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Abstract

Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting (periodontal) tissues. Porphyromonas
gingivalis is an oral pathogen highly implicated in the pathogenesis of this disease. It can exert its effects to a number of
cells, including osteogenic bone marrow stromal cells which are important for homeostastic capacity of the tissues. By
employing gene microarray technology, this study aimed to describe the overall transcriptional events (.2-fold regulation)
elicited by P. gingivalis secreted products in bone marrow stromal cells, and to dissect further the categories of genes
involved in bone metabolism, inflammatory and immune responses. After 6 h of challenge with P. gingivalis, 271 genes
were up-regulated whereas 209 genes were down-regulated, whereas after 24 h, these numbers were 259 and 109,
respectively. The early (6 h) response was characterised by regulation of genes associated with inhibition of cell cycle,
induction of apoptosis and loss of structural integrity, whereas the late (24 h) response was characterised by induction of
chemokines, cytokines and their associated intracellular pathways (such as NF-kB), mediators of connective tissue and bone
destruction, and suppression of regulators of osteogenic differentiation. The most strongly up-regulated genes were
lipocalin 2 (LCN2) and serum amyloid A3 (SAA3), both encoding for proteins of the acute phase inflammatory response.
Collectively, these transcriptional changes elicited by P. gingivalis denote that the fundamental cellular functions are
hindered, and that the cells acquire a phenotype commensurate with propagated innate immune response and
inflammatory-mediated tissue destruction. In conclusion, the global transcriptional profile of bone marrow stromal cells in
response to P. gingivalis is marked by deregulated homeostatic functions, with implications in the pathogenesis of
periodontitis.

Citation: Reddi D, Belibasakis GN (2012) Transcriptional Profiling of Bone Marrow Stromal Cells in Response to Porphyromonas gingivalis Secreted Products. PLoS
ONE 7(8): e43899. doi:10.1371/journal.pone.0043899

Editor: Michael Glogauer, University of Toronto, Canada

Received June 17, 2012; Accepted July 30, 2012; Published August 24, 2012

Copyright: � 2012 Reddi, Belibasakis. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by Barts and the London Dental Institute (Support for Oral Science Bursary), Research Advisory Board of Barts and the
London Charitable Foundation (start-up grant 453/592) and University of London Central Research Fund (AR/CRF/B). Publication costs were covered by the
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Introduction

Periodontitis is as a condition characterised by a bacterially-

induced inflammatory destruction of the tooth-supporting (peri-

odontal) tissues, including the alveolar bone and the intercon-

necting periodontal ligament. Porphyromonas gingivalis is a Gram-

negative anaerobe highly associated with chronic periodontitis. It

is frequently and at high levels detected in diseased sites,

particularly with active disease progression, but rarely or at low

levels in healthy sites [1,2]. P. gingivalis is considered notorious for

its capacity to manipulate the host innate immune and

inflammatory responses, as a strategy to survive and prevail into

the periodontal tissue habitat [3–5]. A number of virulence

factors, such as its cysteine proteinases (gingipains), lipopolysac-

charide (LPS) and fimbriae [6], collectively contribute to these

properties of P. gingivalis.

Bone marrow stromal cells have osteogenic protential and can

give rise to bone forming osteoblasts under the appropriate

stimulation [7]. Among other cells types, bone marrow stromal

cells are also a target for P. gingivalis. A number of studies have

focused on the capacity of P. gingivalis to trigger mechanisms of

bone resorption in these cells [8–10], which is a key histopath-

ological trait of periodontitis. There are also studies addressing the

global effect of P. gingivalis on stromal cells, using gene microarray

technology. These have demonstrated that approximately 360

genes were up-regulated (greater than 2-fold) in response to P.

gingivalis, including genes encoding for chemokines, pro-inflam-

matory cytokines and matrix metalloproteinases (MMPs) [11].

Moreover, they have identified signalling pathways that may be

involved in the pro-inflammatory responses to P. gingivals,

predominantly the activation of transcription factors nuclear

factor-kappaB (NF-kB) and activator protein (AP)-1 [12].

Nevertheless, the full range of transcriptional changes inflicted

in bone marrow stromal cells by P. gingivalis with potential

implications in the pathogenesis of periodontal disease is yet to be

determined. Therefore, by employing gene microarray technolo-

gy, the aim of the present study was to describe the overall

transcriptional effects of P. gingivalis on osteogenic bone marrow
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stromal cells over time, dissecting the categories of genes involved

in bone metabolism, inflammatory and immune responses, which

are all associated with the pathogenesis of periodontal disease.

Materials and Methods

Preparation and Growth of Porphyromonas gingivalis
Porphyromonas gingivalis W50 strain (provided by Centre of

Immunology and Infectious Disease, Blizard Institute of Cellular

and Molecular Science, Barts and the London School of Medicine

and Dentistry) was grown on blood agar plates supplemented with

5% horse blood in an anaerobic environment containing 80%

nitrogen, 10% hydrogen and 10% carbon dioxide at 37uC for

3 days, before then being sub-cultured into 10 ml of media

consisting of brain heart infusion (BHI) broth supplemented with

5 mg/ml of hemin. The following day, the 10 ml culture was

inoculated into 90 ml of fresh media. This was considered day 0 of

the culture. At day 6, the bacterial cultures were centrifuged at

8500 rpm for 45 min at 4uC, and the resulting bacterial

supernatant was removed, aliquoted and stored at 280uC for

further use to challenge the cells. In further mentions within the

text, this preparation is referred to simply as ‘‘P. gingivalis’’, for

reasons of clarity.

Bone Marrow Stromal Cell Culture and Challenge with
Porphyromonas gingivalis

An established murine bone marrow stromal cell line, W20-17

[7], was used in this experimental system, as previously described

[9,10]. Cell culture was carried out in alpha minimum essential

medium (a-MEM, Gibco-BRL) supplemented with 10% v/v foetal

calf serum, 50 U/ml penicillin, 50 mg/ml streptomycin (Gibco-

BRL) and 50 mg/ml of ascorbic acid (Sigma). The cell cultures

were incubated at 37uC in an atmosphere of 5% CO2. For sub-

culturing, the cells were detached from the bottom of the culture

flask with 0.1% Trypsin/EDTA (Gibco) and centrifuged at

1000 rpm for 5 min at room temperature. For the experiments,

the cells were seeded at a density of 26104 cells/cm2 and left to

attach for at least 18 h before being challenged with the P. gingivalis

culture supernatants. When thawed, the aliquoted bacterial

supernatants were filter-sterilized (0.2 mm filter) and added into

the cell culture at 5 mg/ml total bacterial protein concentration.

