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Abstract
Background: The protein folding problem is a fundamental problems in computational molecular
biology and biochemical physics. Various optimisation methods have been applied to formulations
of the ab-initio folding problem that are based on reduced models of protein structure, including
Monte Carlo methods, Evolutionary Algorithms, Tabu Search and hybrid approaches. In our work,
we have introduced an ant colony optimisation (ACO) algorithm to address the non-deterministic
polynomial-time hard (NP-hard) combinatorial problem of predicting a protein's conformation
from its amino acid sequence under a widely studied, conceptually simple model – the 2-
dimensional (2D) and 3-dimensional (3D) hydrophobic-polar (HP) model.

Results: We present an improvement of our previous ACO algorithm for the 2D HP model and
its extension to the 3D HP model. We show that this new algorithm, dubbed ACO-HPPFP-3,
performs better than previous state-of-the-art algorithms on sequences whose native
conformations do not contain structural nuclei (parts of the native fold that predominantly consist
of local interactions) at the ends, but rather in the middle of the sequence, and that it generally finds
a more diverse set of native conformations.

Conclusions: The application of ACO to this bioinformatics problem compares favourably with
specialised, state-of-the-art methods for the 2D and 3D HP protein folding problem; our empirical
results indicate that our rather simple ACO algorithm scales worse with sequence length but
usually finds a more diverse ensemble of native states. Therefore the development of ACO
algorithms for more complex and realistic models of protein structure holds significant promise.

Background
Ant Colony Optimisation (ACO) is a population-based
stochastic search method for solving a wide range of com-
binatorial optimisation problems. ACO is based on the
concept of stigmergy – indirect communication between
members of a population through interaction with the
environment. An example of stigmergy is the communica-
tion of ants during the foraging process: ants indirectly
communicate with each other by depositing pheromone

trails on the ground and thereby influencing the decision
processes of other ants. This simple form of communica-
tion between individual ants gives rise to complex behav-
iours and capabilities of the colony as a whole.

From the computational point of view, ACO is an iterative
construction search method in which a population of sim-
ple agents ('ants') repeatedly constructs candidate solu-
tions to a given problem; this construction process is
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probabilistically guided by heuristic information on the
given problem instance as well as by a shared memory
containing experience gathered by the ants in previous
iterations ('pheromone trails'). Following the seminal
work by Dorigo et al. [1,2], ACO algorithms have been
successfully applied to a broad range of hard combinato-
rial problems, including the traveling salesman problem,
the graph colouring problem, the quadratic assignment
problem and vehicle routing problems (see, e.g., [3-5]).

The research presented in this paper builds on an ACO
algorithm first proposed in [6] (and later improved in [7])
for ab-initio protein folding under a widely studied
abstract model – the hydrophobic polar (HP) model. In
particular, we extend our previous ACO algorithm to the
3D HP model and improve its performance by modifying
the subsidiary local search procedure.

The protein folding problem is one of the most challeng-
ing problems in computational biology, molecular biol-
ogy, biochemistry and physics. Even under simplified
lattice models, the protein folding problem is non-deter-
ministic polynomial-time hard (NP-hard) [8]. The ab-ini-
tio protein folding problem can be broken down into
three sub-problems: 1) design of a model (with a desired
level of accuracy); 2) definition of an energy function that
can effectively discriminate between native and non-
native states; and 3) design of a search algorithm that can
efficiently find minimal-energy conformations. A number
of search (or sampling) methods have been proposed in
the literature to solve the protein folding problem, includ-
ing Monte Carlo algorithms, Evolutionary Algorithms,
Tabu Search and hybrid approaches. ACO, which has
been very successfully applied to other combinatorial
problems, appears to be a very attractive computational
method for solving the protein folding problem, since it
combines aspects of chain-growth and permutation-based
search with ideas closely related to reinforcement learn-
ing. These concepts and ideas apply rather naturally to
protein folding: By folding from multiple initial folding
points, guided by the energy function and experience
from previous iterations of the algorithm, an ensemble of
promising, low-energy complete conformations is
obtained. These conformations are further improved by a
subsidiary local search procedure and then evaluated to
update the accumulated pheromone values that are used
to bias the generation of conformations in future itera-
tions of the algorithm.

In this paper, we ask and address the following questions:
Is ACO a competitive method for solving the ab-initio pro-
tein folding problem under the 2D and 3D HP models?
How does its performance scale with sequence length?
What is the role of the parameters of the ACO algorithm
for the efficiency of the optimisation process? Which

classes of structures (if any) are solved more efficiently by
ACO than by any other known algorithms? Finally, it
should be noted that our ACO algorithm for this problem
is based on very simple design choices, in particular with
respect to the solution components reinforced in the phe-
romone matrix and of the subsidiary local search proce-
dure. We discuss which of the many design choices
underlying our algorithm should be reconsidered in order
to achieve further performance improvements.

The hydrophobic polar model
Due to the complexity of the protein folding problem,
simplified models such as Dill's hydrophobic-polar (HP)
model have become one of the major tools for studying
protein structure [9]. The HP model is based on the obser-
vation that the hydrophobic force is the main force deter-
mining the unique native conformation (and hence the
functional state) of small globular proteins [9,10].

In the HP model, the primary amino acid sequence of a
protein (which can be represented as a string over a
twenty-letter alphabet) is abstracted to a sequence of
hydrophobic (H) and polar (P) residues that is repre-
sented as a string over the letters H and P. The conforma-
tions of such an HP sequence are restricted to self-
avoiding walks on a lattice. For the 2D HP model, a 2-
dimensional square lattice is typically used, and the 3D
HP model is generally based on a 3-dimensional cubic lat-
tice. An example of a protein conformation under the 2D
HP model is shown in Figure 1. The energy of a conforma-
tion is defined as the number of topological contacts
between hydrophobic amino acids that are not neigh-
bours in the given sequence. More specifically, a confor-
mation c with exactly n such H-H contacts has energy E(c)
= n·(-1); for example, the 2D HP conformation shown in
Figure 1 has energy -9.

The HP Protein Folding Problem can be formally defined
as follows: Given an HP sequence s = s1 s2...sn, find an
energy-minimising conformation of s, i.e., find c* ∈  C(s)
such that E(c*) = min{E(c) | c ∈  C}, where C(s) is the set
of all valid conformations for s. It has been proved
recently that this problem and several variations of it are
NP-hard [8].

Existing 2D and 3D HP protein folding algorithms
A number of well-known heuristic optimisation methods
have been applied to the 2D and 3D HP Protein Folding
Problem, including Evolutionary Algorithms (EAs) [11-
15] and Monte Carlo (MC) algorithms [16-22]. The latter
have been found to be particularly robust and effective for
finding high-quality solutions to the HP Protein Folding
Problem [18].
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Besides general optimisation methods, there are other
heuristic methods that rely on specific heuristics that are
based on intuitions or assumptions about the folding
process, such as co-operativity of folding or the existence
of a hydrophobic core. Co-operativity is believed to arise
from local conformational choices that result in a globally
optimal state without exhaustive search [23]. Among
these methods are the hydrophobic zipper method (HZ)
[23], the contact interactions method (CI) [24], the core-
directed chain growth method (CG) [25], and the con-
straint-based hydrophobic core construction method
(CHCC) [26].

The hydrophobic zipper (HZ) strategy developed by Dill
et al. is based on the hypothesis that once a hydrophobic
contact is formed it cannot be broken, and other contacts
are formed in accordance with already folded parts of the
chain (co-operativity of folding) [23]. The contact interac-
tions (CI) algorithm by Toma and Toma [24] combines
the idea of HZ with a Monte Carlo search procedure that
assigns different conformational freedom to the different

residues in the chain, and thus allows previously formed
contacts to be modified according to their computed
mobilities. The core-directed chain growth method (CG)
by Beutler and Dill [25] biases construction towards find-
ing a good hydrophobic core by using a specifically
designed heuristic function and by approximating the
hydrophobic core with a square (in 2D) or a cube (in 3D).
The constraint-based hydrophobic core construction
method (CHCC) by Yue and Dill [26] is complete, i.e.,
always guaranteed to find a global optimum; it attempts
to find the hydrophobic core with the minimal possible
surface area by systematically introducing geometric con-
straints and by pruning branches of a conformational
search tree. A similar, but more efficient complete con-
straint satisfaction search method has been proposed by
Backofen et al. [27] for the more complex face-centred
cubic lattice.

An early application of Evolutionary Algorithms to pro-
tein structure prediction was presented by Unger and
Moult [14,15]. Their non-standard EA incorporates char-
acteristics of Monte Carlo methods. Currently among the
best known algorithms for the HP Protein Folding prob-
lem are various Monte Carlo algorithms, including the
'pruned-enriched Rosenbluth method' (PERM) of Grass-
berger et al. [16,18]. PERM is a biased chain growth algo-
rithm that evaluates partial conformations and employs
pruning and enrichment strategies to explore promising
partial solutions.

Other methods for solving protein folding problems
include the dynamic Monte Carlo algorithm by Ram-
akrishnan et al. [21], which introduced long-range moves
involving disconnection of the chain, and the evolution-
ary Monte Carlo (EMC) algorithm by Liang and Wong
[19], which works with a population of individuals that
each perform Monte Carlo optimisation; a variant of EMC
also reinforces certain secondary structures (alpha-helices
and beta-sheets).

