes, more complex 
gene signature sets that take into account the intrinsic heterogeneity 
of tumor cells have been proposed to define mesenchymal and 
epithelial subtypes[6-12]. Practically, these gene sets are used 
to estimate whether a cell population is more likely to express 
mesenchymal or epithelial features. Examining genes that cluster 
a group of tumors together is a frequently used strategy in cancer 
classification[6,9-11]. If these genes are enriched in a mesenchymal 
gene set, these tumors are often classified as mesenchymal 
subtypes. Using data from The Cancer Genome Atlas (TCGA), 
mesenchymal subtypes have been identified in multiple cancer types, 
including serous ovarian cancer[13].  
      Because of the importance of EMT and mesenchymal-to-
epithelial transition (MET), a concerted effort has been made to 
determine the regulators of these processes[14-17]. In this article, we 
focus on the post-transcriptional regulatory mechanism based on 
microRNAs (miRNAs), which are 22-nucleotide, non-coding RNAs 
that suppress gene expression through mRNA destabilization or 
translational inhibition. miRNAs are deregulated in a wide variety of 
human cancers and have been shown to contribute to the control of 
cell growth, differentiation, and apoptosis, which are all important for 
the development and progression of cancer[18-26]. miRNAs regulate 
multiple signaling pathways involved in EMT[27]. Because of the 
intimate relationship between miRNAs and EMT signature genes, 
we believe that an integrated analysis of these two groups of genes 
(protein coding and non-coding) is critical to define the core regulatory 
network that may underlie specific phenotypes associated with 
cancer subtypes. In a recent report, we performed such an analysis 
and identified a core regulatory network that better describes an 
integrated mesenchymal subtype of serous ovarian cancer patients in 
the TCGA cohort. This network includes 8 key node miRNAs and 214 
protein-coding genes (Figure 1)[28]. 
      In the integrated miRNA-mRNA network, 3 of the 8 miRNAs 
(miR-101, miR-200c, and miR-141) are well-known regulators of 
EMT, and the work performed by our group and others has also 
shown that miR-506 is a potent regulator of EMT[28-30]. The role of 
other 4 miRNAs (miR-25, miR-29c, miR-182, and miR-128) in EMT 
is less clear, although some of these have been shown to affect cell 
migration, invasion, and metastasis. This article briefly summarizes 
these 8 miRNAs and their roles in cancer. We first review the newly 
defined EMT suppressor miR-506, followed by the other known 

EMT regulators (miR-101, miR-200c, and miR-141), and then the 
remaining 4 miRNAs.

