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Abstract
A novel approach of phenotype analysis of fermentation-based bioprocesses
based on unsupervised learning (clustering) is presented. As a prior identifica-
tion of phenotypes and conditional interrelations is desired to control fermen-
tation performance, an automated learning method to output reference pheno-
types (defined as vector of biomass-specific rates) was developed and the nec-
essary computing process and parameters were assessed. For its demonstration,
time series data of 90 Clostridium pasteurianum cultivations were used which
feature a broad spectrum of solventogenic and acidogenic phenotypes, while
14 clusters of phenotypic manifestations were identified. The analysis of ref-
erence phenotypes showed distinct differences, where potential conditionali-
ties were exemplary isolated. Further, cluster-based balancing of carbon and
ATP or the use of reference phenotypes as indicator for bioprocess monitoring
were demonstrated to highlight the perks of this approach. Overall, such anal-
ysis depends strongly on the quality of the data and experimental validations
will be required before conclusions. However, the automated, streamlined and
abstracted approach diminishes the need of individual evaluation of all noisy
dataset and showed promising results, which could be transferred to strains
with comparably wide-ranging phenotypic manifestations or as indicators for
repeated bioprocesses with clearly defined target.
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1 INTRODUCTION

Machine learning applications are rapidly expanding
throughout multiple research areas with promising oppor-
tunities [1–3]. In the field of life sciences, several new
applications were developed in the past decades on mul-
tiple omics levels, such as genome analysis [4, 5], clas-
sification of transcriptomics and epigenetic data [6, 7],
protein-protein interaction or protein engineering [8, 9]
and data analysis for metabolomics [10, 11]. Further, pre-
diction methods as support for successive work processes
(e.g. protein engineering via directed evolution or strain
engineering) can efficiently accelerate the practice [12, 13].
For fermentation-based production of bulk chemicals and
other high-value compounds, the fermentation process
constitutes a unit operation for a specific chemical con-
version or biochemical production that utilizes microor-
ganisms as microbial cell factory. Providing and maintain-
ing the most effective and efficient fermentation condi-
tions, which enable or trigger specific phenotypic behav-
ior, is one of the key tasks of fermentation control for yield
and productivity maximization [14–16]. In this regard, sev-
eral previous studies employing machine learning were
reported, which employed artificial neural network for
fed-batch fermentation of iturin A [17], for fermentation
of wheat germ producing anti-tumor benzoquinones [18],
for bioethanol production via Saccharomyces cerevisiae fer-
mentation [19] and for optimization of xylitol produc-
tion bioreactor parameters [20]. Prediction of optimal tem-
perature as physical condition via machine learning was
demonstrated by Li et al. [21].
In this work, a machine learning-based method is pre-

sented for analysis of fermentation-based bioprocesses by
clustering cellular manifestation. Its fundamental idea
arose from subjective impressions during manual analysis
of multiple cultivation experiments to identify and quan-
tify phenotypic behaviors: the anaerobe bacterium of inter-
est, Clostridium pasteurianum, exhibits strong variations
of phenotypic behavior in solventogenesis and acidogen-
esis. In order to detect and to quantify “generic” pheno-
typic manifestations (as collective of cellular behavior),
single cultivation experiments were analyzed and sorted
by hand. However, difficulties arise, when multiple cul-
tivations are taken into account due to differences and
dynamics of cultivation conditions and cellular response.
Depending on the number of experiments, manual sorting
of cultivation data into specific categories of phenotypic
manifestations can be tedious and carries the risk to sub-
jectively influence and to overlook potential candidates.
Based on re-appearance of typical phenotypic expressions
throughout multiple cultivation experiments, the question
raises, if an automated method could be introduced that

PRACTICAL APPLICATION

Identification of phenotypic manifestation for bio-
processes constitutes an essential element to char-
acterize cellular behavior and monitor fermenta-
tion processes. Here, we demonstrate a unsuper-
vised learningmethod for automated processing of
time series of raw concentration data from multi-
ple cultivations of the bacterium Clostridium pas-
teurianum in order to identify, cluster and output
distinct reference phenotypes. In contrast to indi-
vidual evaluation of single cultivation experiment,
manual assessment is no longer required, which
also avoids any risk of subjectively influencing
and overlooking potential candidates. The result-
ing reference phenotypes can be used for stream-
lined phenotypic examinations in a manageable
manner, since exceptionally high number of data
are abstracted to most relevant and distinctive ref-
erence phenotypes. Especially for strains such as
C. pasteurianum, with highly varying phenotypic
manifestations or for repeating fermentation pro-
cesses with clearly defined phenotypic manifesta-
tion, the capture of phenotypes and its use as refer-
ences and indicators are the assets of this method.