The cultures were further incubated at 37uC in the presence of 5%

CO2 for 6 h and 24 h. The selection of this concentration of P.

gingivalis and challenge period was based on earlier studies

demonstrating effects on gene expression by the cells, in the

absence of cytotoxicity [9,10]. Untreated cell cultures served as

controls. For each group, four biological replicates were used.

Gene Microarray Protocol
To investigate the gene expression profile of W20-17 bone

marrow stromal cells challenged with P. gingivalis, the Illumina

Whole-Genome Expression Assay was used (MouseRef-8 v2.0

Expression BeadChips). The Illumina technology consists of

oligonucleotides immobilised to beads in microwells contained in

the array that bind to complimentary sequences contained in the

target template. After the cells were challenged with 5 mg/ml

protein concentration of P. gingivalis supernatant for 6 h and 24 h,

the cell culture supernatant was removed and total RNA was then

extracted and collected from the cells by the RNeasy Mini Kit

(QIAGEN). This was performed for all four biological replicates in

each group. From each sample, 250 ng of high quality total RNA

were biotin-labelled with a single round amplification using the

Illumina total preparation kit (LifeTech). Spike RNA controls were

also included within samples prior to amplification, in order to

confirm a successful reaction. The biotin-labelled cRNA was then

quantified using a Nanodrop spectrometer. To confirm the quality

of the RNA, the fragment size distribution of ribosomal RNA was

assessed by electrophoresis on a RNA nano-chip on the

Bioanalyser (Agilent). A total of 750 ng of cRNA was then

hybridised to the MouseRef-8 v2 array (Illumina) according to the

manufacturer’s instructions and data was visualised on the Bead

Array Reader (Illumina). This assay was performed at the core

facilities of the Genome Centre of Barts and The London School

of Medicine and Dentistry.

Gene Microarray Data Analysis
Intensity data from the Bead Array Reader was imported into

the BeadStudio software (Illumina) to be analysed. Quality control

checks were performed based on spiked-in controls. Data fulfilling

the quality criteria were then quantile-normalised before grouping

replicates and performing group differential analysis using the

Beadstudio software. Further to this, a Bonferonni statistical test

was performed to adjust for a large number of p values, which

were then converted to differential (diff) scores. This takes into

account both the p value and the difference between the average

signal of the reference and comparison group (in this case the

control group versus the P. gingivalis-challenged group). A p value

of 0.001 is equivalent to a diff score of 633. For further stringency,

an arbitrary cut-off diff score of 665 was chosen. Over 24,000

transcripts were assayed and to narrow the frame of reference a

cut-off threshold of 2-fold regulation (up- or down-) was chosen.

Where applicable, a small number of genes of interest lower than

2-fold were also included. The list of genes together with fold

changes was uploaded into the Ingenuity software (Ingenuity

SystemsH, http://www.ingenuity.com), which was then used to

sort the list of genes into broad cellular categories.

Validation using Quantitative TaqManH Real-time PCR
(qPCR)

To validate the microarray results, the mRNA expression levels

of a selected number of genes were alternatively quantified by

qPCR, on cDNA prepared from the samples. For the amplifica-

tion reactions, Applied Biosystems (ABI) TaqManH Gene Expres-

sion Assays and the ROX mastermix were used. The qPCR

reactions and analyses were performed in an ABI Prism 7900HT

Sequence Detection System. The amplification conditions were

10 min at 95uC, followed by 40 cycles at 95uC for 15 sec and

60uC for 1 min. The TaqManH Gene Expression Assays IDs for

the studied target genes were as follows: TNFSF11 (RANKL):

Mm00441908_m1, TNFRSF11B (OPG): Mm00435452_m1,

COX-2: Mm00478377_g1, SAA3: Mm00441203_m1, and

LCN2: Mm01324470_m1. To be able to normalise the obtained

target gene Ct values, a housekeeping gene screen was performed

in cDNA from W20-17 cells, using a series of 12 murine

housekeeping gene candidates. The screen performed indicated

that the eukaryotic translation initiation factor 4A, isoform 2

(EIF4A2: Mm008343457_g1) and cytochrome 1 (CYC1:

Mm00470540_g1) gene expressions were the most stable and

consistent among all, and were used to normalise the data. For

each sample, the relative target gene expression was determined as

the DCt value, which is the difference between the target gene Ct

and the average Ct of the selected two housekeeping genes.

Statistical Analysis
The data on qPCR validation experimentations were analysed

by Student’s t test in order to determine statistical significance of

P. gingivalis and Bone Marrow Stromal Cells
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differences between the corresponding P. gingivalis challenged and

control groups.

Results and Discussion

The global transcriptional effects of P. gingivalis on bone marrow

stromal cells were evaluated by an Illumina bead gene microarray

(MouseRef-8 v2.0 Expression BeadChips). W20-17 bone marrow

cells were challenged with 5 mg/ml of P. gingivalis W50 culture

supernatant, over a 6 h or 24 h time period. It is anticipated that

the selection of these two time-points correspond respectively to

periods of early and late responses to P. gingivalis. Moreover, it is

know from earlier studies in the present experimental system that

P. gingivalis challenge does not elicit significant cytotoxicity during

these periods [9,10].

Relative changes of gene expression induced by P. gingivalis in

bone marrow stromal cells were determined by normalising

against the corresponding control group. More than 24,000

transcripts were assayed. To narrow-down the frame of reference,

a cut-off threshold of 2-fold was selected. A small number of genes

exhibiting lower than 2-fold regulation were also included in the

analyses, since these were of focus in earlier gene expression

studies employing the present experimental model [9,10], in order

to validate these earlier results.

Global Gene Regulation
The collective data indicates that 480 genes were regulated

more than 2-fold after 6 h (Table S1), whereas 364 genes were

regulated more than 2-fold after 24 h (Table S2). In particular,

after 6 h of challenge, P. gingivalis caused up-regulation of 271

genes and down-regulation of 209 genes, whereas after 24 h of

challenge, 259 genes were up-regulated and 109 genes were down-

regulated.