miR-506
      miR-506 is located in Xq27.3, a chromosomal region associated 
with fragile X syndrome. Female patients with fragile X syndrome 
suffer from primary ovarian insufficiency[31]. miR-506 belongs to 
a chrXq27.3 miRNA cluster that is associated with early relapse 
in advanced stage ovarian cancer[32]. In our previous study, we 
demonstrated that miR-506 is a potent inhibitor of the mesenchymal 
phenotype and transforming growth factor β (TGF-β)-induced EMT by 
directly targeting snail family zinc finger 2 (SNAI2), a transcriptional 
repressor of the epithelial protein E-cadherin[28]. Subsequently, we 
further illustrated a broader role of miR-506 in the suppression 
of EMT via its direct regulation of 2 well-known mesenchymal 
proteins, vimentin and N-cadherin, in all epithelial ovarian carcinoma 
subtypes[29]. Therefore, miR-506 represents a novel class of miRNA 
that regulates both E-cadherin and vimentin/N-cadherin to suppress 
EMT.  
      The expression of E-cadherin and vimentin/N-cadherin represents 
2 spectrums of EMT and MET. Accumulating evidence suggests 
that these pathways crosstalk closely and regulate one another. In 
our study, we found that the knockdown of vimentin up-regulated 
E-cadherin expression[29]. Rodriguez et al.[33] reported that vimentin 
inhibited E-cadherin and induced EMT via glycogen synthase kinase 
3β (GSK-3β), an upstream regulator of SNAI1. Our recent study 
showed that miR-506 inhibited the expression of forkhead box protein 
M1 (FoxM1) by directly down-regulating cyclin-dependent kinase 
4 (CDK4)/CDK6[34]. FoxM1 is a transcriptional activator of SNAI1, 
another major E-cadherin repressor[35,36]. miR-506 also targets 
nuclear factor kappa B (NFκB) p65[37], which was implicated in the 
regulation of EMT. Kuphal et al.[38] identified the NFκB-binding site 
in the N-cadherin promoter and reported that the loss of E-cadherin 
activated NFκB and induced N-cadherin expression during the EMT 
of melanoma cells. Vimentin expression was also transactivated 
by NFκB[39]. Therefore, miR-506 has emerged as a key network 
gatekeeper for epithelial and mesenchymal lineage switches by 
simultaneously regulating multiple nodes in the sophisticated 
regulatory network (Figure 2). 
      Because miR-506 functions as a potent suppressor of EMT, it 
may be useful as a small-molecule therapeutic agent for cancer. 
We tested this possibility in a preclinical study in which nanoparticle 
delivery of miR-506 effectively suppressed tumor growth and spread 
in 2 orthotopic ovarian cancer models[28,29].  In addition to its effect 
on EMT, this tumor suppression function of miR-506 may also be 
partly caused by its recently recognized role in the inhibition of cell 
proliferation and the promotion of senescence by directly targeting its 
binding sites on the 3’- untranslated regions (3-UTRs) of CDK4 and 
CDK6[34]. CDK4/6 is a druggable target for cancer therapies[40]. The 
CDK4/6 inhibitor PD-0332991 is currently undergoing clinical testing 
in several cancer types[41-43]. The transcription factor network CDK4/6-
FoxM1 is activated in more than 80% of high-grade serous ovarian 
cancer cases[13]. Collectively, these data suggest that miR-506 is a 
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potential therapeutic agent for ovarian cancer, and further studies are 
needed to validate the clinical value of miR-506 in the treatment of 
ovarian cancer.
      The role of miR-506 in EMT inhibition, cell senescence, and 
differentiation has also been demonstrated in several other cancer 
types, including breast cancer, lung cancer, cervical cancer, and 
neuroblastoma[30,37,44,45], indicating that miR-506 functions as a tumor 

suppressor in a wide spectrum of cancers. However, the regulation of 
miR-506 expression remains understudied. We previously reported 
that miR-506 is partially regulated by methylation[28]. This is consistent 
with the result of a recent large-scale screening of epigenetically 
regulated miRNAs in ovarian cancer, which showed the Xq27.3 
miRNA cluster (including miR-506) was regulated by epigenetic 
mechanisms[46]. Further studies using larger sample sizes are needed 

Figure 1. The key microRNAs (miRNAs) in the integrated mesenchymal subtype of The Cancer Genome Atlas (TCGA) high-grade serous ovarian cancer 
cases. This figure is part of Figure 3 in Yang et al.[28] (used with approval from the publisher). The miRNA-gene network shows the relationships between 
8 key miRNAs and epithelial-to-mesenchymal transition (EMT) signature genes they are predicted to regulate. The size of each gene node indicates the 
number of predicted key miRNAs regulators; the colors indicate the annotated function of the gene. Only genes with gene ontology (GO) and Kyoto 
encyclopedia of genes and genomes (KEGG) annotations are shown in this network. TGF-β transforming growth factor β; PDGF, platelet-derived growth 
factor.
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to reveal the relationship between miR-506 methylation and miR-506 
expression.

miR-101
      There are 2 separate copies of the miR-101 gene, located 
on 1p31.3 and 9p24. Both regions have been identif ied as 
fragile regions of the genome that are associated with abnormal 
deletion or amplification in cancer[47]. Down-regulation of miR-
101 has been observed in bladder cancer[48], intraductal papillary 
mucinous neoplasms of the pancreas[49], and ovarian carcinoma[50-52], 
suggesting that miR-101 plays a role in tumor progression. Recent 
reports showed that miR-101 is methylated in several cancer types, 
explaining its decreased expression[53].
      Abnormal expression of miR-101 may lead to a more malignant 
phenotype and promote cancer progression. A recent study found 