“learns” from an entirety of (noisy) raw sampling data
and simply outputs reference phenotypic manifestations.
The reference manifestations are then to be employed as
manageable, unique and simplified abstractions of cellular
behavior.
Employing unsupervised learning method as a field of

machine learning, patterns can be identified by group-
ing data points into meaningful clusters, which requires
only input data for the algorithm and data points are
not manually divided into categories [22]. To establish a
common basis of calculative quantities, the phenotypic
manifestation was defined as a set of biomass-specific
rates (e.g. growth rate, specific consumption or produc-
tion rate) forming a vector. These rates are to be calcu-
lated from all cultivation experiments and vectors are then
to be clustered based on the underlying hypotheses: (a)
the time-dependent entirety of a cellular behavior can be
sufficiently represented as a vector consisting of biomass-
specific rates; (b) grouped (clustered) “phenotypic behav-
iors” can be represented by a single centroid that is approx-
imated as medians of all dimensions. Here, the necessary
computing process, used parameters and the employed
strategies are described. Further, additional examples of
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phenotype analysis are provided that employ identified
clusters for C. pasteurianum, demonstrating the perks of
this method, while the potentials and limitations are dis-
cussed.

2 MATERIALS ANDMETHODS

2.1 Strains, cultivation, and analytics

All used data sets of cultivation data can be found in
Mendeley Data repository. For this work, cultivation data
of different Clostridium pasteurianum strains (Supporting
Information 2) were used with cultivation and analyti-
cal methods as described previously [23–26]. Briefly, stock
cultures were stored as 20% v/v glycerol stocks at -80◦C.
Pre-culture was grown in Reinforced Clostridia Medium
(RCM) or 2 × YTG medium and inoculated to modi-
fied Biebl medium, which was adapted from Biebl [27],
with additional additives (glycerol, glucose, yeast extract,
CaCO3, FeSO4∙7H2O, l-cysteine∙HCl∙H2O, sodium for-
mate, biotin, neutral red, brilliant blue) for cultivation
experiments. For the plasmid harboring mutants (PC and
GCSY1), thiamphenicol was supplemented between 7 to
14 μg mL−1. Fermentations were carried out in 2 L foil or
glass reactors (Bioengineering AG, Wald, Switzerland), 1.5
L or 300mLDASGIP Parallel Bioreactor Systems (DASGIP
Eppendorf, Jülich, Germany) and bioelectrochemical fer-
mentations were conducted with the AIO electrode [28].
For small-scale anaerobic cultivations without pH-control,
100 or 200mL serumbottleswere employed, inwhichmul-
tiple samples over cultivation time were drawn. Concen-
trations of substrates (glycerol and glucose) and extracellu-
lar metabolites (1,3-propanediol, ethanol, butanol, acetate,
butyrate, lactate and formate) were quantified usingHPLC
as described by Sabra et al. [29]. Biomass concentrationwas
determined turbidometrically at 600 nm [30].

2.2 Cluster formation

For the calculation of specific rates and cluster forma-
tion, MATLAB 2020b (MathWorks, Natick, MA, USA) was
used and the script can be found in Mendeley Data repos-
itory, which is schematically depicted in Supporting Infor-
mation 1. Inter-sample concentrations 𝑐𝐷(𝑡𝑗) (with 𝐷 =

1, 2, …𝑚 representing biomass, substrate and products)
were approximated using PCHIP-function [31] as previ-
ously described in [26]. For the calculation of biomass-
specific rates 𝑟𝐷(𝑡𝑗) [mmol g-1 h -1] (1), linear slope was
approximated as time derivative of 𝑐𝐷 for each compound
𝐷. In case of biomass (𝐷 = 1), specific production rate cor-
responds to the growth rate 𝜇(𝑡𝑗) [h−1] and was calculated

via exponential fit (2).

𝑟𝐷,𝑡 =
1

𝑐1 (𝑡)

𝑑𝑐𝐷 (𝑡)

dt
||||𝑡 ≈ 1

𝑐1 (𝑡)

Δ𝑐𝐷
Δ𝑡

(1)

𝜇𝑡 = 𝑟1,𝑡 =
1

𝑐1 (𝑡)

𝑑𝑐1 (𝑡)

𝑑𝑡
(2)

This calculation of rates using concentrations from sam-
plings was performed for all datasets of cultivation experi-
ments 𝑐𝑒𝑝 (𝑝 = 1, 2, …𝑝𝑚𝑎𝑥 representing each cultivation
experiment). From all calculated rates 𝑟𝐷 , outlier removal
of 3th and 97th percentiles for each compound 𝐷 was per-
formed to dampen potential cluster misalignments due to
calculated rates that are sensitive at low or high biomass
concentrations except for Density-based spatial clustering
of applications with noise (DBSCAN) clustering. The gen-
erated dataset contains for each 𝑡𝑗 a specific set of 𝜇 and 𝑟𝐷
of different compounds, which can be depicted as a vec-
tor 𝑎𝑗,𝑝 = (𝜇 𝑟𝐷=2 𝑟𝐷=3 … 𝑟𝐷=𝑚)

′ |𝑡=𝑡𝑗, 𝑐𝑒=𝑐𝑒𝑝 that describes
a specific biological phenotype found at cultivation time 𝑡𝑗
of the cultivation 𝑝.
Then, the datasetswere normalized to z-scores (3)with 𝑆

as sample standard deviation (4) for each compound 𝐷 =

[1,𝑚] to avoid scalar-basedweighting of specific elements,
yielding in 𝛼∗

𝑗,𝑝
= (𝑧𝑗,𝑝1 𝑧𝑗,𝑝2 … 𝑧𝑗,𝑝𝑚)