Functional Classification of Regulated Genes
The genes that were regulated more than 2-fold were further

categorised according to their known cellular function using the

Ingenuity Pathway Analysis (Ingenuity SystemsH, http://www.

ingenuity.com). The top five cellular functions and the

corresponding percentage of their up- and down-regulated

genes at both time-points are displayed in Table 1. Interestingly,

a bi-phasic response was demonstrated by this data. An early

6 h-response to P. gingivalis was characterised by regulation of

genes associated with cell movement, growth, proliferation and

intracellular signalling. However, the late 24 h time-point was

characterised by the regulation of genes associated with the

immune and inflammatory response, including the categories of

immunological disease, antigen presentation, cell-mediated and

humoral immunity. A marked overlap between the two time-

points was the regulation of genes with associated functions in

cancer. This should not imply that P. gingivalis is involved in

carcinogenesis, as this category is broad enough to include genes

with roles in cell growth, proliferation and apoptosis, functions

which are all affected by P. gingivalis challenge. Further focus is

placed on the gene categories with ascribed roles in inflamma-

tory processes and skeletal/muscle disorders (i.e. bone metab-

olism), according to Table 2. The reason for this filtering is that

periodontal disease has combined inflammatory and bone

destruction traits. Therefore, looking in more detail into these

categories is of relevance to the disease. Within these categories,

results are presented and discussed according to clustering of the

regulated genes based on cellular and molecular function.

Apoptosis, Regulation of Cell Cycle and Structural
Integrity

In response to P. gingivalis challenge, the transcription of three

genes with involvement in apoptotic processes was regulated.

These were namely caspase 4 (CASP4), tumor necrosis factor

receptor superfamily member 6 (FAS) and engulfment adaptor

PTB domain containing 1 (GULP1). These were all up-regulated

at both 6 h and 24 h (Table 2, apoptosis related genes), suggesting

mechanisms by which P. gingivalis challenge may induce the

apoptosis. P. gingivalis has been previously shown to induce

apoptotic cell death in fibroblasts, endothelial cells and epithelial

cells [13–15], and that its gingipains in particular may have a role

in this effect [15].

The expression of a number of genes that encode for cell cycle-

regulatory proteins was also affected by P. gingivalis. After 6 h of

challenge, the negative regulators of cell cycle p16 and p21 were

up-regulated by 2.0- and 5.3-fold, respectively, while p18, another

inhibitor of the cell cycle, was down-regulated by 2.0-fold. Cyclin

D1, the only positive regulator of the cell cycle to be affected, was

down-regulated by 3.1-fold over a 24 h period of challenge

(Table 2, Cell cycle genes). Cyclin D1 is crucial for entry into the

G1 phase, whereas p16 and p21 are responsible for arresting the

cell cycle in G1 phase. Collectively, the effects on P. gingivalis on

these genes would imply a possible G1 phase arrest of the cells. To

this extent, there is evidence that P. gingivalis decreases cyclin D1

expression, causing G1 phase arrest of the cell cycle [16,17]. This is

shown to be concomitant to an up-regulation of p16 and p21 levels

[17], and mainly attributed to the gingipains of P. gingivalis [16].

The expression of claudin 15 (CLDN15), a structural protein of

tight junctions, was down-regulated by 2.9 and 3.2 at 6 h and

24 h, respectively. Other structural genes that were down-

regulated at 24 h include caveolin 1 (CAV1), an integral

membrane scaffolding protein, and vimentin (VIM), an interme-

diate filament (Table 2, Structural genes). Interestingly, the

extracellular matrix GLA protein (MGP) normally associated with

bone and cartilage was down-regulated by 22.9 fold at 24 h

(Table 2, Extracellular matrix proteins).

Collectively, the results in the present experimental system

indicate an overall positive effect of P. gingivalis on apoptosis,

accompanied by a negative effect on cell cycle progression and

cell-structural integrity, which are initiated at 6 h and culminated

at 24 h. All of these events corroborate an involvement of P.

gingivalis in the pathogenesis of periodontal disease, by early

disruption of tissue homeostasis.

Chemokine, Cytokines and other Inflammatory Mediators
The regulation of inflammatory chemokines and cytokines

groups by P. gingivalis challenge was further investigated.

Chemokines are essentially cytokines that are involved in

recruiting leukocytes to inflammatory sites. Their recruitment is

an act of protection against bacterial invasion, but over-

stimulation can conversely lead to tissue destruction. In the

present experimental system, after 24 h of challenge, the most

strongly up-regulated chemokine was LPS-induced CXC chemo-

kine (also named CXCL5) by a marked 112.0-fold, followed by

chemokine C-C motif ligand 5 (CCL5) by 86.8-fold, and

chemokine C-X-C motif ligand 9 (CXCL9) by 35.0-fold

(Table 2, Chemokine and cytokines). Other up-regulated chemo-

kines include CCL17, CCL2, CCL3, CCL7, CCL9, CXCL1,

CXCL10 and CXCL2. These findings are in line with earlier

studies on bone marrow stromal cells, whereby P. gingivalis elicited

a similar chemokine profile by the cells, suggested to be attributed

to the effect of gingipains or LPS [11]. Porphyromonas gingivalis has

also been shown to induce the expression of CCL2 in endothelial

P. gingivalis and Bone Marrow Stromal Cells
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cells [18] and CCL2 and CCL5 in bone-marrow derived cells

[19]. Evidence from clinical biopsies demonstrates that CCL2 and

CCL5 gene expressions are up-regulated in aggressive and chronic

periodontitis [20]. Therefore, the progressive induction of

chemokines by P. gingivalis could facilitate the recruitment of

inflammatory cells on site, and corroborate the establishment of

chronic inflammation.

Among the interleukin (IL) family of cytokines, the pro-

inflammatory IL-1a and IL-6 were increased at 24 h by 6.5-fold

and 23.2-fold, respectively. However, the expression of IL-15, a

cytokine that regulates T-cell and natural killer cell activation and

proliferation, was down-regulated by 2.3-fold at this time-point. In

support of these findings, P. gingivalis has been previously shown to

stimulate of IL-6 mRNA [8,21] and protein expression [22].

Earlier work has also confirmed the induction of IL-1a production

in human monocytes in response to P. gingivalis, albeit to a weaker

extent that other putative periodontal pathogens [23]. Both IL-1a
and IL-6 are considered as key cytokines in the stimulation of

mechanisms of bone resorption [24].