that low miR-101 expression in several subtypes of ovarian cancer 
tissues is significantly associated with poor cell differentiation, 
advanced International Federation of Gynecology and Obstetrics 
(FIGO) stages, and resistance to cisplatin[51]. By contrast, miR-101 
overexpression reduced the proliferation and migration of ovarian 
cancer cells and re-sensitized drug-resistant cancer cells to cisplatin-
induced cytotoxicity[51]. Thus, miR-101 may act as a suppressor 
of tumor progression. miR-101 may suppress tumor proliferation 
and migration and induce apoptosis by targeting enhancer of zeste 
homolog 2 (EZH2)[54,55] and Janus kinase 2 (JAK2)[56]. miR-101 may 
also induce senescence in breast cancer cells by targeting ubiquitin-
conjugating enzyme E2N (UBE2N)- and SWI/SNF-related, matrix-
associated, actin-dependent regulator of chromatin, subfamily A, 
member 4 (SMARCA4 )[57] and inhibit the G1-to-S phase transition 
of cervical cancer cells by targeting FBJ murine osteosarcoma viral 
oncogene homolog (Fos)[58]. 

Figure 2. The miR-506 network regulates EMT and cellular senescence. miR-506 directly targets SNAI2[28], vimentin[29], N-cad[29], NFκB[37] and CDK4/
CDK6[34]. miR-506 down-regulates SNAI2 which increases E-cad expression and subsequently promotes cell-cell adherence[28]. miR-506 directly down-
regulates vimentin and N-cadherin, which reduces cell mobility and cell-matrix adherence[29]. miR-506 also targets NFκB p65[37] which transactivates N-cad 
and vimentin and is implicated in the regulation of EMT[38,39]. miR-506 inhibits the expression of FoxM1 by directly down-regulating CDK4/CDK6, which 
not only promotes cellular senescence[34] but also inhibits EMT via suppressing the expression of SNAI1 and ZEB1/2[36]. Therefore, miR-506 inhibits 
cancer progression through suppressing EMT and promoting cellular senescence. Decreased expression of miR-506 partially results from promoter 
methylation[28].  EMT,  epithelial-to-mesenchymal transition; E-cad, E-cadherin;  SNAI2, snail family zinc finger 2; N-cad, N-cadherin; NFκB, nuclear factor 
kappa B; CDK4, cyclin-dependent kinase 4; CDK6, cyclin-dependent kinase 6; FoxM1, Forkhead box protein M1; SNAI1, snail family zinc finger 1; ZEB1, 
zinc finger E-box binding homeobox 1; ZEB2, zinc finger E-box binding homeobox 2; ILK, integrin-linked kinase; GSK-3β, Glycogen synthase kinase 3β.
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      Like most miRNAs, miR-101 acts as a tumor suppressor in 
cancers by targeting the 3-UTR of multiple genes, including EZH2[54], 
UBE2N and SMARCA4 [57], mitogen-activated protein kinase 1 
(MAPK1) and Fos[59], Kruppel-like factor 6 (KLF6)[60], DNA (cytosine-
5-)-methyltransferase 3 alpha (DNMT3A)[61], and cyclooxygenase-2 
(COX-2)[62].
      Several recent publications have demonstrated that miR-
101 can suppress EMT in cancers, including colon cancer[63]. Our 
investigations of the miRNA network that regulates the EMT of 
ovarian carcinoma have identified miR-101 as a key regulator[28]. 
Recent studies have shown that miR-101 regulates EMT through its 
effects on EZH2[64,65] and the Wnt signaling pathway[63]. Our group 
has provided evidence that miR-101 suppresses EMT in ovarian 
cancer by directly targeting the E-cadherin suppressor genes zinc 
finger E-box binding homeobox 1 (ZEB1) and ZEB2 via specific 
binding sites on their 3-UTRs[52]. Therefore, the literature consistently 
supports that miR-101 is a tumor suppressing miRNA and that one of 
the key cellular processes miR-101 regulates is EMT (Figure 3).