′ . For identification
of patterns or clusters of all vectors, the following unsu-
pervised learning methods were applied: k-means cluster-
ing [32, 33] and DBSCAN [34]. Briefly, the centroid-based
clustering algorithm, k-means clustering, iterates the posi-
tion of the centroids 𝜁 for the given number of clusters 𝑘
with the objective of minimizing the sum of all point-to-
cluster-centroid distances. In addition, k-means++ algo-
rithm [32] was applied for center initialization for repli-
cates. The following distance metrics were used for the
distance calculation: squared Euclidean distance (SED) (5)
and cosine distance (CD) (6). For k-means clustering, dif-
ferent clustering evaluationmethods can be applied to esti-
mate the optimal number of clusters 𝑘. In this work, eval-
uations using the Gap criterion [35] and the Silhouette
criterion [36] with SED and CD were applied with man-
ual upper limit of 30 without repetition. In addition, the
Davies-Bouldin criterion [37] and the Calinski-Harabasz
criterion [38] were used with SED. The density-based clus-
tering method sorts all observations (vector 𝛼∗

𝑗,𝑝
) into core,

border or noise points fulfilling the criteria of 𝜀 (scalar for
neighborhood search radius for each 𝛼∗

𝑗,𝑝
) and 𝑛𝑝𝑚𝑖𝑛

(min-
imum number of neighbors for a core point). Found core
points matching the criteria of 𝜀 and 𝑛𝑝𝑚𝑖𝑛

correspond to
a cluster. DBSCAN-parameters (𝜀, 𝑛𝑝𝑚𝑖𝑛

) were manually
screened. The formed clusters from the describedmethods
were separately analyzed and characterized. For that, re-
scaled centroid 𝜁 was estimated as medians of all 𝑎𝑗,𝑝 of
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the same cluster.

𝑧𝑗,𝑝𝐷 =

(
𝑎𝑗,𝑝𝐷 − 𝑎𝑗,𝑝𝐷

)
𝑆𝐷

= 𝑎∗
𝑗,𝑝𝐷

(3)

𝑆𝐷 =

√√√√∑𝑗=𝑗max , 𝑝=𝑝max

𝑗=1,𝑝=1

(
𝑎𝑗,𝑝𝐷 − 𝑎𝑗,𝑝𝐷

)2
𝑛 − 1

(4)

𝑑SED

(
𝛼∗
𝑗,𝑝

, 𝜁∗
)
=
‖‖‖𝛼∗

𝑗,𝑝
− 𝜁∗

‖‖‖22 =

𝑚∑
𝐷=1

(
𝛼∗
𝑗,𝑝

𝐷
− 𝜁∗𝐷

)2

(5)

𝑑CD
(
𝛼𝑗,𝑝 ∗, 𝜁 ∗

)
= 1 − cos (𝜃) = 1 −

𝑎∗
𝑗,𝑝

⋅ 𝜁∗‖‖‖𝑎∗
𝑗,𝑝

‖‖‖2‖‖𝜁∗‖‖2
= 1 −

∑𝑚

𝐷=1
𝑎∗
𝑗,𝑝𝐷

𝜁∗𝐷√∑𝑚

𝐷=1
𝑎∗
𝑗,𝑝𝐷

2
√∑𝑚

𝐷=1
𝜁∗𝐷

2

(6)

2.3 Analysis of clusters

To compare generated clusters in a radar plots, centroids
of 𝑧 of each cluster were re-scaled for each element 𝐷 =

[1,𝑚] from 0 to 1. For specific rates of substrates (negative
values representing consumption of the glycerol and/or
glucose), the signs were changed and labeled as con-
sumption to improve the comparability. To detect poten-
tial conditional correlations of cluster prevalence related
to datasets, which were not directly included for cluster
formation and assignment (e.g. concentration ranges of
substrate, product, cultivation condition), the logarithmic
deviation of proportions between a specific cluster 𝐶𝐿=
1, 2, … 𝑘 representing cluster number and the total dataset
for a given condition 𝑐𝑜𝑛𝑑 was calculated as in (7), where
𝑛𝐶𝐿,𝛼𝑗,𝑝 equates to the number of 𝛼𝑗,𝑝 assigned to the clus-
ter 𝐶𝐿. The sample population consists of all 𝑎𝑗,𝑝 that are
included in the cluster generation. Since sampled glycerol
concentrations from fed-batch fermentations were entered
as accumulated amount of consumed glycerol, these sam-
ple points were excluded for the analysis for conditional-
ity based on concentrations of substrates and metabolites.
Otherwise, concentrations of substrates and metabolites
were rounded in 1, 5, 10, 20, 50, and 100 mmol L-1 steps
for pooling as concentration ranges.