Finally, Chikenji et al. introduced the multi-self-overlap
ensemble (MSOE) Monte Carlo method [17], which con-
siders overlapping chain configurations.

Other Monte Carlo methods that have been particularly
useful in off-lattice protein folding include generalised
ensemble methods, such as umbrella sampling [28] (with
replica exchange sampling [29,30] being the most com-
mon variant) and multi-canonical (entropic) sampling
[30,31]. Replica exchange Monte Carlo (parallel temper-
ing) has also been applied to the off-lattice HP model
[32].

Currently, when applied to the square and cubic lattice
HP model, none of these algorithms appears to

A sample protein conformation in the 2D HP modelFigure 1
A sample protein conformation in the 2D HP model. 
The underlying protein sequence (Sequence S1-1 from Table 
1)is HPHPPHHPHPPHPHHPPHPH; black circles represent 
hydrophobic amino acids, while white circles symbolise polar 
amino acids. The dotted lines represents the H-H contacts 
underlying the energy calculation. The energy of this confor-
mation is -9, which is optimal for the given sequence.
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completely dominate the others in terms of solution qual-
ity and run-time.

Our ACO algorithm for the 2D and 3D HP protein folding 
problem
In previous work, we have applied ACO to the 2D HP Pro-
tein Folding Problem [6,7]; in the following, we briefly
summarise the main features of our ACO algorithm and
the improvements introduced in this work. Details on our
ACO framework and the new ACO-HPPFP-3 algorithm
developed in the context of this work are given in the
'Methods' section.

As usual, the ants in our ACO algorithm iteratively
undergo three phases: the construction phase – during
which each ant constructs a candidate solution by sequen-
tially growing a conformation of the given HP sequence,
starting from a folding point that is chosen uniformly at
random among all sequence positions; the local search
phase – when ants further optimise protein conformations
folded during the construction phase; and the pheromone
update phase – when ants update the pheromone matrix
(representing the collective global memory of the colony)
based on the energies of the conformations obtained after
the construction and the local search phases. A general
outline of ACO is shown in Figure 2.

The solution components used during the construction
process, the local search phase and the pheromone update
are local structure motifs (or relative folding directions)
straight (S), left (L), right (R) in 2D, and straight (S), left (L),
right (R), up (U), down (D) in 3D, which for each amino
acid indicate its position on the 2D or 3D lattice relative
to its direct predecessors in the given sequence (see Figure

3). In 3D, the relative folding directions are defined as in
[33]: A local coordinate system is associated with every
sequence position, such that S corresponds to the direc-
tion of the x axis, L to the direction of the y axis, and U to
the direction of the z axis. Each local motif corresponds to
a relative rotation of this coordinate system (for the for-
ward construction: S = no rotation, L = 90° counter-clock-
wise around the z axis, R = 90° clockwise around the z
axis, U = 90° clockwise around the y axis, D = 90° coun-
ter-clockwise around the y axis).

Since conformations are rotationally invariant, the posi-
tion of the first two amino acids can be fixed without loss
of generality. Hence, we represent candidate conforma-
tions for a protein sequence of length n by a sequence of
local structure motifs of length n - 2. For example, the
conformation of Sequence S1-1 shown in Figure 1 corre-
sponds to the motif sequence LSLLRRLRLLSLRRLLSL.

ACO outlineFigure 2
ACO outline. Generic outline of Ant Colony Optimisation 
(for static combinatorial problems).

procedure ACO
initialise pheromone trails;
while (termination condition not satisfied) do

construct candidate conformations;
perform local search;
update pheromone values;

end
end

Local structure motifsFigure 3
Local structure motifs. The local structure motifs which form the solution components underlying the construction and 
local search phases of our ACO algorithm in 3D.
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During the construction phase, ants fold a protein from
an initial folding point by probabilistically adding one
amino acid at a time based on the two sources of informa-
tion: pheromone matrix values τ (which represent previ-
ous search experience and reinforce certain structural
motifs) and heuristic function values η (which reflect cur-
rent energy of the considered structural motif); details of
this process are given in the 'Methods' section. The relative
importance of τ and η is determined by parameters α and
β, respectively, whose settings are detailed in the 'Discus-
sion' section. Similar to other ACO algorithms known
from the literature, our algorithm for the HP Protein
Folding Problem incorporates a local search phase that
takes the initially built protein conformation and
attempts to optimise its energy further, using probabilistic
long-range moves that are described in detail in the 'Meth-
ods' section.

Finally, the pheromone update procedure is based on two
mechanisms: Uniform pheromone evaporation is mod-
elled by decreasing all pheromone levels by a constant fac-
tor ρ (where 0 <ρ ≤ 1), and pheromone reinforcement is
achieved by increasing the pheromone levels associated
with the local folding motifs used in a fraction of the best
conformations (in terms of energy values) obtained dur-
ing the preceding construction and local search phase.
Furthermore, to prevent search stagnation when all of the
pheromone is accumulated on very few structural motifs,
we introduce an additional renormalisation mechanism
for the pheromone levels (controlled by a parameter θ
where 0 ≤ θ < 1; details are given in the 'Methods' section).

Different from our previous ACO algorithms for the HP
Protein Folding Problem, our new algorithm, ACO-
HPPFP-3, supports the 3D HP cubic lattice model in addi-
tion to the 2D HP square lattice model. Furthermore, it
uses a different iterative improvement strategy, a modified
long-range move operator and a less restrictive termina-
tion criterion in its local search phase. ACO-HPPFP-3 was
used in all ACO experiments described in the following.

Results
To compare ACO-HPPFP-3 with algorithms for the 2D
and 3D HP Protein Folding Problem described in the lit-
erature, we tested it on a number of standard benchmark
instances as well as on two newly created data sets, one of
which was obtained by randomly generating amino acid
sequences with hydrophobicity value characteristic of
globular proteins, while the other consists of biological
sequences that were translated into HP strings using a
standard hydrophobicity scale. (These new data sets will
be described in more detail later in this section.)

Results for standard benchmark instances
The 21 standard benchmark instances for 2D- and 3D-HP
protein folding shown in Table 1 have been widely used
in the literature [6,12,14-17,19,25]. Experiments on these
standard benchmark instances were conducted by per-
forming a number of independent runs for each problem
instance (in 2D: 500 runs for sequence length n ≤ 50, 100
runs for 50 <n ≤ 64, and 20 runs for n >64; in 3D: 100 runs
for each sequence). Unless explicitly indicated otherwise,
we used the following parameter settings for all experi-
ments: α: = 1, β: = 2, ρ: = 0.8 and θ: = 0.05. Furthermore,
all pheromone values were initialised to 1/3 in 2D and to
1/5 in 3D, and a population of 100 ants was used, 50% of
which were allowed to perform local search. The local
search procedure was terminated when no improvement
in energy had been obtained after between 1 000 (for n ≤
50) and 10 000 (for n > 50) scans through the protein
sequence. We used an elitist pheromone updating scheme
in which only the best 1% of all ants was allowed to per-

form pheromone updates. The probability  of keeping
the previous direction when feasible during the long-
range mutation move was set to 0.5 (see 'Methods' sec-
tion). These settings were determined in a series of exper-
iments in which we studied the influence of different
parameter settings and will be further discussed later. All
experiments were performed on PCs with 2.4 GHz Pen-
tium IV CPUs, 256 Kb cache and 1 MB RAM, running Red-
hat Linux (our reference machine), and run-time was
measured in terms of CPU time.

Most studies of EA and MC methods in the literature,
including [12,14,15,19], report the number of valid con-
formations scanned during the search. This makes a per-
formance comparison difficult, since run-time spent for
backtracking and the checking of partial or infeasible con-
formations, which may vary substantially between differ-
ent algorithms, is not accounted for. We therefore
compared ACO to the best-performing algorithm from
the literature for which performance data in terms of CPU
time is available – PERM [18] (we used the most recent
implementation, which was kindly provided by P. Grass-
berger). We note that the most efficient PERM variant for
the HP Protein Folding Problem uses an additional pen-
alty of 0.2 for H-P contacts [34]. Since this corresponds to
an energy function different from that of the standard HP
model underlying our ACO algorithm as well as other
algorithms developed in literature, we used the best per-
forming variant of PERM [18] based on the standard
energy function in our experiments. It may be noted that
the chain growth process in PERM can start from the N- or
C-terminus of the given HP sequence, and in many cases,
this results in substantial differences in the performance
of the algorithm. To capture this effect, we always ran
PERM in both directions, and in addition to the respective
average run-times, t1 and t2, we report the expected time

p̂
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for solving a given problem instance when performing
both runs concurrently, texp = 2·(1/t1 + 1/t2)-1. For all runs
of PERM, the following parameter settings were used:
inverse temperature γ: = 26 and q: = 0.2.

The results obtained on standard 2D benchmark instances
(see Table 2) indicate that ACO-HPPFP-3 is competitive
with the EA and MC methods described in the literature;
it works very well on sequences of sizes up to 64 amino
acids and produces high quality suboptimal configura-
tions for the longest sequences considered here (85 and
100 amino acids). On average, ACO requires less CPU
time than PERM for finding best known conformations
for Sequence S1-8; but PERM performs better for
Sequences S1-6 and S1-7 as well as for the longer
sequences of 85 to 100 residues (Sequence S1-9 to S1-11).