miR-200a and miR-141
       miR-200 is a family of tumor suppressor miRNAs that consists of 
5 members (miR-200a, miR-200b, miR-200c, miR-141, and miR-429), 
which are significantly involved in the inhibition of EMT. The miR-200 
family is often down-regulated in human cancer cells and tumors as 
a result of aberrant epigenetic gene silencing[66,67]. Recent studies 

reported that the miR-200 family plays a critical role in suppressing 
EMT as well as cancer invasion and metastasis by targeting 
transcriptional repressors of ZEB1 and ZEB2[68]. Furthermore, ZEB1 
and ZEB2 repress the expression of miR-200a and miR-141[69] by 
binding to a conserved pair of ZEB-type E-box elements proximal to 
the transcription start site in the promoter region[70]. Therefore, ZEB1 
and ZEB2 and miR-200 family members repress the expression of 
one another in a reciprocal feedback loop, which may lead to an 
amplification of EMT. Targeting this loop may be a novel therapeutic 
strategy for cancer.
      Extensive research has been performed to characterize the 
regulation of the miR-200 family. Both P300 and PCAF act as 
cofactors for ZEB1, forming a P300/PCAF/ZEB1 complex on the 
miR200c/141 promoter. This results in lysine acetylation of ZEB1 
and abrogates ZEB1’s suppression of miR-200c/141 transcription[71]. 
p53 has been reported to transactivate miR-200 family members 
by directly binding to the promoters of miR-200c and repress the 
expression of ZEB1 and ZEB2, leading to an inhibition of EMT[72,73]. 
Moreover, NPV-LDE-225 (Erismodegib) suppressed EMT by 
increasing the expression of miR-200a, miR-200b, and miR-200c[74].
By contrast, the overexpression of signal transducer and activator 
of transcription 3 (Stat3) [75], platelet-derived growth factor D 
(PDGF-D)[76], Notch1[77], and doublecortin-like kinase 1 (DCLK1)[78] 
in cancer cells led to a significant down-regulation of miR-200 family 
members, resulting in the up-regulation of ZEB1, ZEB2, and SNAI2 
expression and acquisition of the EMT phenotype. Several miRNAs, 

Figure 3. The miR-101 network regulates EMT. 
miR-101 directly targets ZEB1/ZEB2[52], EZH2[64,65], 
and Wnt/β-catenin[63]. miR-101 down-regulates 
ZEB1/ZEB2 and EZH2, which increases E-cadherin 
expression and subsequently promotes EMT. miR-
101 down-regulates the Wnt/β-catenin pathway, 
which promotes cell motility and invasiveness. 
Thus, miR-101 suppresses EMT through targeting 
these signal pathways. EMT, epithel ial-to-
mesenchymal transition; ZEB1, zinc finger E-box 
binding homeobox 1; ZEB2, zinc finger E-box 
binding homeobox 2; EZH2, enhancer of zeste 
homolog 2.
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such as miR-103 and miR-107, can induce EMT by down-regulating 
miR-200 via Dicer[79]. Moreover, miR-130b silencing can restore dicer 
1 to a threshold level that allows miR-200 family members to repress 
EMT in endometrial cancer[80]. Together, these findings suggest 
that targeting these molecules may suppress EMT by increasing 
expression of the miR-200 family.