𝛿𝑐𝑜𝑛𝑑 (𝐶𝐿) = log10

⎛⎜⎜⎜⎜⎜⎝

𝑛𝐶𝐿,𝛼𝑗,𝑝

⌋
𝑐𝑜𝑛𝑑

𝑛𝐶𝐿,𝛼𝑗,𝑝∑𝑘
𝐶𝐿=1 𝑛𝐶𝐿,𝛼𝑗,𝑝

⌋
𝑐𝑜𝑛𝑑∑𝑘

𝐶𝐿=1 𝑛𝐶𝐿,𝛼𝑗,𝑝

⎞⎟⎟⎟⎟⎟⎠
(7)

2.4 Superposition of cluster centroids

The utilized MATLAB script can be found in Mendeley
Data repository. As iterative approach of depiction of 𝑎𝑗,𝑝
(specific phenotypic state, e.g. steady state phenotype from
a continuous fermentation) or series of 𝑎𝑗,𝑝 (dynamic phe-
notype behavior of culture broth, e.g. phenotypes of a batch
fermentation) superposition principle was applied. Under
the assumption that the cellular (phenotypic) behavior can
be approximated as superposition of cluster centroids with
a certain distribution, the non-negative least squares fit-
ting problem (8) was solved, where𝐴∗∗ (9) equates a𝑚 × 𝑘

matrix for𝑚 and 𝑘 as total number of compounds and clus-
ters, respectively. To avoid weighting due to varying scales
of the elements of 𝐷 = [1,𝑚] in 𝐴∗∗, centroids 𝜁𝐷,𝐶𝐿 and
𝑎𝑗,𝑝 were re-scaled for each𝐷 from 0 to 1, resulting in 𝜁∗∗

𝐷,𝐶𝐿
and 𝑎∗∗

𝑗,𝑝
. As indicator for quality of the fitting, the resid-

ual term 𝑦∗∗ (10) was used to calculate the residual sum of
squares (𝑅𝑆𝑆) (11) for all elements of 𝑦∗∗. Smallest resid-
ual sum of squares speaks in favor for a good approxima-
tion of data points via the combination of clusters and rep-
resents the best possible solution. To describe the fittings
via 𝑥∗∗ (vector of variables, 𝑥∗∗

𝐶𝐿
with 𝐶𝐿 = [1, 𝑘], for the

non-negative least squares fitting problem) as distributions
of clusters, the proportion 𝑥𝑗,𝑝,𝐶𝐿 for cluster 𝐶𝐿 fitting the
phenotype found at 𝑡𝑗 from the experiment 𝑐𝑒𝑝 was calcu-
lated as in (12). For superposition approximation of time-
series data (e.g. batch fermentation), Gaussian-weighted
moving average was calculated over a window of five vec-
tors to smooth time-dependent fluctuations.

min
𝑥∗∗

‖‖‖𝐴∗∗ ⋅ 𝑥∗∗ − 𝑎∗∗
𝑗,𝑝

‖‖‖22, 𝑥∗∗
≥ 0 (8)

𝐴∗∗ =

⎛⎜⎜⎜⎜⎝

𝜁∗∗
𝐷=1,𝐶𝐿=1

𝜁∗∗
𝐷=1,𝐶𝐿=2

⋯ 𝜁∗∗
𝐷=1,𝐶𝐿=𝑘

𝜁∗∗
𝐷=2,𝐶𝐿=1

𝜁∗∗
𝐷=2,𝐶𝐿=2

⋯ 𝜁∗∗
𝐷=2,𝐶𝐿=𝑘

⋮ ⋮ ⋱ ⋮

𝜁∗∗
𝐷=𝑚,𝐶𝐿=1

𝜁∗∗
𝐷=𝑚,𝐶𝐿=2

⋯ 𝜁∗∗
𝐷=𝑚,𝐶𝐿=𝑘

⎞⎟⎟⎟⎟⎠
(9)

𝑦∗∗ = 𝐴∗∗ ⋅ 𝑥∗∗ − 𝑎∗∗
𝑗,𝑝

(10)

𝑅𝑆𝑆 = 𝑦∗∗
′

𝑦∗∗ (11)

𝑥𝑗,𝑝,𝐶𝐿 =
𝑥∗∗
𝐶𝐿∑𝑘

𝐶𝐿=1
𝑥∗∗
𝐶𝐿

× 100% (12)

3 RESULTS AND DISCUSSION

3.1 Choice of parameters and clustering

From 1025 sampling data consisting of concentrations
(biomass, substrates and products) from different cul-
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tivation time points of 90 C. pasteurianum cultivations,
specific rates were calculated and arranged as vectors. For
clustering, a distance metric as a measure of dissimilar-
ities must be chosen, where squared Euclidean distance
(SED, Figure 1A) and cosine distance (CD, Figure 1B)
were employed in this work. For a simplified case of
three dimensions, SED computes the Euclidean distance
between points that leads to an ellipsoidal cluster forma-
tion. Thus, phenotypic behaviors, which are described
with a set of specific rates, are agglomerated within a
computed range that is all similar in the scale in all
dimensions. CD is based on the inner product space of two
vectors, where the angle between the vectors represents
the distance of two vectors as basis for CD. Thus, the
“directional” traits of the vectors are clustered together
independent of the scale or “length” of the vectors. In
addition to distance metric, varying scalar differences
and degree of scattering for different dimensions of each
vector was found to introduce undesired scalar weighting.
Therefore, we decided to continue with normalization
of 𝑎𝑗,𝑝 by taking account the sample standard deviations
(4) and found the z-score normalization to be a potent
method to calculate normalized vectors 𝑎∗