Sequence S1-8 has a very symmetrical optimal state (see
Figure 4), which – as argued in [18] – would be difficult
to find for any chain growing algorithm. All algorithms
from the literature which we are aware of have problems
folding this sequence; ACO-HPPFP-3, on the other hand,

is able to handle this instance quite well, since a number
of ants folding from different starting points in conjunc-
tion with a local search procedure that involves large-scale
mutations originating from different sequence positions
can produce good partial folds for various parts of the
chain. In comparison with other algorithms for the 2D HP
Protein Folding Problem considered here (EA, EMC,
MSOE), ACO-HPPFP-3 generally shows very good per-
formance on standard benchmark instances.

In case of the 3D HP Protein Folding Problem (see Table
3), the majority of algorithms for which we were able to
find performance results in the literature use heuristics
that are highly specialised for this problem. Unlike HZ,
CG and CI, ACO-HPPFP-3 finds optimal (or best known)
solution qualities for all sequences. However, PERM
(when folding from the N-terminus) and CHCC consist-
ently outperform ACO-HPPFP-3 on these standard 3D HP
benchmark instances, and CG reaches best known solu-
tion qualities substantially faster in many cases. We note
that for Sequence S2-3 and S2-7, PERM'S performance is
greatly dependent on the folding direction.

Table 1: 2D and 3D HP standard benchmark instances. Benchmark instances for the 2D and 3D HP Protein Folding Problem used in 
this study with optimal or best known energy values E*. Most instances for 2D and 3D HP can also be found in [44]; Sequence S1-9 
(2D) is taken from [45], and the last two instances (2D) are from [21]. Hi and Pi indicate a string of i consecutive H's and P's, 
respectively; likewise, (s)i indicates an i-fold repetition of string s.

ID Length E* Protein Sequence

2D HP

S1-1 20 -9 (HP)2PH2PHP2HPH2P2HPH
S1-2 24 -9 H2(P2H)7H
S1-3 25 -8 P2HP2(H2P4)3H2
S1-4 36 -14 P3H2P2H2P5H7P2H2P4H2P2HP2
S1-5 48 -23 P2H(P2H2)2P5H10P6(H2P2)2HP2H5
S1-6 50 -21 H2(PH)3PH4PH(P3H)2P4H(P3H)2PHPH4(HP)3H2
S1-7 60 -36 P2H3PH8P3H10PHP3H12P4H6PH2PHP
S1-8 64 -42 H12(PH)2(P2H2)2P2HP2H2PPH2P2HP2(H2P2)2(HP)2H12
S1-9 85 -53 H4P4H12P6(H12P3)3HP2(H2P2)2HPH
S1-10 100 -50 P3H2P2H4P2H3(PH2)2PH4P8H6P2H6P9HPH2PH11P2H3PH2PHP2HPH3P6H3
S1-11 100 -48 P6HPH2P5H3PH5PH2P4H2P2H2PH5PH10PH2PH7p11H7P2HPH3P6HPH2

3D HP

S2-1 48 -32 HPH2P2H4PH3P2H2P2HPH2PHPH2P2H2P3HP8H2
S2-2 48 -34 H4PH2PH5P2HP2H2P2HP6HP2HP3HP2H2P2H3PH
S2-3 48 -34 PHPH2PH6P2HPHP2HPH2(PH)2P3H(P2H2)2P2HPHP2HP
S2-4 48 -33 PHPH2P2HPH3P2H2PH2P3H5P2HPH2(PH)2P4HP2(HP)2
S2-5 48 -32 P2HP3HPH4P2H4PH2PH3P2(HP)2HP2HP6H2PH2PH
S2-6 48 -32 H3P3H2PH(PH2)3PHP7HPHP2HP3HP2H6PH
S2-7 48 -32 PHP4HPH3PHPH4PH2PH2P3HPHP3H3(P2H2)2P3H
S2-8 48 -31 PH2PH3PH4P2H3P6HPH2P2H2PHP3H2(PH)2PH2P3
S2-9 48 -34 (PH)2P4(HP)2HP2HPH6P2H3PHP2HPH2P2HPH3P4H
S2-10 48 -33 PH2P6H2P3H3PHP2HPH2(P2H)2P2H2P2H7P2H2
Page 6 of 22
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:30 http://www.biomedcentral.com/1471-2105/6/30
Result for new biological and random data sets
To thoroughly test the performance of ACO-HPPFP-3, we
created two new data sets of random and biological
sequences of length ≈ 30 and ≈ 50 amino acids (ten
sequences for each length; for details, see additional data
file 1). Random sequences were generated based on the
observation that most globular proteins have a fairly uni-
form amino acid profile, and the percent of hydrophobic
residues of majority of globular proteins falls in the range
of 40–50% [35]. Thus, the probability of generating
character H at each position of a sequence was chosen to
be 0.45, and in the remaining cases (i.e., with probability
0.55), we generated a P.

For the biological test-sets, ten sequences were taken from
the PDBSELECT data set with homology < 25% from the
Protein Data Bank (PDB) in order to obtain a non-redun-
dant representative set of proteins. These protein
sequences were translated into HP strings using the hydro-
phobicity scale classification of RASMOL [36], according
to which the following amino acids were considered
hydrophobic: Ala, Leu, Val, Ile, Pro, Phe, Met, Trp, Gly and
Tyr. Non-standard amino acid symbols, such as X and Z,
were skipped in this translation.

Figures 5 and 6 illustrate the performance of ACO-HPPFP-
3 vs PERM in terms of mean CPU time over 10 runs per
instance and algorithm; for practical reasons, each run
was restricted to 1 CPU hour on our reference machine,

Table 2: Performance comparison of various algorithms for the 2D HP Protein Folding Problem. Comparison of the solution quality 
obtained in 2D by the evolutionary algorithm of Unger and Moult (EA) [14], the evolutionary Monte Carlo algorithm of Liang and 
Wong (EMC) [19], the multi-self-overlap ensemble algorithm of Chickenji et al. (MSOE) [17], the pruned-enriched Rosenbluth 
method (PERM) and ACO-HPPFP-3. For EA and EMC, the reported energy values are the lowest among five independent runs, and 
the values in parentheses are the numbers of valid conformations scanned before the lowest energy values were found. Missing entries 
indicate cases where the respective method has not been tested on a given instance. The CPU times reported in parentheses for 
MSOE have been determined on a 500 MHz CPU, and those for PERM and ACO-HPPFP-3 are based on 100 – 200 runs per instance on 
our reference 2.4 GHz Pentium IV machine. The energy values shown in bold face correspond to currently best known solution 
qualities.

ID E GA EMC MSOE PERM t1 PERM t2 PERM texp ACO

S1-1 -9 -9 (30 492) -9 (9 374) -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec)
S1-2 -9 -9 (30 491) -9 (6 929) -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec) -9 (< 1 sec)
S1-3 -8 -8 (20 400) -8 (7 202) -8 (6 sec) -8 (< 1 sec) -8 (2 sec) -8 (< 1 sec)
S1-4 -14 -14 (301 339) -14 (12 447) -14 (< 1 sec) -14 (< 1 sec) -14 (< 1 sec) -14 (4 sec)
S1-5 -23 -23 (126 547) -23 (165 791) -23 (3 min) -23 (< 1 sec) -23 (2 sec) -23 (1 min)
S1-6 -21 -21 (592 887) -21 (74 613) -21 (3 sec) -21 (3 sec) -21 (3 sec) -21 (15 sec)
S1-7 -36 -34 (208 781) -35 (203 729) -36 (7 sec) -36 (3 sec) -36 (4 sec) -36 (20 min)
S1-8 -42 -37 (187 393) -39 (564 809) -39 -42 (78 hrs) -42 (78 hrs) -42 (78 hrs) -42 (1.5 hrs)
S1-9 -53 -52 (44 029) -53 (64 sec) -53 (60 sec) -53 (1 min) -53 (20% of runs 1 days)
S1-10 -50 -50 (50 hrs) -50 (50% of runs 1 hrs) -50 (20 min) -50 -49 (12 hrs)
S1-11 -48 -47 -48 (9 min) -48 (7 min) -48 (8 min) -47 (10 hrs)

The 2D native state of the standard Sequence S1-8Figure 4
The 2D native state of the standard Sequence S1-8. 
The native conformation of Sequence S1-8 from Table 1 (64 
amino acids; energy -42), found by ACO-HPPFP-3 in an aver-
age CPU time of 1.5 hours and by PERM in t1 = t2 = texp = 78 
hours.
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and the lowest energies obtained in these runs (listed in
additional data file 1) are not necessarily optimal.

As can be seen from these results, in 2D, ACO-HPPFP-3
performs roughly comparably to PERM (PERM'S texp was
calculated as described in the previous subsection): ACO-
HPPFP-3 reaches the same energies as PERM, but on some
instances, particularly of length 50, requires more run-
time. In 3D, ACO-HPPFP-3 generally requires a compara-
ble amount of run-time on sequences of length 30 and
outperforms PERM on one random sequences of length
30, but performs noticeably worse on sequences of length
50 and in some cases does not reach the same energy. We
also generated longer sequences of length 75; for these,
ACO-HPPFP-3 failed to reach the minimal energy values
obtained by PERM in a number of cases. The run-times for
both algorithms are reported in detail in Additional file 1;
we note that on some sequences, the performance of
PERM depends significantly on the direction of folding.
Interestingly, there is no significant difference in perform-
ance between the biological and random test-sets for
either PERM or ACO-HPPFP-3.