miR-25
       miR-25 is a member of the miR-106b-25 cluster, which is a part 
of the miR-92a family[81]. Recent studies found that miR-25 is located 
on the 13th intron of the minichromosome maintenance protein 7 
(MCM7) gene of human chromosome 7q22.1[82].  The expression of 
miR-25 can be regulated at multiple levels. Liu et al.[83] reported that 
a single nucleotide polymorphism (SNP), rs999885, in the promoter 
region of the miR-106b-25 cluster influences the expression of 
miR-25. Kunej et al .[84] showed that the expression of miR-25 was 
regulated epigenetically in gastric cancer. Up-regulation of C-MYC 
induced the expression of a variety of miRNAs, including the miR-
17-92 cluster, miR-106a-363 cluster, and miR-106b-25 cluster[85-87]. 
The transcription factor homeoprotein Sine oculis homeobox 
homolog 1 (Six1), a regulator of EMT, was shown to up-regulate the 
expression of the miR-106b-25 cluster[88]. miR-25 has been reported 
to regulate EMT. It is known that TGF-β has suppressive effects on 
normal epithelial cells and during the early stages of carcinogenesis. 
As cancer progresses, tumor cells become resistant to TGF-β–
mediated growth inhibition, and TGF-β promotes tumor invasion and 
metastasis, partly via its promotion of EMT. It was reported that miR-
25 targets the cell cycle inhibitor p21 and the pro-apoptotic factor Bim 
(also known as BCL2-like 11) in the TGF-β signaling pathway, thus 
inhibiting the TGF-β–mediated growth suppression of tumor cells[89,90]. 
Furthermore, it was shown that the miR-106b-25 cluster could also 
target the inhibitory Smad7 directly, resulting in increased levels 
of the TGF-β type I receptor and downstream activation of TGF-β 
signaling[88,91]. miR-25 was also reported to directly target the CDH1 
gene, which is closely associated with the lymphatic metastasis and 
invasion of esophageal squamous cell carcinoma (ESCC)[92,93]. Fang 
et al.[94] demonstrated that miR-25 could target desmocollin 2 (DSC2), 
a member of the desmocollin subfamily of the cadherin superfamily, 
which is involved in cell-cell adhesion and plays a critical role in 
maintaining normal tissue architecture in the epithelium. Down-
regulated DSC2 promoted the aggressiveness of ESCC cells by 
redistributing the adherens junctions and inducing the transposition 
of β-catenin from the cytoplasm to the nucleus, thus further activating 
the β-catenin/T-cell factor (TCF) transactivation axis[94]. 
      In our network analysis of integrated mesenchymal serous 
ovarian cancer, miR-25 had the largest number of connected protein-
coding genes[28]. However, the current data on whether miR-25 acts 
as an oncogene or a tumor suppressor gene are inconsistent. miR-
25 is more highly expressed in a variety of tumor tissues, including 
gastric cancer, prostate cancer, esophageal cancer, and colorectal 
cancer (CRC) tissues, than in normal tissue controls[91,94-96]. However, 
Li et al .[97] reported that miR-25 functions as a potential tumor 
suppressor by targeting SMAD family member 7 (Smad7) in colon 

cancer. They showed that the introduction of miR-25 inhibited the 
proliferation and migration of colon cancer cells. Furthermore, miR-
25 suppressed the growth of colon cancer xenografts in vivo[97]. miR-
25 was also suggested to act as a tumor suppressor in anaplastic 
thyroid carcinoma by targeting the polycomb protein EZH2[98]. 
      Using an integrated analysis of TCGA cases, we found that 
miR-25 expression was decreased in our integrated mesenchymal 
subtype of high-grade serous ovarian cancer[28], suggesting that 
miR-25 is inversely associated with EMT. By contrast, miR-25 
has been considered an oncogene in ovarian cancer. miR-25 
was highly expressed in both clinical ovarian cancer samples and 
cell lines[99,100], and the miR-25 expression level was significantly 
positively associated with tumor stage, regional lymph node status, 
and poor survival in epithelial ovarian cancer[100]. Zhang et al .[99] 
demonstrated that miR-25 directly regulated apoptosis by targeting 
Bim in ovarian cancer. In ovarian cancer cells, the down-regulation 
of miR-25 induced apoptosis, whereas the overexpression of miR-
25 enhanced cell proliferation. Feng et al .[101] reported that miR-
25 promoted ovarian cancer proliferation and motility by targeting 
LATS2. However, the above results were from a single bioinformatics 
analysis[28], in vitro studies without in vivo validation[99,101], or a small-
scale clinical analysis (86 cases)[100]. Therefore, further studies should 
be performed, such as measuring the expression of miR-25 in serous 
and other subtypes of ovarian cancer cases in a large-scale, multiple-
center study and demonstrating the function of miR-25 in EMT, MET, 
and metastasis both in vitro and in vivo.  