𝑗,𝑝
. As shown in

Figure 1C,D, the calculated distances for CD and SED are
transformed to lower weighted (below the reference line)
or higher weighted (above the reference line) distances.
As an initial approach for clustering, we decided to

apply a density-based clustering method that can distin-
guish between noise or outliers and clusters. The DBSCAN
clustering algorithm with its feature of finding “natu-
ral clusters” and noise detection [39] seemed promising.
However, the presence of different local densities for dif-
ferent potential clusters that are not captured by global
parameters [40] and “curse of dimensionality” for high-
dimensional datasets [41] resulted in difficulties for suit-
able cluster assignments. Sander et al. [42] suggested
𝑛𝑝𝑚𝑖𝑛

corresponding to twice the number of dimensions,
which conforms to 22 in this demonstrated case. Results
of screening for suitable 𝜀 value employing SED and CD
are shown in Figure 1E,F. When SED was used as the
metric, only a maximum of two clusters were identified
with proportions between 99.3% and 100% of clustered data
assigned to the first cluster, which was mostly the sole
cluster. For CD, up to six clusters were found (𝜀 = 0.056)
with 35.29% of data successfully assigned. Still, over 70%
of assigned data were allocated to the first cluster, lead-
ing only to 10.46% of all data assorted to the remaining five
clusters.
Pursuing an alternative method, we continued with k-

means as centroid-based clustering method, which is an
iterative algorithm. Data grouping is performed, in which
data points in each cluster are as close to each other and as
far away as possible from other clusters, resulting in most

compact and well separated cluster formation [43]. As an
input requirement, k as number of clusters is needed that
can be predicted by several methods as described in Sec-
tion 2.2. In contrast to DBSCAN, classical k-means does
not feature noise or outlier detection, inclusion of all data
points without prior outlier removal will lead towards dis-
torted clustering with imprecise centroids—especially for
vectors at low biomass concentrations due to the defini-
tions of biomass-specific rates as in (1). Varying the per-
centiles for exclusion had a great influence on the cluster-
ing result: for the exemplary case of CD as distance met-
ric and silhouette evaluation method for determination of
k, tendency of increased k with increasing percentiles of
excluded data points was observed (Figure 1G). For further
analysis with k-means, we continued with an exclusion of
3rd and 97th percentiles.
Overall, normalization to avoid scalar weighting, choice

of distance metric depending on the intended motive and
clustering parameters were the required inputs for the
computing process. Independent from clustering meth-
ods, these input parameters directly and indirectly stand
for number of clusters and outlier/noise elimination, and
thus, accuracies of formed clusters. In this demonstrated
case, the general consideration follows two contrary ideas:
accurate detection of all phenotypic manifestations (e.g.
SED, no outlier removal with exceptionally high k), which
may also detect noise as potential clusters; or generaliza-
tion of phenotypic behaviors (e.g. CD, high outlier removal
rate with manageable k) with potential risk of oversimpli-
fication and overlooking in-between phenotypic manifes-
tations. Increase of k simultaneously increases the range
and differentiation of captured cellular behavior by sac-
rificing manageability. Pursuing a compromise between
accuracy and manageability, we continued with CD and
k of 14 (based on silhouette criterion) (Figure 2). As a
recommended strategy from this demonstration, estima-
tion of k by using here employed (or alternative) crite-
rions (in Figure 1H), gives the first indication of ranges
for k. Considering accuracy vs. manageability, one can
then decide and iteratively adjust specific parameters that
suits the need and intention. Obviously, these parame-
ters need to be re-examined depending on the spectrum
of metabolism as well as quality and quantity of data for
alternative cases and datasets. Thus the quantitative eval-
uation for dataset-based influences for phenotype analy-
sis requires further study employing alternative datasets.
Overall, under the assumption of absent additional refer-
ence phenotypes within the dataset, there will be a satu-
ration point of input dataset leading to only marginal dif-
ferences of captured clusters with increasing quantity. The
quality of dataset, however, remains essential for the accu-
racy of desired output. In addition,with great advances and
fast development of new clustering methods [44], other
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F IGURE 1 Vector display of fermentation data with utilized distance metrics, impact of z-score normalization, influence of clustering
parameters and computed number of optimal clusters using different criteria. (A and B) For a simplified example of three dimensions (growth
rate, specific 1,3-propanediol production rate, specific glycerol consumption rate) the vector display is shown for squared Euclidean distance
(SED) and cosine distance (CD). Each point/vector 𝑎𝑡,𝑝 represents the phenotypic manifestation during a cultivation experiment, which is
used for clustering. For computing clusters, SED as ‖𝑎𝑡𝑟,𝑝

− 𝑎𝑡𝑠 ,𝑝
‖22 between exemplary points at 𝑡𝑟 and 𝑡𝑠 or CD based on the angle 𝜃 between

both vectors are used. (C and D) Valuation of distances to the mean of all data depending on the sample standard deviation via z-score
normalization for SED and CD, respectively. All distances above the reference lines represent distances that are weighted higher through
consideration of sample standard deviation and vice-versa. (E and F) Number of identified cluster and the clustering properties for
Density-based spatial clustering of applications with noise (DBSCAN) are shown for SED and CD, respectively. Proportions of clustered data
(non-noise data) and proportion of data in cluster 1 depicts the quality of DBSCAN. (G) Computed optimal number of clusters using
silhouette criterion and CD metric with varying degree of outlier removal of each dimension up to 5th and 95th percentiles. (H) Computed
optimal number of clusters using different criterions for CD and SED metric with 3rd and 97th percentiles of outlier removal
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F IGURE 2 Scatter matrix for k-means clustering of 90 Clostridium pasteurianum cultivation experiments. For k of 14, k-means
clustering was performed based on cosine distance metric and z-score normalization. All 11 dimensions (growth rate (𝜇), specific production
or consumption rates of glucose (Glc), glycerol, 1,3-propanediol (PDO), ethanol (EtOH), butanol (BuOH), lactic acid (LaAc), formic acid
(FoAc), acetic acid (AcAc), butyric acid (BuAc) and 2-oxobutyric acid (OBuAc)) are shown in a scatterplot matrix, where the diagonal shows a
histogram of each dimension as number of points with normalized scales. The units are: [h-1] for growth rate, [mmol g-1 h-1] for other rates
and [-] for the diagonal

algorithms may be equally or better employable for such
application, which require further study.