In summary, the performance of ACO-HPPFP-3 is compa-
rable with that of PERM (the best known algorithm for the
2D and 3D HP Protein Folding Problem) on biological
and random sequences of length 30–50, but worse on
longer sequences. This scaling effect is significantly more
pronounced in 3D than in 2D. We note that neither ACO-
HPPFP-3 nor PERM were optimised for short sequences (n
≤ 30), but by using parameter settings different from the
ones specified earlier, the performance of both algorithms
can be significantly improved in this case.

Characteristic performance differences between ACO and 
PERM
To further investigate the conditions under which ACO
performs well compared to PERM, we visually examined
native conformations found by both algorithms, paying
special attention to conformations for which one of the
two algorithms does not perform well (see Figures 7 and
9). Based on our observations, we hypothesised that
PERM usually performs well on sequences that have a
structural nucleus in the native conformation at one of the
ends of the sequence (particularly the end from which
PERM starts folding the sequence); on the other hand, it
has trouble folding sequences whose native
conformations have structural nuclei in the middle of the
sequence. In comparison, ACO is not significantly
affected by the location of the structural nucleus (or mul-
tiple nuclei) in the sequence, since it uses construction
from different folding points as well as the long-range
mutation moves in local search, which can initiate refold-
ing from arbitrary sequence positions. Here, we use the
term 'structural nucleus' to refer to a predominantly
locally folded part of the chain that can be relatively easily
folded sequentially based on local sequence information
[37]. For most sequences considered in this study, we
observed a single structural nucleus, which is not surpris-
ing, given their relatively short length; however, it is gen-
erally believed that longer sequences have multiple
folding nuclei [37].

The left side of Figure 7 shows an example of a relatively
short biological sequence (B50-7, 45 amino acids) with a
unique native hydrophobic core in the 2D HP model.
(This is rare for HP sequences, which usually have a high

Table 3: Performance comparison of various algorithms for the 3D HP Protein Folding Problem. Comparison of the solution quality 
obtained in 3D by the hydrophobic zipper (HZ) algorithm [23], the constraint-based hydrophobic core construction method (CHCC) 
[26], the core-directed chain growth algorithm (CG) [25], the contact interactions (CI) algorithm [24], the pruned-enriched 
Rosenbluth method (PERM) and ACO-HPPFP-3. For CI, only the best energies obtained are shown. For HZ, CHCC and CG, the 
reported CPU times are taken from [25]; these are the expected times for finding optimal solutions on a Sparc 1 workstation. In the 
case of HZ, the reported CPU times are based on an extrapolation from the measured times required for finding suboptimal 
conformations with the energy values listed here. The CPU times for PERM and ACO-HPPFP-3 were determined on our reference 2.4 
GHz Pentium IV machine based on 50 – 100 runs per instance. The energy values shown in bold face correspond to currently best 
known solution qualities.

ID E HZ CHCC CG CI PERM t1 PERM t2 PERM texp ACO

S2-1 -32 -31(4 hrs) -32 (30 min) -32 (9.4 min) -32 -32 (0.1 min) -32 (0.5 min) -32 (0.2 min) -32 (30 min)
S2-2 -34 -32 (18 hrs) -34 (2.3 min) -34 (35 min) -33 -34 (0.3 min) -34 (48 min) -34 (0.6 min) -34 (420 min)
S2-3 -34 -31 (23 hrs) -34 (30 min) -34 (62 min) -32 -34 (0.1 min) -34 (4 days) -34 (0.2 min) -34 (120 min)
S2-4 -33 -30 (19 days) -33 (71 min) -33 (29 min) -32 -33 (2 min) -33 (4 min) -33 (3 min) -33 (300 min)
S2-5 -32 -30 (1.3 days) -32 (32 min) -32 (12 min) -32 -32 (0.5 min) -32 (19 min) -32 (1 min) -32 (15 min)
S2-6 -32 -29 (2.1 days) -32 (80 min) -32 (460 min) -30 -32 (0.5 min) -32 (0.1 min) -32 (0.2 min) -32 (720 min)
S2-7 -32 -29 (2.5 days) -32 (110 min) -32 (64 min) -30 -32 (0.5 min) -32 (2 days) -32 (1 min) -32 (720 min)
S2-8 -31 -29 (4 hrs) -31 (530 min) -31 (38 min) -30 -31 (0.3 min) -31 (8 min) -31 (0.6 min) -31 (120 min)
S2-9 -34 -31(4.5 hrs) -34 (8.3 min) -33 -32 -34 (5 min) -34 (10 min) -34 (7 min) -34 (450 min)
S2-10 -33 -33 (1.1 hr) -33 (4.8 min) -33(1.1 min) -32 -33 (0.01 min) -33 (0.01 min) -33 (0.01 min) -33 (60 min)
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ground state and hydrophobic core degeneracy: According
to our observations, of the 11 standard benchmark
instances in 2D, only Sequences S1-1, S1-3, S1-4 have a
unique hydrophobic core; in 3D, none of the sequences
studied here have a unique hydrophobic core.) This
sequence has no structural nuclei at its ends; instead, the
two ends interact with each other. ACO-HPPFP-3 outper-
forms PERM by a factor of 2 on this sequence in terms of
CPU time: using a cut-off time of 1 CPU hour per run,
PERM found the optimum with energy -17 in an average
run-time of 284.06 CPU seconds (t1 = 271 sec, t2 = 299
sec), while using the same cut-off time and machine,
ACO-HPPFP-3 found the optimum in an average run-
time of 130 CPU seconds.

We also designed two additional sequences, D-1 and D-2,
of length 50 and 60, respectively, that have a unique
native state in which both ends of the sequence interact
with each other (see Figure 8). Sequence D-1 also has a
structural nucleus near its C-terminus. When testing the

performance of PERM and ACO-HPPFP-3 on these
sequences, we found that on D-1, ACO-HPPFP-3 requires
a mean run-time of 236 CPU seconds, compared to t1 = 3
795, t2 = 1, texp = 2 CPU seconds for PERM (values are
based on 100 successful runs). When this sequence was
reversed, PERM started folding the sequence from the
structural nucleus, and its mean run-time dropped to 1
CPU second. A result similar to that for sequence B50-7
was obtained for Sequence D-2, which has no structural
nuclei at the ends, but a native state in which the ends
interact with each other. Here, ACO-HPPFP-3 was found
to require a mean run-time of 951 CPU seconds (again,
mean run-times were obtained from 100 successful runs),
compared to t1 = 9 257, t2 = 19 356, texp = 12 525 CPU sec-
onds for PERM; as expected, in this case, reversing the
folding order of the sequence did not cause a decrease in
PERM'S run-time.

Performance comparison of ACO-HPPFP-3 and PERM on biological and random instances in 2DFigure 5
Performance comparison of ACO-HPPFP-3 and PERM on biological and random instances in 2D. Mean CPU 
time (natural log transformed) required by ACO-HPPFP-3 vs PERM for reaching the best solution quality, as observed over 10 
runs with a cut-off time of 1 CPU hour for sequences of length 30 and 50 in 2D. The left and right plots show the results for 
the biological and random test-sets, respectively. Performance results for instances of size 30 are indicated by circles, while 
stars mark results for instances of size 50. The dashed lines indicate the band within which performance differences are not 
statistically significant. Mean run-times were obtained from 10 runs per instance and algorithm, and we only show data points 
for the runs where the best known solution quality was reached at least in some runs out of 10 by both algorithms (when 
unsuccessful runs were present, the expected time was calculated as in [43]); results for both successful and unsuccessful runs 
are given in the Additional file 1.
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We also analysed native conformations of sequences on
which PERM outperforms ACO and observed that the end
from which PERM starts folding is relatively compact and
forms a structural nucleus in the resulting conformation.

An example of a conformation with the structural nucleus
at the beginning of the sequence (near the N-terminus,
i.e., residue 1) is shown in the right panel of Figure 7. For
this biological sequence (B50-5, 53 amino acids), PERM
finds an optimal conformation with an energy of -22 in t1
= 5, t2 = 118, texp = 9 CPU seconds, while the average run-
time for ACO-HPPFP-3 is 820 CPU seconds. Our ACO
algorithm generally performs worse than PERM on
sequences that have structural nuclei at the ends, because
it tends to spend substantial amounts of time compacting
local regions in the interior of the sequence, while PERM
folds more systematically from one end. These observa-
tions also hold in 3D, as seen from two random sequences
folded in 3D (see Figure 9).

To further investigate our hypothesis, we studied differ-
ences between the distributions of native conformations

found by ACO-HPPFP-3 and PERM, respectively. For this
purpose, we introduced the notion of relative H-H contact
order, which captures arrangement of H residues in the
core of the folded protein, and thus determines the
topology of the conformation (the closely related concept
of contact order was first defined in [38]). Relative H-H
contact order is defined as follows:

where l is the number of H-H contacts, n is the number of
H residues in the sequence, and i and j are interacting H
residues that are not neighbours in the chain. Intuitively,
COH-H specifies the average sequence separation between
H-H residues in contact per H in the sequence.