miR-29c
      The miR-29 family consists of miR-29a, miR-29b, and miR-
29c; miR-29b includes 2 members, miR-29b-1 and miR-29b-2[102]. 
Dysregulation of the miR-29 family is reported in many aspects of 
tumorigenesis and cancer progression, including cell proliferation, 
cell cycle, cell differentiation, apoptosis, and metastasis[102]. However, 
the mechanism responsible for the deregulation of miR-29 family 
members in tumors remains unclear. Zhang et al .[103] reported that 
miR-29 members were suppressed by c-Myc in B-cell lymphoma. 
Although not explicitly stated, the miR-29 family is involved in the 
regulation of EMT. miR-29 expression is induced by the TGF-β–Smad 
signaling pathway[104,105], which is a key signaling pathway for EMT. 
DNA damage–induced TP53 was shown to promote the expression of 
miR-29[106]. Furthermore, TP53-induced miR-200 expression provides 
critical evidence for the role of TP53 in EMT regulation. Further 
studies are needed to determine whether TP53-induced miR-29 also 
contributes to TP53-regulated EMT.
      The reported functions of miR-29 family members consistently 
support their roles as tumor suppressing miRNAs in many systems, 
including melanoma, peripheral nerve sheath tumors, glioma, and 
nasopharyngeal, colorectal, gastric, hepatocellular, breast and 
lung cancers. Zhang et al .[107] reported that miR-29c dramatically 
suppressed CRC cell migration, invasion, and metastasis in vivo. 
These authors further demonstrated that miR-29c mediates EMT in 
CRC by directly targeting guanine nucleotide-binding protein alpha 
13 (GNA13) and protein tyrosine phosphatase type IV A (PTP4A). 
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These 2 proteins are known to be involved in the ERK/GSK3β/
β-catenin and Akt/GSK3β/β-catenin signaling pathways, respectively. 
Han et al .[108] showed that ectopic treatment with miR-29c mimics 
in gastric cancer cell lines resulted in reduced proliferation, 
adhesion, invasion, and migration and that high miR-29c expression 
suppressed xenograft tumor growth in nude mice by directly targeting 
integrin beta 1 (ITGB1). In hepatocellular carcinoma (HCC), miR-29c 
directly targeted and suppressed sirtuin 1(SIRT1) expression and 
blocked HCC cell growth and proliferation, thus suggesting a tumor 
suppressive role[109]. Consistently, miR-29c recapitulated SIRT1-
knockdown effects in HCC cells. In addition, miR-29c expression was 
down-regulated in a large cohort of HCC patients, and low expression 
of miR-29c was significantly associated with poor prognosis of HCC. 
Currently, besides our report of the association between decreased 
miR-29c expression and the mesenchymal subtype of high-grade 
serous ovarian cancer[28], there are no other reports on miR-29c 
dysregulation in ovarian cancer. Further studies are needed to 
determine whether miR-29c is a strong tumor suppressor in ovarian 
cancer and the cause of its dysregulation.

miR-182
      The miR-183 family is highly conserved and consists of miR-
96, miR-182, and miR-183[110]. Several studies have demonstrated 
that the miR-183 family is abnormally expressed in various tumors 
and is directly involved in human cancer processes, such as cellular 
differentiation, proliferation, apoptosis, and metabolism[111-113]. Zhang 
et al .[114] performed a meta-analysis of the expression of the miR-
183 family in human cancers and found that miR-182  expression 
was consistently up-regulated in 15 cancer types, including ovarian 
cancer, but inconsistently expressed in gastric cancer tissues and 
adjacent noncancerous tissues. Kong et al. [115] revealed that the miR-
183 family was significantly up-regulated in gastric cancer tissues. 
However, Li et al .[116] observed that miR-182 was down-regulated 
in gastric adenocarcinoma tissues and may function as a tumor 
suppressor via down-regulation of cAMP responsive element-binding 
protein 1 (CREB1). 
       miR-182 has been consistently reported to be significantly 
up-regulated in ovarian cancer tissue[117-120]. Liu et al .[118] reported 
that miR-182 expression was significantly higher in serous tubal 
intraepithelial carcinoma, which is recognized as a precursor lesion of 
high-grade serous ovarian cancer, than in matched normal fallopian 
tube. Furthermore, miR-182 was significantly overexpressed in most 
high-grade serous ovarian cancer cases. Overexpressing miR-
182 in immortalized ovarian surface cells, fallopian tube secretory 
cells and malignant ovarian cell lines resulted in increased tumor 
transformation in vitro, enhanced tumor invasiveness in vitro, and 
metastasis in vivo . miR-182 plays an ontogenic role in ovarian 
cancer partly via its effects on repairing DNA double-strand breaks,  
its negative regulation of breast cancer 1 (BRCA1) and metastasis 
suppressor 1 (MTSS1), and its positive regulation of the oncogene 
high-mobility group AT-hook 2 (HMGA2). Wang et al.[120] measured 
1,722 miRNAs from 15 normal ovarian tissue samples and 48 ovarian 
cancer samples using a quantificational real-time polymerase chain 