Further data on the regulation of cytokines and mediators of

bone resorption is presented. Macrophage-colony stimulating

factor (M-CSF) 1 is a cytokine required for survival, proliferation

and differentiation of hematopoeitic cells into osteoclasts. M-CSF

1 expression was increased by 2.7-fold in response P. gingivalis, after

6 h. Additionally, RANKL expression, the key stimulator of

osteoclast differentiation, was up-regulated at 24 h by 1.9 fold

(Table 2, Cytokines), whereas the expression of OPG, the natural

inhibitor of RANKL, and subsequently of bone resorption, was

down-regulated by 4.0-fold as early as 6 h (Table 2, Receptor

genes). These changes in RANKL and OPG gene expression are

well in line with earlier results in this experimental system, which

also demonstrated concomitant changes on the protein level

[9,10]. P. gingivalis has also been shown to up-regulate RANKL

and down-regulate OPG gene expression in periodontal ligament

cells and gingival fibroblasts [25]. Activated B-cells and T- cells

can also express RANKL [26] and P. gingivalis stimulates further its

expression in T-cells [27]. Prostaglandin (PG)E2 is a major

inflammatory mediator of bone resorption, which can also induce

the expression of RANKL expression [9,10,27]. It is well

established that PGE2 is involved in the pathogenesis of

periodontitis [28] and the stimulation of bone resorption [29].

Key enzymes involved in PGE2 synthesis are COX-2 and

prostaglandin E synthase (PTGES). The gene expression of

COX-2 was increased in response to P. gingivalis by 3.2-fold and

2.3-fold at 6 h and 24 h respectively, whilst PTGES expression

was increased by 3.2-fold at 6 h. These findings are in line with

earlier studies demonstrating the up-regulation of PGE2 in various

cell types by P. gingivalis [8,27,30]. Collectively, this microarray

data confirms that P. gingivalis enhances the gene expression of a

number of inflammatory mediators, providing favourable condi-

tions for the stimulation of osteoclastogenesis and bone resorption.

Haptoglobin (Hp), a protein that binds haemoglobin in plasma,

is associated with acute phase response. It prevents heme-mediated

oxidative damage to internal organs upon haemolysis during

pathologic conditions, such as bacterial infections [31]. In the

present experimental system, P. gingivalis caused up-regulation of

Hp expression by 2.6-fold and 7.5-fold, at 6 h and 24 h,

respectively. The expression of hemopexin (Hpx), a protein that

binds heme, was also up-regulated by 7-fold at 24 h. Systemic Hp

levels are shown to be higher in individuals with periodontitis,

compared to periodontally healthy ones [32]. Therefore, the up-

regulation of Hp expression by P. gingivalis may theoretically

contribute to the presence of systemic inflammatory response.

Another important consideration is that P. gingivalis utilizes hemin

to receive iron for its growth, a process inhibited by host iron-

sequestering (binding) proteins, including Hp and Hpx, which

form complexes with haemoglobin and heme, respectively, within

blood plasma, thereby denying iron to bacteria. As P. gingivalis can

grow in the presence of these complexes, it has been suggested that

it may possess a mechanism through which it is able to utilize iron

from them [33]. In fact, the capacity of P. gingivalis Lys-specific

gingipain to degrade Hp and Hpx with subsequent release of

hemin from these complexes could constitute a mechanism that

facilitates its growth [34]. Therefore, the up-regulation of Hp and

Hpx by P. gingivalis may enhance binding of iron from hemin,

which is required within its nutrient milieu.

Table 1. Top five regulated gene categories according to cellular function.

Genes regulated after 6 h

Cellular function Up-regulated Down-regulated

Cancer 33% 22%

Cellular Movement 16% 10%

Cellular growth and proliferation 24% 20%

Cell-to-cell signalling 14% 9%

Haematological system (development and function) 17% 6%

Genes regulated after 24 h

Cellular function Up-regulated Down-regulated

Cancer 36% 33%

Immunological disease 25% 9%

Antigen presentation 29% 7%

Cell-mediated immune response 28% 10%

Humoral immune response 26% 7%

The percentage of genes regulated within each category is provided.
doi:10.1371/journal.pone.0043899.t001
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Table 2. Genes regulated by P. gingivalis and associated with the categories of Skeletal/Muscle disorders and inflammatory
response.

Gene category
Fold Change
(6 h) Fold Change (24 h)

Skeletal & Muscle
Development &
Function

Skeletal & Muscle
Disorders Inflammatory Response

Apoptosis genes

Caspase 4 (CASP4) 2.8 4.3 X

Tumor necrosis factor receptor
superfamily member 6 (FAS)

7.8 11.5 X X

Cell cycle genes

Cyclin D1 23.1 X

p16 2.0 X X

p21 5.3 X X X

Chemokines and cytokines

CCL17 8.0 3.1 X X

CCL2 17.6 20.7 X X X

CCL3 3.3 40.0 X X X

CCL5 9.0 86.8 X X

CCL7 2.8 3.7 X X X

CCL9 7.2 8.3 X X

CX3CL1 10.6 4.7 X

CXCL1 23.1 29.2 X X

CXCL10 7.1 5.9 X X

CXCL15 6.8 X X

CXCL2 2.6 3.0 X X

CXCL4 2.3 X

CXCL5 112.0 X

CXCL7 16.0 X

CXCL9 10.5 35.0 X X

Interleukin 1, alpha (IL-1a) 6.5 X X X

Interleukin 15 (IL-15) 22.3 X X

Interleukin 6 (IL-6) 23.2 X X X

Macrophage colony stimulating
factor 1 (M-CSF1)

2.7 X X X

Macrophage colony stimulating
factor 2 (M-CSF2)

2.4 X X X

Receptor activator of nuclear
factor-kB ligand (RANKL)

1.9 X X X

Tumor necrosis factor
(ligand) superfamily,
member 13b (TNFSF13B)

3.4 X X

Extracellular matrix genes

Matrix GLA protein (MGP) 22.9 X

Growth factor genes

Bone morphogenic protein 4 (BMP4) 22.2 X X

Hepacyte growth factor (HGF) 2.3 X X

Vascular endothelial growth
factor (VEGF)

2.1 2.8 X X X

Guanosine triphosphate enzymes (GTPase) genes

GTP cyclohydrolase 1 (GCH1) 9.0 X

Guanylate binding protein 2 (GBP2) 4.4 16.3 X

Hormones

Inflammation genes

Cyclooxygenase-2 (COX-2) 3.2 2.3 X X X

Haptoglobin (Hp) 2.6 7.5 X

P. gingivalis and Bone Marrow Stromal Cells
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Table 2. Cont.

Gene category
Fold Change
(6 h) Fold Change (24 h)