Figure 10 shows cumulative frequency distributions of rel-
ative H-H contact order values for sets of native conforma-
tions of a 2D (the left panel) and 3D (the right panel)
standard benchmark instance, respectively, found by
ACO-HPPFP-3 and PERM over 500 independent runs,

Performance comparison of ACO-HPPFP-3 and PERM on biological and random instances in 3DFigure 6
Performance comparison of ACO-HPPFP-3 and PERM on biological and random instances in 3D. Mean CPU 
time (natural log transformed) required by ACO-HPPFP-3 vs PERM for reaching the best solution quality, as observed over 10 
runs with a cut-off time of 1 CPU hour for sequences of length 30 and 50 in 3D. The left and right plots show the results for 
the biological and random test-sets, respectively. Performance results for instances of size 30 are indicated by circles, while 
stars mark results for instances of size 50. Mean run-times were obtained from 10 runs per instance and algorithm, and we 
only show data points for the runs where the best known solution quality was reached at least in some runs out of 10 by both 
algorithms (when unsuccessful runs were present, the expected time was calculated as in [43]); results for both successful and 
unsuccessful runs are given in the Additional file 1.
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each of which was terminated as soon as a native confor-
mation had been found. These results show that the ACO
algorithm finds a set of native conformations with a wider
range of H-H contact order values than PERM; in particu-
lar, ACO-HPPFP-3 finds conformations with high relative
H-H contact oder as compared to PERM (more distant
parts of the chain interact; for example, relative COH-H =
0.324 for Sequence S1-7 in 2D and relative COH-H = 0.75
for Sequence S2-5 in 3D are not found by PERM; similar
results were obtained for other sequences), which further
supports our hypothesis that both, in 2D and 3D, PERM
is biased toward a more restricted set of native conforma-
tions. We performed analogous experiments for the case
where PERM is allowed to keep certain statistics from one
run to another as in [18] (runs are no longer independent)
and found no significant differences in the set of confor-
mations obtained (data not shown).

To further examine the topological differences between
ensembles of native conformations found by the two
algorithms, we also looked at the hydrophobic solvent
accessible area (defined as SAH-H: = ∑hEh, where Eh is the
number of unoccupied lattice sites around H residue h),
the number of H-H contacts, and the H-H contact order as
a function of the length of the sequence prefix (starting

from the N-terminus of the sequence – where PERM starts
folding). In this analysis, we calculated the properties of
interest mentioned above for the native conformations
found in 100 independent runs by ACO-HPPFP-3 and
PERM, and plotted the mean values of the respective
quantities as functions of the sequence prefix length (see
Figures 11, 12 and 13).

As seen in Figure 11, ACO-HPPFP-3 is less greedy than
PERM, both in 2D (left side) and in 3D (right side), and it
tends to leave more lattice sites around H residues accessi-
ble for future contacts with other H residues that appear
later in the chain. This is also reflected in the mean
number of H-H contacts formed when folding prefixes of
increasing length; ACO-HPPFP-3 tends to form fewer H-H
contacts than PERM for short and medium size prefixes
(see Figure 12). By examining the dependence of absolute

H-H contact order (defined as , the aver-

age sequence separation per H-contact) on prefix length,
we furthermore observed that different from PERM, ACO-
HPPFP-3 realises the bulk of its local H-H interactions in
the middle of the given sequence (see Figure 13). This fur-
ther confirms that ACO is capable of finding native con-
formations with structural folding nuclei that are not

Illustration and comparison of difficult structures for PERM and ACO-HPPFP-3 in 2DFigure 7
Illustration and comparison of difficult structures for PERM and ACO-HPPFP-3 in 2D. Left side: Lowest energy 
conformation of a biological sequence (B50-7, 45 amino acids, energy -17) that is harder for PERM (t1 = 271, t2 = 299, texp = 284 
CPU seconds) than for ACO-HPPFP-3 (texp = 130 CPU seconds; cut-off time 1 CPU hour). Right side: Lowest energy confor-
mation of a biological sequence (B50-5, 53 amino acids, energy -22) that is much harder for ACO-HPPFP-3 than for PERM; 
within a cut-off time of 1 CPU hour, both ACO-HPPFP-3 and PERM reached this energy in 10 out of 10 runs in tavg = 820 and 
t1 = 5, t2 = 118, texp = 9 CPU seconds on average, respectively.
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located at or near the end of a given protein sequence. The
results illustrated in Figures 11, 12 and 13 are typical for
all 2D and 3D HP instances we studied.

Discussion
Although conceptually rather simple, our ACO algorithm
is based on a number of distinct components and mecha-
nisms. A natural question to ask is whether and to which
extent each of these contributes to the performance
reported in the previous section. A closely related
questions concerns the impact of parameter settings on
the performance of ACO-HPPFP-3; further details con-
cerning parameters can be found in the 'Methods' section.
To address these questions, we conducted several series of
experiments. In this context, we primarily used three
standard test sequences: Sequence S1-7 of length 60 and
Sequence S1-8 of length 64 (long sequences) in 2D, as
well as Sequence S2-5 of length 48 in 3D (all standard
benchmark sequences for 3D are 48 amino acids in
length); these sequences were chosen because the CPU
time required to find the best known solutions was suffi-
ciently small to perform a large number of runs (100–200
per instance).

Following the methodology of Hoos and Stützle [39], we
measured run-time distributions (RTDs) of our ACO algo-
rithm, which represent the (empirical) probability
distribution over the run-time required to reach (or
exceed) a given solution quality; the solution qualities
used here are the known optima or best known energies
for the respective sequences.

Pheromone values and heuristic information
Two important components of any ACO algorithm are the
heuristic function, which indicates the desirability of
using particular solution components during the con-
struction phase, and the pheromone values, which repre-
sent information learned over multiple iterations of the
algorithm. Three parameters control the influence of the
pheromone information versus heuristic information on
the construction of candidate solutions: the relative
weight of the pheromone information, α; the relative
weight of the heuristic information, β; and the pherom-
one persistence, ρ (see also 'Methods' section).

In the first experiment, we investigated the impact of phe-
romone (α) and heuristic information (β), and their rela-

Performance of ACO-HPPFP-3 and PERM on designed sequences in 2D HPFigure 8
Performance of ACO-HPPFP-3 and PERM on designed sequences in 2D HP. Left side: Unique minimal energy con-
formation of a designed sequence, D-1 (length 50, energy -19); ACO-HPPFP-3 reaches this conformation much faster than 
PERM when folding from the left end (mean run-time over 100 successful runs for ACO-HPPFP-3: 236 CPU seconds, com-
pared to t1 = 3 795, t2 = 1, texp = 2 CPU seconds for PERM). Right side: Unique native conformation of another designed 
sequence, D-2 (length 60, energy -17); ACO-HPPFP-3 finds this conformation much faster than PERM folding from either end 
(mean run-time over 100 successful runs for ACO-HPPFP-3: 951 CPU seconds, compared to t1 = 9 257, t2 = 19 356, texp = 12 
524 CPU seconds for PERM).
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Illustration and comparison of difficult structures for PERM and ACO-HPPFP-3 in 3DFigure 9
Illustration and comparison of difficult structures for PERM and ACO-HPPFP-3 in 3D. Left side: Lowest energy 
conformation of random sequence R50-9 (50 amino acids, energy -30), which is harder for PERM when folding from the left 
end than for ACO-HPPFP-3; with a cut-off time of 1 CPU hour, ACO-HPPFP-3 reached this energy in 10 out of 10 runs with 
texp = 1000 CPU seconds, while PERM failed to find a conformation with this energy in 7 out of 10 runs when folding from the 
left end (t1 = 9 892, t2 = 2, texp = 3 CPU seconds). Right side: Lowest energy conformation of random sequence R50-7 (50 
amino acids, energy -38), which is much harder for ACO-HPPFP-3 than for PERM; with a cut-off time of 1 CPU hour, PERM 
reached this energy in two out of 10 runs when folding from the left and in 10 of 10 runs when folding from the right end in t1 
= 15 322, t2 = 46, texp = 92 CPU seconds, while the lowest energy reached by ACO-HPPFP-3 over ten runs was -37.

Comparison of distributions of H-H contact order of native astructures found by ACO-HPPFP-3 and PERM in 2D and 3DFigure 10
Comparison of distributions of H-H contact order of native structures found by ACO-HPPFP-3 and PERM in 
2D and 3D. Distributions of H-H contact order for 500 conformations of Sequence S1-7 from Table 1 (60 amino acids) in 2D 
(left side) and Sequence S1-5 from Table 1 (48 amino acids) in 3D (right side) found by ACO-HPPFP-3 and PERM.
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tive importance for the performance of our ACO
algorithm. As can be seen from the results shown in Figure
14, both the pheromone values and the heuristic informa-
tion are important in 2D and 3D; when ignoring either of
them (α: = 0 or β: = 0, respectively), the algorithm per-
forms worse, particularly for longer 2D sequences (n > 50;
for short 2D sequences with n ≤ 50, the pheromone matrix
does not appear to play a significant role, since sequences
are generally easily solved by the subsidiary local search
procedure alone). The optimal settings for α and β for
most problem instances seem to be around α = 1 and β =
2, as shown in Figure 14. It should be noted that in 3D,
pheromone information appears to be less important
than in 2D, which suggests that the specific solution
components used in our algorithms are somewhat less
meaningful in 3D.