reaction (qRT-PCR) assay and identified a 10-miRNA signature that 
distinguished ovarian cancer tissues from normal tissues. Wang et 
al.[119] demonstrated that miR-182 promotes cell growth, invasion, and 
chemoresistance by targeting programmed cell death 4 (PDCD4) in 
human ovarian cancer. Interestingly, inactivation of BRCA1, although 
less potent than that of BRCA2, has been shown to confer beneficial 
effects on ovarian cancer survival[121]. Among the 8 miRNAs in our 
network, the expression of miR-506 and miR-182 is associated with 
increased survival in the TCGA cohort[28].
      In prostate cancer, miR-182 was reported to suppress EMT 
via its repression of SNAI2[122]. However, miR-182 was shown to 
increase the invasiveness of breast cancer by targeting reversion-
inducing-cysteine-rich protein with kazal motifs (RECK), a matrix 
metalloproteinase inhibitor[123]. miR-182 also promoted gallbladder 
cancer metastasis partly by targeting cell adhesion molecule 
1 (CADM1)[124]. Furthermore, miR-182 was shown to stimulate 
angiogenesis and promote non–small cell lung cancer (NSCLC) 
progression partly by directly targeting fibroblast growth factor 
receptor substrate 2 (FRS2) [125]. In addition, miR-182 drove 
metastasis of primary sarcomas by targeting MTSS1 and Ras 
suppressor protein-1 (Rsu1)[126]. Therefore, miR-182 may play 
different roles in the development and progression of various cancers 
depending on their target downstream genes.

miR-128
       miR-128 is a brain-enriched miRNA. The expression of miR-128 
exhibits tissue-specific and developmental stage-specific patterns. 
It is mainly expressed in neurons rather than astrocytes[127], and it 
is abundantly represented in the hippocampal region of brains of 
fetus, adults, and the patients with Alzheimer's disease[128]. miR-128 
consists of 2 distinct genes, miR-128-1 and miR-128-2, which are 
embedded in the introns of the R3H domain containing 1 (R3HDM1) 
that is located on human chromosome 2q21.3 and in the introns of 
the cyclic AMP-regulated phosphoprotein, 21 kDa (ARPP21) that is 
located on 3p22.3, respectively[125]. miR-128-1 and miR-128-2 are 
processed to generate the same mature miRNA with an identical 
sequence, miR-128. It is also known that the majority of intronic 
miRNAs transcriptionally depend on the expression of their host 
gene[129]. However, researchers have found that approximately 26% 
of the mammalian intronic miRNAs may be transcribed using their 
own promoters[130]. Monteys et al.[131] demonstrated that miR-128-2 
has a Pol III promoter in its 5’-flanking region, which may permit an 
independent expression from its host gene, ARPP21. Muinos-Gimeno 
et al.[132] also found that there were 3 SNPs located in the genomic 
region that corresponds to hsa-miR-128-1-R3HDM1 and that 
there was a strong geographical genetic variation among different 
populations from HapMap. Mi et al.[133] examined the DNA methylation 
status of CpG islands located in the miR-128b promoters of 10 acute 
lymphoblastic leukemia (ALL), 14 acute myeloid leukemia (AML), 
and 3 normal samples, and they found that the average methylation 
rate of the ALL group was 2.7%, lower than that of the AML group 
(17.1%). Their results suggested that the up-regulation of miR-
128b in ALL patients may be due to a lower degree of CpG island 
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methylation in its promoter regions. miR-128 can also be regulated 
by transcription factors. SNAIL can down-regulate the expression of 
miR-128 by directly binding to its promoter regions of both E-box 1 
and 2[18]. The mutant TP53 can bind to the putative promoter of the 
miR128-2 host gene ARPP21 and increase the expression of both 
miR-128 and ARPP21 mRNA[134,135].
      Aberrant expression of miR-128 has been observed in many 
malignant tumors. Under-expression of miR-128 was observed in 
glioma compared with tumor-adjacent brain tissue, particularly in 
the more aggressive subtypes, glioblastoma multiforme (GBM) and 
medulloblastoma, based on miRNA array, Northern blot, and qRT-
PCR analyses[1,19,27]. However, the levels of miR-128 expression in 
other solid tumor tissues were highly variable. Using a large-scale 
miRnome analysis, Volinia et al.[136] measured 540 different malignant 
tumor samples and found that the expression of miR-128b was 
significantly up-regulated in tumor tissues of the colon, lung, and 
pancreas. By contrast, Katada et al.[137]  measured the expression 
levels of miR-128 in 42 undifferentiated gastric cancer tissues 
and paired controls. Their findings showed that miR-128a was up-
regulated, whereas miR-128b was down-regulated, in undifferentiated 
gastric cancer tissues. Khan et al .[138] measured 21 independent 
prostate specimens and found a significant reduction in the levels of 
miR-128 in a progressive fashion from benign prostatic hyperplasia to 
prostate cancer and then to metastatic prostate cancer. The level of 
miR-128 was also lower in more invasive ovarian cancer cells than in 
less invasive cancer cells[139]. 
      Examining the role of miR-128 in EMT and tumor cell invasion 
and motility, Qian et al .[140]  demonstrated that overexpression of 
miR-128 suppressed the morphologic transformation associated 
with EMT, retarded wound closing, and reduced cell migration and 
invasion in MDA-MB-231 cells. Evangelisti et al.[141] found that ectopic 
overexpression of miR-128 down-regulated glioblastoma cell invasion 
by directly targeting Reelin and doublecortin (DCX).  Woo et al.[139] 
reported that overexpression of miR-128 in ovarian cancer cells 
resulted in reduced cell motility and adhesion by directly targeting 
colony-stimulating factor-1 (CSF-1). Because reducing cell motility 
and adhesion adversely affects cell migration, the function of miR-
128 in ovarian cancer metastasis via its effects on CSF-1 needs to 
be studied in vivo. In addition, the regulation of miR-128 on multiple 
targets related to EMT should be further studied.