3.2 Cluster analysis and comparison
between clusters

Two clusters (clusters 1 and 10) (Figure 3A) were found
that utilize mainly glucose with different product spec-
trums. For co-consumption of glycerol and glucose,
clusters 12 and 13 were identified, while cluster 13 showed

the highest 1,3-propanediol production rate from all
identified clusters. Interestingly, cluster 2 (Figure 3B) was
identified as sole cluster with 2-oxobutyric acid production
and without apparent glycerol and glucose consumption.
The remaining nine clusters were grouped as clusters
with glycerol as sole substrate with diverse phenotypic
expressions (Figure 3C-F): from all identified clusters,
the highest butyric acid (cluster 3), formic acid (cluster
7), lactic acid (cluster 8), butanol (cluster 11) and ethanol
(cluster 4) production rate, as well as highest specific
growth rate (cluster 5) were identified. Cluster 9 and
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F IGURE 3 Radar charts of identified clusters of phenotypic manifestations in C. pasteurianum. Normalized centroids of 14 clusters of C.
pasteurianum fermentations using cosine distance metric sorted based on the main carbon source. (A) Clusters 1 and 10 utilize glucose (Glc)
as major substrate and clusters 12 and 13 utilize Glc and glycerol (Gly), while cluster 10 and 13 showed the highest acetic acid (AcAc) and
1,3-propanediol (PDO) production rates, respectively; (B) Cluster with 2-oxobutyric acid (OBuAc) production without apparent Glc or Gly
consumption; (C–F) Clusters with Gly as major substrate, further differentiated by the product spectrum. Clusters 3, 7 and 8 (C) show highest
production rates of butyric acid (BuOH), formic acid (FoAc) and lactic acid (LaAc), respectively. Highest solventogenesis of ethanol (EtOH)
and butanol (BuOH) were found for clusters 4 and 11 (D), respectively. Cluster 5 and 6 (F) showed highest and lowest growth rate (μ),
respectively. Clusters 9 and 14 (E) are not characteristic for a single metabolic activity

14 did not include any dominant production of specific
metabolite and cluster 6 represents the state of no cellular
growth with minimal biological activity.
The fundamental thought throughout cluster-based

assessment is that the computed centroids only represent
an abstraction of the detected phenotypic manifestations,
in which the correlation to reality is based on the origin of

clustered data. By qualitatively comparing identified clus-
ters to previous works with data, which was not included
in this cluster analysis, high similarities were observed for
multiple clusters. For instance, the highest 1,3-propanediol
production in co-substrate rather thanmono-substrate fer-
mentation [45] corresponds to cluster 13, where the lower
production of 1,3-propanediol on glycerol appeared at a
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varying spectrum of acidogenesis [27, 30, 45] as clusters 3,
8 or 14. The definition of identified clusters as “references”
describes not only the potential spectra of phenotypic
expression and enables enhanced comparison, but also
brings additional advantages, which is further highlighted
in the next sections. Comparing the clusters, the interre-
lation between specific production or consumption rates
of each cluster can be assessed as a linked whole. In an
exemplary case of butanol biosynthesis as a desired pheno-
typic manifestation, cluster 11 (Figure 3D) stands out with
the highest specific production rate (5.23 mmol g-1 h-1).
However, if by-production of acids are undesired, cluster
9 (s. Figure 3E) represents a more suitable manifestation
with a butanol to acid production ratio of 18.5 mol per mol
of acids (vs. cluster 11 with 3.1) despite the lower specific
butanol production rate of 2.72 mmol g-1 h-1 for cluster 9.
Consequently, the overall molar glycerol-specific yield is
improved: 0.37 mol butanol per mol of glycerol (vs. clus-
ter 11 with 0.27).

3.3 Conditionality of phenotypic
manifestations

Through clustering, several reference phenotypes were
detected enabling categorical assessment of factors and
conditions according to the references. In contrast to man-
ually analyzing influences on all possible dimensions and
directions for each factor (in respect to all data sets), the
categorical assessment employing clusters as references
was perceived as a much simpler process. Pursuing to
find potential candidates as influencing factors (potential
conditionalities), features or information, which were not
included for the clustering, were compared for each clus-
ter. Since the “raw concentrations” were not directly clus-
tered, they were defined as tags to calculate the logarith-
mic deviation to the total dataset as in (7): negative val-
ues represent under-representation of specific conditions
in the cluster and vice versa. Following up on the previous
example, clusters 9 and 11 were compared.
Comparing the ranges of concentrations of biomass