The goal of the next experiment was to further explore the
role of experience accumulated over previous iterations in
the form of pheromone values. To this end, we varied the
pheromone persistence, ρ, while keeping other parame-
ters constant. The results shown in Figure 15 show that in
2D, it is important to utilise past experience (i.e., to

choose ρ > 0), but also to weaken its impact over time
(i.e., to use ρ < 1). At the same time, closer examination
revealed that for ρ > 0, attrition, i.e., the construction of
inextensible partial conformations, is a major problem,
which is a result of the accumulation of pheromone from
multiple conformations. This is why the backtracking
mechanism described in the 'Methods' section is
extremely important for the performance of our algorithm
in 2D. In 3D, for the previously stated reasons and
because of the fact that the attrition problem is much less
severe, the impact of the persistence parameter is generally
smaller than in 2D.

Ant colony size and length of local search phase
During the initial empirical evaluation of our algorithm,
we observed that ant colony size (i.e., the number of ants
used in each iteration) and the duration of local search
(expressed as a number of non-improving search steps we
are willing to consider before terminating the local search
procedure) are correlated and significantly affect its per-
formance. To further investigate this phenomenon, we
conducted additional experiments in which we fixed the
ant colony size and varied the maximal number of non-

Plot of mean hydrophobic solvent accessible area, ACO-HPPFP-3 vs PERM in 2D and 3DFigure 11
Plot of mean hydrophobic solvent accessible area, ACO-HPPFP-3 vs PERM in 2D and 3D. Mean hydrophobic sol-
vent accessible area as a function of prefix length for a biological sequence (B50-4, 50 amino acids) in 2D (left side) and 
Sequence S2-6 from Table 1 (48 amino acids) in 3D. Crosses and circles represent mean values for an ensemble of 100 native 
structures found by ACO-HPPFP-3 and PERM, respectively.
Page 14 of 22
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:30 http://www.biomedcentral.com/1471-2105/6/30
improving steps during local search, and vice versa. In this
series of experiments, different colony sizes were consid-
ered, from a single ant up to a population of 5 000 ants,
and the number of non-improving steps in local search
was varied from 100 to 10 000. The results, shown in Fig-
ure 16, indicate that there is an optimal colony size of
about 100 ants for both, 2D and 3D; ACO-HPPFP-3 is
quite robust with respect to colony size, but performance
decreases for very small or very large colony sizes.
Intuitively, this is the case because the use of a population
of ants provides diversification to the search process,
which enables it to explore different regions of the under-
lying search space; very small populations provide
insufficient diversification, and the search stagnates easily,
while for very large populations, the additional time
required for running the search phases for each ant on the
same sequential machine is not amortised any longer by
increased efficiency of the overall search process.

Our results also indicate that the performance of ACO-
HPPFP-3 is more sensitive to the number of non-improv-
ing steps than to ant colony size. The optimal value for the
maximum number of non-improving steps tolerated (per
ant) before the local search phase terminates was found to

be around 1 000 for short 2D sequences (n ≤ 50) and
around 10 000 for long 2D sequences (n > 50); the latter
value also appeared to be optimal for all 3D sequences
considered here. This observation follows the intuition
that more degrees of freedom, as present for longer
sequences and in higher dimensions, require more time
for local optimisation, since for any conformation,
improving neighbours tend to be rarer and hence harder
to find.

Selectivity and persistence of local search
As described in the 'Methods' section, our ACO algorithm
uses selective local search, i.e., local search is only
performed on a certain fraction of the lowest energy
conformations. We observed that ACO-HPPFP-3 is fairly
robust with respect to the fraction of conformations to
which local search is applied; good performance was
obtained for local search selectivity values between 5%
and 50%, but performance was found to deteriorate when
local search is performed by all ants. Intuitively, similar to
colony size, local search selectivity has an impact on
search diversification. If too few ants perform local search,
insufficient diversification is achieved, which typically
leads to premature stagnation of the search process. On

Plot of mean number of H-H contacts, ACO-HPPFP-3 vs PERM in 2D and 3DFigure 12
Plot of mean number of H-H contacts, ACO-HPPFP-3 vs PERM in 2D and 3D. Mean number of H-H contacts as a 
function of prefix length for a biological sequence (B50-4, 50 amino acids) in 2D (left side) and Sequence S2-6 from Table 1 (48 
amino acids) in 3D. Crosses and circles represent mean values for an ensemble of 100 native structures found by ACO-HPPFP-
3 and PERM, respectively.
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Plot of mean H-H contact order, ACO-HPPFP-3 vs PERM in 2D and 3DFigure 13
Plot of mean H-H contact order, ACO-HPPFP-3 vs PERM in 2D and 3D. Mean H-H contact order as a function of 
prefix length for a biological sequence (B50-4, 50 amino acids) in 2D (left side) and Sequence S2-6 from Table 1 (48 amino 
acids) in 3D. Crosses and circles represent mean values for an ensemble of 100 native structures found by ACO-HPPFP-3 and 
PERM, respectively.

Impact of parameter settings on ACO-HPPFP-3 performance in 2D and 3D: relative weights of pheromone and heuristic informationFigure 14
Impact of parameter settings on ACO-HPPFP-3 performance in 2D and 3D: relative weights of pheromone 
and heuristic information. Effect of the relative weights of pheromone information, α, and heuristic information, β, on the 
average CPU time required for obtaining minimal energy conformations of Sequence S1-8 in 2D (length 64, left side) and 
Sequence S2-5 in 3D (length 48, right side).
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the other hand, if local search is performed by too many
ants, the resulting substantial overhead in run-time can
no longer be amortised by increased search efficiency.

Similarly to selective local search, pheromone update was
performed only by a certain fraction of so-called 'elitist
ants' whose solution quality after the local search phase is
highest within the population. As in the case of local

search selectivity, ACO-HPPFP-3 shows robustly high per-
formance for elitist fractions between 1% and 50%
(results are not shown here), but performance deteriorates
markedly when all ants in the colony are allowed to
update the pheromone matrix.

In a final experiment, we studied the impact of the persist-
ence of local search, i.e., of the probability  of retaining

Impact of parameter settings on ACO-HPPFP-3 performance in 2D and 3D: pheromone persistenceFigure 15
Impact of parameter settings on ACO-HPPFP-3 performance in 2D and 3D: pheromone persistence. Effect of 
the pheromone persistence parameter, ρ, on the average CPU time required for obtaining minimal energy conformations of 
Sequence S1-8 in 2D (length 64, left side) and Sequence S2-5 in 3D (length 48, right side).

Parameter settings influence on ACO-HPPFP-3 performance in 2D and 3D: ant colony size and maximum number of non-improving local search stepsFigure 16
Parameter settings influence on ACO-HPPFP-3 performance in 2D and 3D: ant colony size and maximum 
number of non-improving local search steps. Mean CPU time required for finding minimum energy conformations of 
Sequence S1-7 in 2D (length 60, left side) and Sequence S2-5 in 3D (length 48, right side), as a function of ant colony size and 
the maximum number of non-improving local search steps.
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(feasible) previous relative directions during long-range
mutation moves. As can be seen in Figure 17, good per-
formance is generally obtained for  values between 0.3
and 0.7. Both extreme cases,  = 0, which corresponds to
an extremely H-contact greedy mutation operator, and 
= 1, in which refolding always follows previous directions
when feasible, result in a substantial decrease in perform-
ance. When  = 0, the decrease of performance in 3D is
smaller than in 2D, because there is no severe attrition as
in 2D, where greedy placement of H residues leads to early

formation of very compact partial conformations, which
often cannot be extended into valid complete conforma-
tions. The performance decrease for high  values is due
to insufficient ability of the chain to fold into a new
conformation that accommodates well the local change in
structure which triggered the refolding.

Conclusions
In this work, we have shown that ant colony optimisation
(ACO) can be applied in a rather straight-forward way to
the 2D and 3D HP Protein Folding Problems. Even
though our ACO-HPPFP-3 algorithm is based on very
simple structure components (single relative directions)
and a simple subsidiary local search procedure (iterative
first improvement), it performs fairly well compared to
other algorithms and specialised heuristics on the bench-
mark instances considered here, particularly in 2D. The
only non-specialised algorithm that typically performs
better than our ACO algorithm, both in 2D and 3D, is
PERM. We observed that, particularly in 3D, the run-time
required by ACO-HPPFP-3 for finding minimum (or best
known) energy conformations scales worse with sequence
length than PERM. However, our results show that our
ACO algorithm finds a different ensemble of native
conformations compared to PERM, and has less difficulty
folding sequences whose native states contain structural
nuclei located in the middle rather than at the ends of a
given sequence, as well as sequences with structures in
which the ends interact. We found that two major compo-
nents of ACO-HPPFP-3 – the pheromone values, which
capture experience accumulated over multiple iterations

Parameter settings influence on ACO-HPPFP-3 performance in 2D and 3D: probability of retaining previous directions in local searchFigure 17
Parameter settings influence on ACO-HPPFP-3 performance in 2D and 3D: probability of retaining previous 
directions in local search. Mean CPU time required for finding minimum energy conformations of Sequence S1-8 in 2D 
(length 64, left side) and Sequence S2-5 in 3D (length 48, right side), as a function of the probability of retaining previous direc-

tions ( ) during long-range mutation moves.
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Outline of the subsidiary local search procedureFigure 18
Outline of the subsidiary local search procedure. The 
iterative first improvement local search procedure that is 
performed by selected ants after the construction phase.

procedure IterativeImprovementLS(c)
input: candidate conformation c
output: candidate conformation c′

while (termination condition not satisfied) do
i := random({1, . . . , n});
c′ := longRangeMove(c, i);
if E(c′) ≤ E(c) then

c := c′;
end

end
return(c)

end

p̂
p̂

p̂

p̂

p̂
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of the search process and from multiple conformations, as
well as the heuristic information that provides myopic
guidance to the folding process – play a significant role for
longer 2D sequences and, to a lesser extent, for 3D
sequences, which suggests that in 3D, it may be preferable
to associate pheromone values with more complex solu-
tion components.