Conclusions and Future Directions
       Most studies have shown that as post-transcriptional regulators, 
miRNAs play important roles in EMT and are important markers 
and tools in cancer diagnosis, prognosis, and therapeutics. Using 
an integrated analysis, we identified a core regulatory network, 

including 8 key node miRNAs and 214 protein-coding genes, related 
to an integrated mesenchymal subtype of serous ovarian cancer[28], 
suggesting that these 8 miRNAs can regulate EMT and MET in 
ovarian cancer. However, in various tumors, including ovarian 
cancer, the functions of some of the 8 miRNAs in EMT and MET 
are contradictory, possibly because miRNAs play different roles by 
targeting different targets in specific conditions. Therefore, further 
studies are needed on these miRNAs and their targets.
      In addition, the function of a single miRNA in EMT and MET may 
be limited, thus the combination of several miRNAs may generate an 
entirely different cellular phenotype and therapeutic outcome. Shahab 
et al.[142] monitored the consequent changes in the global patterns of 
gene expression using microarray and qRT-PCR after transfecting 
2 miRNAs, miR-7 and miR-128, and found that the changes in 
gene expression induced by the individual miRNAs was functionally 
coordinated but distinct. miR-7 transfection into ovarian cancer cells 
induces changes in cell adhesion and other developmental networks 
previously associated with EMT and other processes linked with 
metastasis. By contrast, miR-128 transfection induces changes in 
cell cycle control and other processes commonly linked with cellular 
replication. Therefore, the function of an individual miRNA in EMT and 
MET may be influenced by other miRNAs. The effects of combining 
several miRNAs should be investigated in the future. Preclinical 
mouse model studies have already provided evidence that miRNAs, 
such as miR-506, can exhibit strong tumor suppressive effects[28,29]. 
With the development and perfection of miRNA delivery techniques 
such as nanoparticles and mesenchymal stem cells, miRNAs are 
quickly becoming a promising therapeutic tool for cancer treatment.   
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