(cell dry weight), glycerol and butanol, a trend of
reciprocal representation between cluster 9 and clus-
ter 11 was observed (Figure 4A-C): cluster 9 was over-
representative at high biomass (≥ 0.34 g L-1), lower glyc-
erol (between 0.1 and 0.6 mol L-1) and high butanol
concentrations (≥ 60 mmol L-1); whereby cluster 11
was over-representative at lower biomass concentrations
(between 0.05 and 0.30 g L-1), higher glycerol concentra-
tions (≥ 0.7 mol L-1) and lower butanol concentrations
(between 20 and 80 mmol L-1). In regard of fermenta-
tion conditions, both clusters were under-representative
for pH-uncontrolled serum bottle cultivations, and over-

representative in fermentations employing BES (Fig-
ure 4D,E). For additional additives, it appears that both
clusters are over-representative for higher concentrations
of initial FeSO4∙7H2O concentrations (100 mg L-1 for both
clusters and 10 mg L-1 only for cluster 11; Figure 4F) and
cluster 11 (Figure 4G) is over-representative for cultivations
with Neutral Red and Brilliant blue addition.
This observation shows that properties that were not

included directly for cluster formation were nevertheless
clustered into a common grouping. However, we noticed
that it is crucial to consider cause-and-effect relationship
and bias of the input dataset. Cause-and-effect relationship
can be highlighted with butanol concentration ranges in
the demonstrated example (Figure 4C), where it is unlikely
to find data near 0 mmol L-1 butanol concentration, since
cluster 9 and 11 are pre-defined with high butanol produc-
tion. The influence of bias from the input dataset can be
shown for the initial FeSO4∙7H2O concentration, where
absence of over- or under-representation of cluster 9 for
10 mg L-1 (Figure 4F) is simply based on missing cultiva-
tion experiments at 10 mg L-1 FeSO4∙7H2O. Despite these
observations, potential cultivation conditions (including
dynamic conditions) were isolated as potential condition-
alities. However, valuation and confirmation of poten-
tial conditionalities require additional experimental vali-
dations.

3.4 Cluster-based balancing of carbons
and ATP

To demonstrate the practicability of utilizing clusters as
referencemanifestations and to validate the characteristics
of detected clusters, we continued to analyze the carbon
recovery 𝑅𝐶 (13) considering theoretical CO2 production
rate (14) based on the product formation (rate of decarboxy-
lation of pyruvate), where 𝑛𝐶 equates to number of car-
bons per mol of the compound (Table 1). With the excep-
tion of cluster 2 (unidentified carbon intake), other clusters
were found to represent phenotypic expression with car-
bon recoveries between 53% and 201% (Figure 5A). In gen-
eral, carbon recoveries lower than 100% can be interpreted
as metabolic products (e.g. primary metabolites) missing
from the analysis. Carbon recoveries over 100% indicate
potential substrates not factored duringmeasurement (e.g.
complex compounds, such as yeast extract). Despite the
origin of the datasets that includes the whole range of
dynamic cellular behavior, the majority of clusters showed
recoveries close to 100%. The exceptions are cluster 5, 7
and 12 that showed recoveries between 53% and 70%, while
cluster 10 showed over 200% carbon recovery. Thus, we
continued with further analysis based on the assumption
that discrepancy over 19% (from 100%) is generated from
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F IGURE 4 Logarithmic deviations of dynamic and general cultivations conditions (clusters 9 and 11) from total dataset.
Over-representation (logarithmic deviation >0) indicate elevated appearance of a specific cluster for a given condition in comparison to the
total dataset and vice-versa for logarithmic deviation <0. (A–C) Logarithmic deviations of cluster appearances depending on dynamic
conditions (concentration ranges of cell dry weight, glycerol and butanol, respectively). Logarithmic deviations of (initial) cultivations
conditions are shown for following tags: cultivation condition in pH-uncontrolled serum bottles or bioreactors (D), cultivation employing
bioelectrochemical system (BES) (E), initial iron(II) sulfate heptahydrate concentrations (F) and utilization of additives (G)

TABLE 1 Dimensions of cluster analysis and corresponding definition of substrates and products with their properties used for
calculations in this work

Dimension
(𝑫) Compound Abbreviation

Molar mass
(𝑴𝑫)

Chemical
formula

Number of
carbons
(𝒏𝑪𝑫

)

Stoichiometric
ATP yield
(𝒔𝑨𝑻𝑷∕𝑫)

[-] [-] [-] [g mol-1] [-] [mol mol-1] [mol mol-1]
1 Biomass or

specific
growth rate

BM𝜇 101.1 C4H7O2N
(Biebl [27])

4 𝑀𝐵𝑀

𝑌𝐵𝑀∕𝐴𝑇𝑃

2 Glucose Glc 180.2 C6H12O6 6 –
3 Glycerol Gly 92.09 C3H8O3 3 –
4 1,3-Propanediol PDO 76.09 C3H8O2 3 0
5 Ethanol EtOH 46.07 C2H6O 2 1
6 Butanol BuOH 74.12 C4H10O 4 2
7 Lactic acid LaAc 90.08 C3H6O3 3 1
8 Formic acid FoAc 46.03 CH2O2 1 0
9 Acetic acid AcAc 60.05 C2H4O2 2 2
10 Butyric acid BuAc 88.11 C4H8O2 4 3
11 2-Oxobutyric

acid
OBuAc 102.1 C4H6O3 4 –
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F IGURE 5 Carbon recovery and specific ATP production rates of identified clusters. (A) Carbon recoveries of identified clusters that are
calculated from the characteristic sets of specific rates including theoretical carbon dioxide production rate. (B) Plot of specific ATP
production rate based on substrate-level phosphorylation against specific growth rate and linear fit excluding clusters with carbon recoveries
over 19% discrepancy. Cluster 2 constitutes an exception, since no identified substrate uptake was found disabling calculation of carbon
recovery and specific ATP production rate

here neglected cellular metabolism beyond the range of
basal cellular dynamics.