Skeletal & Muscle
Development &
Function

Skeletal & Muscle
Disorders Inflammatory Response

Hemopexin (Hpx) 7.0 X

Lipocalin 2 (Lcn2) 33.6 354.8 X

Lipolysaccharide binding protein (LBP) 2.4 X

Myeloid differentiation protein-2 (MD-2) 22.3 X

Prostaglandin E synthase (PTGES) 3.2 X

Serum amyloid A3 (SAA3) 144.8 143.9 X X

Superoxide dismutase 2 (SOD2) 2.3 3.2 X X X

Immune related genes

Cathelicidin antimicrobial
peptide (CAMP)

9.4 X

Complement component 1s (C1s) 2.6 X X

Complement component 3 (C3) 14.3 X X

Complement component 4B (C4B) 2.3 X X

Complement factor B (CFB) 19.9 X X

DHX58 2.7 X

Interferon gamma inducible protein 47
(IFI47)

3.1 2.9 X

Interferon induced transmembrane
protein 3 (IFITM3)

3.2 X

Interferon, alpha-inducible protein 27
(IFI27)

2.6 X

Macrophage antigen CD68 2.0 X

Major histocompatibility 2, M region
locus 3 (H2–M3)

2.0 2.0

Major histocompatibility complex,
class I, C (HLA-C)

2.6 X X

Major histocompatibility complex,
class I, E (HLA-E)

2.8 X

Major histocompatibility complex,
class II, DM alpha (HLA-DMA)

2.0 X X

Major histocompatibility complex,
class II, DQ beta 2 (HLA-DQb2)

3.4 X X

Pentraxin 3, long (PTX3) 11.9 32.0 X

Retinoic acid-inducible gene 1
protein (RIG-1)

2.2 X

S100 calcium binding protein A8
(S100A8)

3.4 X X

Spondin 2 (SPON2)* 2.2 2.8

Ubiquitin D (UBD)* 2.2 3.2

Proteases and related genes

A disintegrin and metalloproteinase
domain 12 (ADAM12)

22.4 X

A disintegrin-like and metalloproteinase
with thrombospondin (ADAMTS7)

2.1 X

Cathepsin L (CTSL) 2.2 X X

Matrix metalloproteinase 12 (MMP12) 2.9 X

Matrix metalloproteinase 13 (MMP13) 9.3 8.4 X X

Matrix metalloproteinase 13 (MMP17) 3.4 X X

Matrix metalloproteinase 14 (MMP14) -2.2 X X

Matrix metalloproteinase 3 (MMP3) 35.8 X X

Matrix metalloproteinase 9 (MMP9) 3.0 X X

Proteasome subunit, beta type,
8 (PSMB8)

2.1 X
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Table 2. Cont.

Gene category
Fold Change
(6 h) Fold Change (24 h)

Skeletal & Muscle
Development &
Function

Skeletal & Muscle
Disorders Inflammatory Response

Secretory leukocyte peptidase
inhibitor (SLPI)

4.9 19.5 X

Tissue inhibitor of
metalloproteinase 1 (TIMP1)

2.1 X

Receptor genes

CD44 2.2 X X X

Cluster of differentiation 14 (CD14) 2.1 X

Interferon Receptor 2 (IFNAR2) 2.7 X X

Interleukin 1 receptor antagonist
(IL1RN)

23.9 X X X

Interleukin 10 receptor,
beta (IL10RB)

2.0 X

Interleukin 13 receptor,
alpha 1 (IL-13RA1)

4.1 X

Interleukin 13 receptor,
alpha 2 (IL-13RA2)

11.0 X

Osteoprotegerin (OPG) 24.0 X X

Toll like receptor 2 (TLR-2) 3.7 12.6 X X X

Tumor necrosis factor receptor
superfamily, member 9 (TNFRSF9)

3.9 X X

Structural genes

Caveolin 1 (CAV1) 22.1 X X

Vimentin (VIM) 22.1 X

Signal transduction genes

B-cell lymphoma 3-encoded protein
(BCL3)

2.7 X

Growth arrest and DNA-damage-
inducible, beta (GADD45B)

2.6 X

Immediate early response 3 (IER3) 4.9 5.5 X

Inhibitor of kappa light polypeptide
gene enhancer in B-cells, kinase
epsilon (IkBKE)

1.7 X

Inhibitor of kappa light polypeptide
gene enhancer in B-cells,
kinase gamma (IkBKG)

1.7 X

Interleukin-1 receptor-associated
kinase 3 (IRAK3)

2.3 X X

Janus kinase 2 (JAK2) 6.9 X

Myeloid differentiation primary
response gene (88) (MYD88)

1.7 X X X

Nuclear factor of kappa light
polypeptide gene enhancer in
B-cells inhibitor (NF-kBIA)

4.6 5.7 X X X

Nuclear factor of kappa light
polypeptide gene enhancer
in B-cells inhibitor (NF-kBIZ)

11.2 9.6 X

Receptor-interacting serine-
threonine kinase 2 (RIPK2)

2.4 2.9 X

Suppressor of cytokine signalling 3
(SOCS3)

2.3 4.5 X X X

TNFAIP3 interacting protein 1 (TNIP1) 2.7 5.9 X

Tumor necrosis factor, alpha-induced
protein 3 (TNFAIP3)

2.4 4.8 X X X

WNT1 inducible signalling pathway
protein 2 (WISP2)

22.6 X
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Interestingly, within this category of inflammation-related genes

were also two among the most regulated ones, namely lipocalin 2

(LCN2) and serum amyloid A3 (SAA3). LCN2 expression

exhibited a dramatic increase in response to P. gingivalis, which

was 33.6-fold and 354.8-fold at 6 h and 24 h, respectively. SAA3

expression was also strongly up-regulated in response to P. gingivalis

by 144.8-fold and 143.9-fold at 6 h and 24 h, respectively (Table 2,

Inflammation genes). LCN genes encode for small glycoproteins,

which arise as part of the acute phase response, with involvement

in the innate immune response to bacterial infection. LCN2 exerts

antimicrobial effects by sequestering bacterial siderophores and

inhibiting the growth of iron-dependent bacteria [35]. Although,

P. gingivalis does not use sidephores to sequester iron [36], but

rather haemophores [37,38] the dramatic up-regulation of LCN2

expression may still constitute an iron-sequesteing based antimi-

crobial response, aiming to limit its growth. The SAA family of

proteins are also involved in the acute phase response, consisting of

four isoforms. SAA3 is an active isoform in mice [39], with 70%

amino-acid sequence homology and overlapping function to

human SAA1 [40]. The strong up-regulation of SAA3 transcrip-

tion in response to P. gingivalis in the present experimental system is

in line with earlier work on murine ST2 stromal cells challenged

with another P. gingivalis strain, demonstrating an 11.5-fold after

6 h of challenge [11]. Sustained production of SAA proteins can

lead to amyloidosis, through fibril deposition, and consequently to

chronic inflammatory conditions [41]. A link may exist between

amyloidosis and periodontal disease, where one condition may

predispose to, or aggravate, the other [42,43]. Interestingly,

periodontitis patients exhibit higher SAA blood serum levels than

healthy individuals [44]. Therefore, SAA protein levels could serve

as a potential biomarker for periodontal disease progression, or

could constitute a potential molecular link between periodontal

diseases and systemic inflammatory conditions. In this line, the

involvement of SAA3 requires further clinical investigation.