We also found that the subsidiary local search procedure
is crucial for the performance of the algorithm; in particu-
lar, to ensure that high-quality conformations are
obtained, it is very important to allow the local search
procedure to run sufficiently long. In an earlier version of
our algorithm [7], we used substantially more stringent
termination criteria, which forced us to additionally use
non-greedy local search (probabilistic iterative
improvement, which accepts worsening steps) in addition
to the greedy local search procedure used here. The results
presented in this study indicate that by using a new and
simpler local search procedure, ACO-HPPFP-3 achieves
better performance; this is probably due to the fact that
the new local search procedure is based on a type of long-
range move that leads to a larger effective search
neighbourhood.

We have shown that all components of our ACO algo-
rithms contribute to its performance. In particular, its
performance is affected by the following components and
parameters (listed in the order of decreasing impact): phe-
romone values, termination criterion for local search, per-
sistence of long-range moves, ant colony size, pheromone
persistence, heuristic function, selectivity of local search,
and selectivity of pheromone update (i.e., fraction of elit-
ist ants).

Because of its ability to find more balanced ensembles of
minimum (or close to minimum) energy conformations,
our new ACO algorithm can greatly facilitate
investigations of the topology and location of structural
nuclei, which we plan to undertake in future work.
Finally, while HP protein folding problems are of
considerable interest because of their conceptual simplic-
ity, ultimately, most applications of protein folding algo-
rithms require the use of more realistic models of protein
structure. Since it does not rely on heuristics and proper-
ties that are specific to the HP model and yet performs
very well on this restrictive, but not entirely unrealistic
abstract model, we believe that relatively straight-forward
extensions of our ACO algorithm to more complex and
realistic models of protein structure hold significant
promise.

Methods
Our new ACO algorithm, ACO-HPPFP-3, iterates con-
struction, local search, and pheromone update phases

until a termination condition is satisfied; in the context of
this work, we mostly terminated the algorithm upon
reaching a given energy threshold. In the following, we
describe the three search phases in detail.

Construction phase, pheromone and heuristic values
During the construction phase of ACO-HPPFP-3, each ant
first determines a starting point within the given protein
sequence; this is done by uniform random choice. From
this starting point, the sequence is folded in both
directions, adding one residue at a time. Each ant
performs probabilistic chain-growth construction of the
protein conformation, where in every step, the structure is
extended either to the left or to the right, such that the
ratio of unfolded residues at each end of the protein
remains (roughly) unchanged.

Here, we assume that folding is performed in 3D (the 2D
case is handled analogously by considering three relative
directions {S, L, R} instead of five {S, L, R, U, D}, see also
[6]). The relative directions in which the conformation is
extended in each construction step are determined
probabilistically based on a heuristic function ηi,d and
pheromone values τi,d, according to the formula:

The pheromone values τi,d indicate the desirability of
using the local structure motif with relative direction d ∈
{S, L, R, U, D} at sequence position i. Initially, all τi,d are
equal, such that local structure motifs are chosen in an
unbiased way; but throughout the search process, the
pheromone values are updated to bias folding towards the
use of local motifs that occur in low-energy structures (the
updating mechanism will be described in more detail
later). The heuristic values ηi,d are based on the energy
function E. They are defined according to the Boltzman

distribution as ηi,d: = , where γ is a parameter
called the inverse temperature (as in [18]), and hi,d is the
number of new H-H contacts achieved by placing amino
acid i at the position specified by direction d.

During construction, it may happen that the chain cannot
be extended without running into itself. This situation is
called attrition, and our algorithm overcomes it as follows:
First, starting at the end at which attrition occurred, half of
the sequence that has been folded up to this point is
unfolded. Then, this segment of the chain is refolded; the
first residue (i.e., the last one that was unfolded) is placed
such that its relative direction differs from what it had
been when attrition occurred, while all of the subsequent
residues are folded in a feasible direction that is chosen
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uniformly at random. This backtracking mechanism is
particularly important for longer protein sequences in 2D,
where infeasible conformations are frequently encoun-
tered during the construction phase.

Local search
The local search phase is based on a long-range mutation
move that has been designed to avoid infeasible
conformations. It also has a number of important advan-
tages over the more commonly used point mutation
moves or Monte Carlo moves (i.e., the end, crankshaft
and corner moves [40]): It is easy to implement; it
decreases the number of infeasible conformations
encountered, even when the protein is very compact (at
high densities); it considers a larger neighbourhood that
subsumes the single point mutation neighbourhood; and
it has some validity in terms of the physical processes tak-
ing place during the protein folding process. Similar
attempts have been previously undertaken, but these
involved disconnection of the chain [21].

From studies of protein folding dynamics, it is known that
proteins display a broad range of motions that range from
localised motions to slow large-scale movements [37].
Inspired by this complex process, we designed a long-
range mutation move that starts by selecting a residue
whose relative direction is randomly mutated and then
adapts the rest of the chain by probabilistically changing
relative directions starting from this initial position [7].
During this adaptation, for each residue, with a probabil-

ity  (0 ≤  ≤ 1) its previous relative direction, if it is still
feasible, is left unchanged, and otherwise (i.e., with prob-

ability 1 - , or if the previous direction has become
infeasible), a different relative direction is chosen, where
the probability for each direction d is proportional to the
corresponding heuristic value ηi,d. Formally, this can be
written as follows:

where P[di : = ] is the probability of choosing direction

 as the relative direction di at sequence position i. Unlike
in our previous implementation [7], the local search
phase of our new ACO algorithm is a simple iterative first
improvement procedure that is based on this long-range
mutation move. The outline of this local search procedure
is shown in Figure 18. Iterative first improvement accepts
a new conformation generated via long-range mutation
only if the solution quality of a new conformation c'

improves over the current solution quality (energy) of c.
This search process is greedy in the sense that it does not
allow worsening steps, and it is terminated when no
improving steps have been found after a specific number
of scans through the chain (this number is a parameter of
the algorithm). Since this local search procedure has a rel-
atively high time-complexity, in each iteration of ACO-
HPPFP-3 it is only applied to a certain fraction of the
highest-quality conformations constructed by the ants in
the preceding construction phase.

Update of the pheromone values
After each construction and local search phase pherom-
ones are updated according to

τi,d:= ρ·τi,d,  (4)

where 0 <ρ ≤ 1 is the pheromone persistence, a parameter
that determines how much of the information gathered in
previous iterations is retained. Subsequently, selected ants
with low-energy conformations update the pheromone
values according to

τi,d:= τi,d + ∆i,d,c,  (5)

where ∆i,d,c is the relative solution quality of the given ant's
candidate conformation c if that conformation contains
local structure motif d at sequence position i, and zero
otherwise.

As a further mechanism for preventing search stagnation,
we use an additional renormalisation of the pheromone
values that is conceptually similar to the method used in
MAX - MIN Ant System [41]: After the standard pherom-
one updates according to Equations 3 and 4, all τ values
are normalised such that ∑d∈ {S,L,R,U,D} τi,d = 1 for every res-
idue i; additionally, whenever for a given sequence posi-
tion i the minimal normalised pheromone value
(mind∈ {S,L,R,U,D} τi,d)/(∑d∈ {S,L,R,U,Dr} τi,d) falls below a
threshold θ (which is a parameter of the algorithm), the
minimal τi,d value is set to θ, while the maximal τi,d value
is decreased by θ - mind∈ {S,L,R,U,D} τi,d. (If there is more
than one minimal τi,d value, all of these are increased to θ,
and if there is more than one maximal τi,d value, one of
them is chosen uniformly at random.) This guarantees
that the probability of selecting an arbitrary local structure
motif for the corresponding sequence position does not
become arbitrarily small, and hence ensures the
probabilistic approximate completeness of our algorithm
(see [42]).

Implementation details and availability
ACO-HPPFP-3 has been implemented in C++ and com-
piled using gcc (version 3.3.3) for the Linux operating sys-
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tem; a Linux executable is available from http://
www.cs.ubc.ca/labs/beta/Projects/ACO-HPPFP.

Authors' contributions
Both authors contributed to the development of ideas,
design of experiments, analysis and interpretation of
results, and the writing of the paper. AS implemented the
proposed method and performed the computational
experiments.

Additional material

Acknowledgements
This work has been supported by an NSERC Postgraduate Scholarship 
(PGS-A) held by AS and by HH's NSERC Individual Research Grant 
#238788. We thank Peter Grassberger for kindly providing us with his 
implementation of PERM and for very useful feedback on earlier versions of 
this paper. We also thank the anonymous reviewers for helpful suggestions.

References
1. Dorigo M, Maniezzo V, Colorni A: Positive feedback as a search

strategy. Tech rep., 91-016, Dip Elettronica, Politecnico di Milano, Italy
1991.

2. Dorigo M, Maniezzo V, Colorni A: The Ant System: Optimiza-
tion by a colony of cooperating agents. IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part B 1996, 26:29-41.