Immune System
Porphyromonas gingivalis also stimulated the expression of a

number of immune related genes by the cells (Table 2, Immune

related genes). Cathelicidin antimicrobial peptide (CAMP) expres-

sion, a protein that exhibits antibacterial activity, was up-regulated

by 9.4-fold at 24 h. CAMP has a role in the endosomal

degradation of the bacterial cell membrane during phagocytosis,

and can also bind to LPS, thus inhibiting its biological activity

[45]. Mesenchymal stromal cells can also secrete CAMP in

response to Gram-negative bacteria, which can in turn inhibit

their growth [46]. Moreover, CAMP can inhibit host pro-

inflammatory responses elicited by P. gingivalis, or its LPS and

fimbriae. Although the present data on CAMP could indicate a

potential antimicrobial response of P. gingivalis, it has also been

shown that this species is resistant to the anti-microbial actions of

CAMP [47,48].

Genes encoding for complement proteins C1s, C3, C4B and

complement factor B (CFB) were also up-regulated at 24 h. It is

well known that P. gingivalis is also able to degrade complement

factors [49,50]. In particular, its gingipains can either degrade or,

at low concentrations, activate complement factors [51], and Arg-

X and Lys-X gingipain mutants have increased susceptibility to

complement killing, compared to wild-type P. gingivalis [52]. The

induction of the expression of complement factors by P. gingivalis

suggests that cells are mounting an immune response aimed at

Table 2. Cont.

Gene category
Fold Change
(6 h) Fold Change (24 h)

Skeletal & Muscle
Development &
Function

Skeletal & Muscle
Disorders Inflammatory Response

V-rel reticuloendotheliosis viral
oncogene homolog B (REL-B)

4.0 X

Transcription factor and inhibitor genes

CCAAT/enhancer-binding protein
beta (CEBPb)

3.4 4.2 X X X

FBJ murine osteosarcoma viral
oncogene homolog (c-Fos)

1.7 1.4 X X X

Hairy-related transcription
factor 1 (HEY1)

2.1 X

Jun B proto-oncogene (JUNB) 2.6 5.4 X X

Nuclear factor of kappa light
polypeptide gene enhancer
in B-cells 1 (NF-kB1)

2.6 X X

Nuclear factor of kappa light
polypeptide gene enhancer
in B-cells 2 (NF-kB2)

2.2 X

Sex determining region Y box 9
(SOX-9)

23.1 X X X

Signal transducer and activator of
transcription 3 (STAT3)

2.6 2.6 X X X

V-rel reticuloendotheliosis viral
oncogene homolog A (avian) (REL-A)

1.5 X

The genes regulated more than 2-fold by P. gingivalis were categorized according to ascribed roles in a) skeletal and muscle development and function, b) skeletal and
muscle disorders, and c) inflammatory responses (horizontal categories). Within each of these thee categories, genes were sub-categorized according to ascribed
cellular function (vertical categories). The fold-changes in expression (compared to control) at 6 h and 24 h are provided. The minus values (also in bold letters) indicate
down-regulation. When a –fold change value is missing in one of the two time-points, the regulation of gene expression at that time-point was less that 2-fold.
doi:10.1371/journal.pone.0043899.t002
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clearing bacterial infection. Nevertheless, there is recent evidence

that P. gingivalis manipulates innate immunity by controlling the

cross-talk between complement factors and the host [53–57]

Therefore, the induction of complement-associated genes observed

in this experimental model may well be an attempt of P. gingivalis to

confuse the innate immune host responses.

Other strongly up-regulated genes linked with innate immunity

were Pentraxin 3 (PTX3), Spondin 2 (SPON2) and Ubiquitin D

(UBD). A notable up-regulation was observed in the case of PTX3,

which was 11.9-fold and 32.0-fold, at 6 h and 24 h, respectively.

PTX3 protein is induced in response to stimulation with LPS or

inflammatory cytokines, and is involved in a variety of innate

immunity and inflammatory processes [58]. With regards to

periodontitis, PTX3 levels are associated with the severity of the

disease [59], and diseased sites foster higher PTX3 levels

compared to healthy ones [60]. In line with the present

observations, P. gingivalis LPS and fimbriae have been shown to

induce PTX3 expression in macrophages [61].

Growth Factors
The transcription of some growth factors was also affected by P.

gingivalis challenge. In particular, a down-regulation was evident in

the expressions of bone morphogenic protein (BMP)4 and

transforming growth factor b-3 (TGFb3). BMP4 is a key gene in

the process of stimulating osteoblastic differentiation [62], and this

was down-regulated by 2.2-fold at 6 h. TGFb3 has crucial roles in

osteogenic and chondrogenic differentiation by bone marrow

stromal cells and its expression was decreased by 2.1-fold and 2.5-

fold, at 6 h and 24 h, respectively, in the present experimental

system. Collectively, these effects of P. gingivalis suggest a potential

inhibition of the osteogenic and chondrogenic differentiation

capacities of the studied cells.

On the contrary, the gene expressions of vascular endothelial

growth factor (VEGF) and hepatocyte growth factor (HGF) were

up-regulated after 24 h of challenge with P. gingivalis by 2.8-fold,

and 2.3-fold, respectively (Table 2, Growth factors genes). VEGF

is a potent inducer of angiogenesis and increased vascular

permeability. Increased vascularisation, swelling and oedema are

characteristic of periodontal inflammation. To this extent, several

studies implicate VEGF in the progression of periodontitis, since

increased VEGF levels were observed in diseased gingival tissue

[63] or GCF from diseased sites [64], compared to healthy ones.

In line with the present findings, it has been shown that P. gingivalis

vesicles and outer membrane proteins increased VEGF expression

in human gingival fibroblasts [65]. Collectively, these findings

suggest a mechanism by which P. gingivalis can promote

angiogenesis and vascular permeability during the progress of

periodontitis. Moreover, the increased vascularisation can subse-

quently lead to increased hemin concentrations, which are much

requited for the growth of P. gingivalis.

Proteases
The regulation of genes encoding for some proteases and other

functionally similar proteins was also affected. Two A Disintegrin

And Metalloproteinases (ADAM) proteases were differentially

expressed. ADAM domain 12 (ADAM12) was down-regulated at

6 h by 2.4- fold, whereas ADAM with thrombospondin

(ADAMTS7) was up-regulated at 24 h by 2.1-fold (Table 2,

Protease and related genes). Another member of the ADAM

family, ADAM17, was previously shown to be up-regulated in T-

cells, in response to P. gingivalis [66]. The expression levels of

cysteine and serine proteases were also affected. Cysteine protease

cathepsin L (CTSL) was up-regulated at 6 h whilst elastase 1

(ELA1), a serine protease, was down-regulated at both 6 h and

24 h. By degrading extracellular matrix components, CTSL may

be involved in the metabolic turnover of bone [67]. Elastases are

capable of cleaving collagen and elastin [68], with substantial

evidence to support a role a neutrophil elastase ELA2 in the

pathogenesis of periodontitis [69–71] The down-regulation of

ELA1 in the present experimental system, may suggest a

previously uncharacterised role in the pathogenesis of periodontal

disease.

Interestingly, the expression of secretory leukocyte peptidase

inhibitor (SLPI), a serine proteinase inhibitor of elastase and

capthepsin G [72], was increased by 4.9-fold and 19.5-fold at 6 h

and 24 h, respectively (Table 2, Protease and related genes). SLPI

levels from periodontitis patients were found to be lower than

healthy individuals in GCF [73] or gingival tissue [74], compared

to healthy individuals. A decrease in SLPI GCF levels is associated

with high P. gingivalis levels in dental plaque [73], but this could be

attributed to the inhibition of the protective effect of SLPI by the

Arg-X gingipain [75]. The serine protease inhibitor (SERPIN)

gene family, comprises of several serine and selected cysteine

proteinase inhibitors that inhibit serine proteases and some

cysteine proteases, such as elastase and cathepsin L [76]. Several

SERPIN family genes were up-regulated in response to P. gingivalis

challenge, in the present experimental system. Serpin b6 and

Serpin b9 expressions were increased at 24 h, whereas Serpin 3f

and Serpin 3 g expressions were increased at both 6 h and 24 h

(Table 2, Proteases and related genes). The up-regulation of these

Serpins could be a defence mechanism against P. gingivalis, in order

to inhibit the activity of cysteine proteinases (gingipains).

Matrix metalloproteinases (MMPs) are zinc-dependent endo-

peptidases that are normally involved in tissue and extracellular

matrix remodelling, and their over-expression leads to degradation

of collagen and fibronectin, contributing to periodontal tissue and

bone destruction [28]. In response to P. gingivalis challenge, the

expression of several MMPs was up-regulated. MMP17 was up-

regulated at 6 h, whereas MMP12, MMP3 and MMP9 were up-

regulated at 24 h. In particular, MMP3 was increased by a

marked 35.8-fold at 24 h, whereas MMP13 was up-regulated at

both 6 h and 24 h, by 9.3-fold and 8.4 fold, respectively. These

findings may not be surprising, as several studies demonstrated

that P. gingivalis are capable of simulating the production of MMPs

in a variety of cell types, including periodontal ligament, human

dental pulp, and gingival fibroblast cells [77–80]. Tissue inhibitor

of metalloproteinase 1 (TIMP1), an MMP inhibitor, was also up-

regulated at 6 h by 2.1-fold. A large body of evidence demon-

strates elevated levels of MMPs in periodontal disease compared to

health [81–85]. Furthermore, there a positive correlation is

revealed clinically between the levels of P. gingivalis detected in

active sites and MMP13 levels [86]. The expression of TIMP1, an

MMP inhibitor, was also up-regulated by P. gingivalis in the present

experimental system. To this extent, P. gingivalis is able to degrade

TIMP1, with gingipains suggested as the responsible virulence

factor for this effect [80,87].

Receptors
The transcription of a number of receptors was increased in

response to P. gingivalis challenge (Table 2, Receptor genes).

Cluster of differentiation 14 (CD14), a major receptor required for

the activation of toll-like receptor complexes in response to LPS,

was up-regulated by 2.1-fold at 24 h, whereas Toll like receptor

(TLR)-2 was up-regulated by 3.7-fold and 12.6-fold, at 6 h and

24 h, respectively. A number of genes associated with the TLR-2

receptor complex, including CD14, LBP and TLR-2, were

uniformly up-regulated by P. gingivalis in the present experimental

system. Conversely, the transcription of MD-2, the co-receptor of
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TLR-4 was down-regulated in the current work. The expression of

two signaling molecules involved in downstream TLR signaling

was also affected. IRAK3, a negative regulator of TLR signaling,

and MYD88, a critical signaling component of TLR signaling,

were also increased. P. gingivalis fimbriae or its LPS are recognized

by either TLR-2 [88–90] TLR-4 [91,92] in various cell types. In

agreement with the present findings, earlier work has shown that

P. gingivalis induces TLR-2 expression [93,94]. Interestingly,

cytokine inflammatory response and alveolar bone loss was

considerably reduced in TLR-2 deficient mice, after infection

with P. gingivalis [95]. Taken together, TLR-2 is a key signaling

receptor in the recognition of P. gingivalis by host cells, and through

its down-stream pathway it may contribute to the overall

inflammatory response.

Signal Transduction and Transcription Factor Genes
Over the course of P. gingivalis challenge, the expression of

several genes involved in signal transduction was increased. As

bone marrow stromal cells can differentiate into a number of cell

types, it is not surprising that a broad array of transcription factors

have been affected. A total of 25 such genes were regulated in the

cells in response to P. gingivalis challenge (Table 2, Signal

transduction genes/Transcription factor and inhibitor genes).

The following presentation and discussion is focused on a few

such genes with relevance to the pathogenesis of periodontal

disease.