3. Dorigo M, Di Caro G: New Ideas in Optimization. In New Ideas
in Optimization Edited by: Corne D, Dorigo M, Glover F. McGraw-Hill;
1999. 

4. Dorigo M, Di Caro G, Gambardella LM: Ant Algorithms for Dis-
crete Optimization. Artificial Life 1999, 5(2):137-172.

5. Dorigo M, Stützle T: Ant Colony Optimization The MIT Press; 2004. 
6. Shmygelska A, Hernandez R, Hoos HH: An Ant Colony Optimiza-

tion Algorithm for the 2D HP Protein Folding Problem. In
Proc of the 3rd Intl Workshop on Ant Algorithms, ANTS LNCS 2463
Springer Verlag; 2002:40-52. 

7. Shmygelska A, Hoos HH: An Improved Ant Colony Optimisa-
tion Algorithm for the 2D HP Protein Folding Problem. In
Proc of the 16th Canadian Conference on Artificial Intelligence, LNCS 2671
Springer Verlag; 2003:400-17. 

8. Unger R, Moult J: Finding the lowest Free-Energy Conforma-
tion of a protein is an NP-hard problem – Proof and
Implications. Bull Math Biol 1993, 55(6):1183-1198.

9. Lau KF, Dill KA: lattice statistical mechanics model of the con-
formation and sequence space of proteins. Macromolecules
1989, 22:3986-3997.

10. Richards FM: Areas, volumes, packing, and protein structures.
Annu Rev Biophys Bioeng 1977, 6:151-176.

11. Krasnogor N, Pelta D, Lopez PM, Mocciola P, de la Canal E: Genetic
algorithms for the protein folding problem: a critical view. In
Proc of Engineering of Intelligent Systems Edited by: Alpaydin C. ICSC
Academic Press; 1998:353-360. 

12. Krasnogor N, Hart WE, Smith J, Pelta DA: Protein structure pre-
diction with evolutionary algorithms. Proc of the Genetic and Evo-
lutionary Computation conference 1999:1596-1601.

13. Patton AWP, Goldman E: A standard GA approach to native
protein conformation prediction. In Proc of the 6th Intl Conf
Genetic Algorithms Morgan Kaufmann Publishers; 1995:574-581. 

14. Unger R, Moult J: Genetic algorithms for protein folding
simulations. J of Mol Biol 1993, 231:75-81.

15. Unger R, Moult J: A genetic algorithm for three dimensional
protein folding simulations. In Proc of the 5th Intl Conf on Genetic
Algorithms Morgan Kaufmann Publishers; 1993:581-588. 

16. Bastolla U, Fravenkron H, Gestner E, Grassberger P, Nadler W:
Testing a New Monte Carlo algorithm for the protein folding
problem. Proteins 1998, 32:52-66.

17. Chikenji G, Kikuchi M, Iba Y: Multi-Self-Overlap Ensemble for
protein folding: ground state search and thermodynamics.
Condensed Materials Archive 1999:27.

18. Hsu HP, Mehra V, Nadler W, Grassberger P: Growth Algorithm
for Lattice Heteropolymers at Low Temperatures. J Chem
Phys 2003, 118:444-51.

19. Liang F, Wong WH: Evolutionary Monte Carlo for protein fold-
ing simulations. J Chem Phys 2001, 115(7):3374-3380.

20. O'Toole EM, Panagiotopoulos AZ: Monte Carlo simulation of
folding transitions of simple model proteins using a chain
growth algorithm. J Chem Phys 1992, 97(11):8644-8652.

21. Ramakrishnan R, Ramachandran B, Pekny JF: A dynamic Monte
Carlo algorithm for exploration of dense conformational
spaces in heteropolymers. J Chem Phys 1997, 106(6):2418-2424.

22. Sali A, Shakhnovich E, Karplus M: How does a protein fold? Nature
1994, 369:248-251.

23. Dill KA, Fiebig KM, Chan HS: Cooperativity in Protein-Folding
Kinetics. Proc Natl Acad Sci USA 1993, 90:1942-1946.

24. Toma L, Toma S: Contact interactions method: A new algo-
rithm for protein folding simulations. Protein Sci 1996,
5:147-153.

25. Beutler T, Dill K: A fast conformational search strategy for
finding low energy structures of model proteins. Protein Sci
1996, 5:2037-2043.

26. Yue K, Dill KA: Forces of Tertiary Structural Organization in
Globular Proteins. Proc Natl Acad Sci USA 1995, 92:146-150.

27. Backofen R, Will S: A Constraint-Based Approach to Structure
Prediction for Simplified Protein Models that Outperforms
Other Existing Methods. Proc XIX Intl Conf on Logic Programming
2003:49-71.

28. Torrie GM, Valleau JP: Nonphysical sampling distributions in
MC free energy estimation: Umbrella sampling. J Comput Phys
1977, 23:187-199.

29. Gront D, Kolinski A, Skolnick J: Comparison of three Monte
Carlo conformational search strategies for a proteinlike
homopolymer model: Folding thermodynamics and identifi-
cation of low-energy structures. J Chem Phys 2000,
113(12):5065-5071.

30. Mitsutake A, Sugita Y, Okamoto Y: Replica-exchange multica-
nonical and multicanonical replica-exchange Monte Carlo
simulations of peptides. I. Formulation and benchmark test.
J Chem Phys 2003, 118(14):6664-6675.

31. Berg BA, Neuhaus T: Multicanonical ensemble: A new
approach to simulate first-order phase transitions. Phys Rev
Lett 1992, 68:9-12.

32. Irbäck A: Dynamic-parameter algorithms for protein folding.
In Monte Carlo Approach to Biopolymers and Protein Folding Edited by:
Grassberger P, Barkema GT, Nadler W,. World Scientific, Singapore;
1998:98-109. 

33. Backofen R, Will S, Clote P: Algorithmic approach to quantify-
ing the hydrophobic force contribution in protein folding.
Proc of the 5th Pacific Symposium on Biocomputing 2000:92-103.

34. Hsu HP, Mehra V, Nadler W, Grassberger P: Growth-based Opti-
misation Algorithm for Lattice Heteropolymers. Phys Rev E
2003, 68:021113-1-021113-4.

35. Nandi T, B-Rao C, Ramachandran S: Comparative Genomics
using Data Mining tools. J Bioscience 2002, 27:15-25.

36. Sayle R, Milner-White EJ: RASMOL – Biomolecular Graphics for
All. Trends Biochem Sci 1995, 20(9):374-376.

37. Creighton TE: Protein Folding W H Freeman and Company; 1992. 

Additional File 1
Additional information on biological and randomly generated HP 
sequences. This file (in .pdf format) contains tables providing additional 
information on our new test sets of biological and randomly generated HP 
sequences and the results from our computational experiment with ACO 
and PERM.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-30-S1.pdf]
Page 21 of 22
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-6-30-S1.pdf
http://www.cs.ubc.ca/labs/beta/Projects/ACO-HPPFP
http://www.cs.ubc.ca/labs/beta/Projects/ACO-HPPFP
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10633574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10633574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8281131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8281131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8281131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=326146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9672042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9672042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9672042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7710478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7680482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7680482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8771207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8771207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8897604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8897604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7816806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7816806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10045099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10045099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707


BMC Bioinformatics 2005, 6:30 http://www.biomedcentral.com/1471-2105/6/30
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

38. Plaxco KW, Simons KT, Baker D: Contact order, transition state
placement and the refolding rates of single domainproteins.
J Mol Biol 1998, 277:985-994.

39. Hoos HH, Stützle T: On the empirical evaluation of Las Vegas
algorithms. In Proc of the 14th Conference on Uncertainty in Artificial
Intelligence Morgan Kaufmann Publishers; 1998:238-245. 

40. Sali A, Shakhnovich E, Karplus M: Kinetics of protein folding – A
lattice model study of the requirements for folding tothe
native state. J Mol Biol 1994, 235:1614-1636.

41. Stützle T, Hoos HH: MAX-MIN Ant System. Future Generation
Computer Systems 2000, 16(8):889-914.

42. Hoos HH, Stützle T: Stochastic Local Search: Foundations and
Applications Morgan Kaufmann Publishers / Elsevier; 2004. 

43. Parkes A, Walser JP: Tuning Local Search for Satisfiability Test-
ing. In Proc of the Applications of Artificial Intelligence Conf MIT Press;
1996:356-362. 

44. HP Benchmarks  [http://www.cs.sandia.gov/tech_reports/comp
bio/tortilla-hp-benchmarks.html]

45. Konig R, Dandekar T: Improving Genetic Algorithms for Pro-
tein Folding simulations by systematic crossover. Biosystems
1999, 50:17-25.
Page 22 of 22
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9545386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9545386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8107095
http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html
http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10235648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10235648
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	The hydrophobic polar model
	Existing 2D and 3D HP protein folding algorithms
	Our ACO algorithm for the 2D and 3D HP protein folding problem

	Results
	Results for standard benchmark instances
	Table 1
	Table 2
	Table 3

	Result for new biological and random data sets
	Characteristic performance differences between ACO and PERM

	Discussion
	Pheromone values and heuristic information
	Ant colony size and length of local search phase
	Selectivity and persistence of local search

	Conclusions
	Methods
	Construction phase, pheromone and heuristic values
	Local search
	Update of the pheromone values
	Implementation details and availability

	Authors' contributions
	Additional material
	Acknowledgements
	References