Janus kinase 2 (JAK2), a protein tyrosine kinase, was up-

regulated at 24 h by 6.9-fold. Moreover, the associated signal

transducer and activator of transcription 3 (STAT3) transcription

factor, as well as the suppressor of cytokine signalling 3 (SOCS3), a

negative regulator of cytokines that signal through the JAK/STAT

pathways, were also up-regulated. The JAK/STAT pathway is

activated when cytokines or growth factors bind to JAK-associated

receptors, which become trans-phosphorylated [96], in turn

allowing STAT transcription factors to be phosphorylated and

initiate gene transcription [97]. Live P. gingivalis has been shown to

activate STAT3 and JAK1 in gingival epithelial cells [98], and to

induce STAT1, STAT2 and SOCS1 gene expression in stromal

cells [11]. P. gingivalis FimA up-regulated, whereas LPS down-

regulated, STAT3 expression in macrophages [99]. Interestingly,

STAT3 regulates RANKL expression in osteoblasts, with impli-

cations in the initiation of mechanisms of bone resorption [100–

102].

CCAAT/enhancer-binding protein beta (C/EBPb), a transcrip-

tion factor involved in osteoblast differentiation in vivo [103] and

the induction of RANKL gene expression in osteoblast-like cells

[104], was also up-regulated in response to P. gingivalis. Thus, C/

EBPb up-regulation may contribute to the induction of RANKL

by P. gingivalis, hinting for pathways additional to the recently

identified p38 MAPK [10].

The expression of hairy-related transcription factor 1 (HEY1),

which has a negative effect on osteoblastic differentiation [105],

was increased after 6 h of challenge with P. gingivalis. As it has

recently been shown that HEY1 is involved in P. gingivalis LPS-

mediated inhibition of osteoblastic differentiation [106], the

present findings suggest that P. gingivalis may impair osteoblast

differentiation by bone marrow stromal cells, mediated by HEY1.

Components of the NF-kB complex, NF-kB 1, NF-kB 2, v-rel

reticuloendotheliosis viral oncogene homolog (REL) A and REL-B

were all up-regulated at 24 h (Table 2, Transcription factor genes).

The NF-kB is a key pathway in the activation of genes involved in

immunity and inflammation, and its deregulation can lead to

pathological conditions such as cancer and chronic inflammatory

disorders [107]. Indeed, NF-kB gingival tissue expression is higher

in chronic periodontitis, compared to health [108]. Pro-inflam-

matory cytokines, such as IL-1b, TNF-a, as well as bacterial LPS

are common inducers of NF-kB [109]. NF-kB complexes are

normally inactive and stabilized in the cytoplasm through the

association of bound IkB proteins. Phosphorylation of these

proteins by IkB kinases lead to their dissociation from the NF-KB

complex, whereby the latter are then free to translocate to the

nucleus, initiating gene transcription [107]. Interestingly, the

expression of a number of NF-kB inhibitors (BCL3, NF- kBIA,

NF-kBIE, NF-kBIZ, TNFAIP3 and TNIP1) as well as kinases

responsible for their phosphorylation (IkBKE and IkBKG) was

also up-regulated. NF-kBIZ in particular demonstrated a marked

11.2-fold and 9.6-fold up-regulation, at 6 h and 24 h, respectively.

The present findings are in agreement with previous studies

demonstrating a central role of NF-kB in the pro-inflammatory

responses to P. gingivalis in various cell types including fibroblasts,

stromal cells, gingival epithelial cells, osteoblasts, cementoblasts

and endothelial cells [11,90,93,110–112].

Components of the Activator Protein (AP)-1 transcription factor

complex jun B proto-oncogene (JUNB) and FBJ murine osteosar-

coma viral oncogene homolog (c-Fos), were also increased at 6 h

and 24 h. These findings are in agreement with earlier work

demonstrating that P. gingivalis is able to activate the AP-1

transcription factor in osteoblasts, HUVEC’s and oral epidermoid

cells [8,110,113].

Taken together, the present findings using microarray technol-

ogy support the notion that P. gingivalis can activate multiple

intracellular signalling pathways and transcription factors in a

complex manner.

Validation of Selected Microarray Data by qPCR
To interpret the results obtained from the microarray dataset, it

was important to validate representative items of the data, using

other mRNA detection assays, in this case qPCR. Therefore

RANKL, OPG and COX-2 gene expressions were assayed, as

these genes were previously shown to be regulated in the present

experimental system [9,10]. A comparable trend of expression

between the gene microarray and the qPCR results was indeed

confirmed (Table 3). To further validate the data obtained by

microarray analysis, the expression of acute phase inflammation-

associated genes LCN2 and SAA3 was also investigated by qPCR,

as these genes displayed the greatest differential regulation in the

microarray dataset. As indicated (Table 3) the trend of LCN2 and

SAA3 up-regulation at 6 h and 24 h was also confirmed by qPCR,

although the magnitude of was markedly higher by qPCR. This

could be attributed to that the dynamic range at which mRNA

expression can be measured is relatively limited by the microarray

technology, whereas qPCR assays are particularly sensitive in this

respect [114]. As the –fold changes in SAA3 expression were

among the highest measured, and these were similar among the

two time-points, a plausible explanation for the quantitative

discrepancy between the two assays is that the microarray analysis

measurements may have been saturated at this high detection

range.

Conclusions
This in vitro study employed gene microarray technology to

investigate in a temporal manner the global transcriptional events

in bone marrow stromal cells, in response to the major periodontal

pathogen Porphyromonas gingivalis. These cells have osteogenic

potential and, once exiting the bone marrow, they can differentiate

into bone forming osteoblasts, which are crucial for the

maintenance of homeostasis in the periodontal tissues. Thus, by

interfering with the transcriptional regulation of these cells, P.
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gingivalis may affect the homeostatic capacity of the tissues. The

findings demonstrate time-dependent responses of the cells to P.

gingivalis challenge. The early (6 h) responses are characterised by

enhanced expression of genes associated with inhibition of cell

cycle, induction of apoptosis and loss of structural integrity, which

can be collectively perceived as a hindrance of the basic cell

functions. The later (24 h) responses are characterised by

induction of cytokines, chemokines, mediators of connective tissue

and bone destruction, and suppression of regulators of osteogenic

differentiation. All these effects denote loss of the anabolic capacity

by the cells, switching into a catabolic phenotype that favours

inflammatory tissue destruction. However, antimicrobial protein

expression is also enhanced, potentially as a host protective

mechanism to tackle the bacterial challenge. Moreover, the

expression of genes associated with vascularisation and heme-

binging capacity is also increased. This effect, apart from being a

further inflammatory trait, could be induced by P. gingivalis as a

tactique to gain access to much needed nutrients. In conclusion, P.

gingivalis induces a diverse transcriptional profile response in bone

marrow stromal cells, with evident implications in the deregulation

of tissue homeostasis and the pathogenesis of periodontal disease.
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