𝑅𝐶 (𝐶𝐿) =

𝑛𝐶𝐵𝑀

𝜁𝜇

𝑀𝐵𝑀

+
∑𝑚

𝐷=4
𝑛𝐶𝐷

𝜁𝐷 + 𝑟𝐶𝑂2

𝑛𝐶𝐺𝑙𝑐
𝜁𝐺𝑙𝑐 + 𝑛𝐶𝐺𝑙𝑦

𝜁𝐺𝑙𝑦

||||||||𝐶𝐿
(13)

𝑟𝐶𝑂2
(𝐶𝐿) = (𝜁𝐸𝑡𝑂𝐻 + 𝜁𝐴𝑐𝐴𝑐 + 2 (𝜁𝐵𝑢𝑂𝐻 + 𝜁𝐵𝑢𝐴𝑐) − 𝜁𝐹𝑜𝐴𝑐)||𝐶𝐿

(14)

For analysis and balancing of fermentation-related
data from C. pasteurianum, one of the major impor-
tant unknown variables remains the energy metabolism
on ATP-level, which was approached from the perspec-
tive of “clusters as reference phenotypes”: based on the
assumption of ATP biosynthesis solely from substrate-
level phosphorylation, (15) was assumed, where 𝑠𝐴𝑇𝑃∕𝐷

equates stoichiometric molar ATP yield [mol mol−1] and
𝑌𝐵𝑀∕𝐴𝑇𝑃 ATP-specific biomass yield [mol g−1] (Table 1).
The demand for “maintenance” metabolism was simpli-
fied as 𝑞𝑚

𝐴𝑇𝑃
. This balancing neither includes an exten-

sive kinetic model nor energetic considerations based on
inhibition terms or on substrate availability, which leads
to additional effects, such as “energy spilling” [46]. Since
the origin of data, which was used for unsupervised learn-
ing, cover all dynamic phases of bacterial growth, we pur-
sued a more generalized calculation based on the known
and expected range of metabolic spectrum. Hence, with
the exclusion of clusters beyond 19% deviation from full
carbon recovery, an unweighted linear regression (Fig-
ure 5B) was made to assess the unknown variables. The
computed 𝑌𝐵𝑀∕𝐴𝑇𝑃 was (10.18 ± 2.9) g mol−1 that sur-

prisingly well matches to the reported and often used
yield of 10.1 to 10.5 g mol-1 for 1,3-propanediol fermen-
tations [47–49] with 𝑞𝑚

𝐴𝑇𝑃
of (2.46 ± 1.43) mmol g-1 h-1.

However, the presence of “carbon recovery outliers” as
clusters 5, 7, 10, and 12 or clusters 3 and 13 outside of
the 95% confidence band of the linear fit clearly indicate
presence of “unidentified” part of the energy metabolism.
The neglected or unidentified energy metabolism can be
repeatedly observed in cultivationmanifestations ofC. pas-
teurianum as described by 6 of in total 14 clusters, which
does not coincide with the generic fermentation behavior.
Thus, (15) appears only to be limited for specific cellular
manifestations and additional factors are present, which
strongly affects the energetic balance (e.g. substrate avail-
ability, overflow metabolism). Further, the degree of such
influence onto energy metabolism for each reference phe-
notypic manifestation can be hereby assessed. Thus, by
categorizing reference phenotypes to assumed or expected
relationships (here as balancing), validity of such assump-
tions can be assessed in an abstracted manner, so that all
datasets do not need to be individually analyzed and com-
pared.

𝑚∑
𝐷=4

𝑠𝐴𝑇𝑃∕𝐷 𝜁𝐷 =
1

𝑌𝐵𝑀∕𝐴𝑇𝑃
𝜇 + 𝑞𝑚

𝐴𝑇𝑃
(15)

3.5 Cluster-based approximation of
cellular behavior

If clusters can be formed that constitutes reference pheno-
typicmanifestations, analogousness of detected phenotype
of interest to a specific cluster (or combination of clusters)
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F IGURE 6 Superposition-based approximation of batch
cultivation of C. pasteurianum. (A) Time course of cell dry weight of
the batch fermentation and residual sum of squares (RSS) of the
non-negative least square fitting of cluster-based approximation. (B)
Proportions of identified clusters as superposition-based
non-negative least square fitting of all identified 14 clusters that
describe dynamic states of phenotypic manifestation as summed
composition

may be used for comparison or description of cellular
behavior. Based on the superposition-principle, the idea of
describing a phenotypic state as proportions of reference
clusters was applied (e.g. phenotype of interest equals 60%
reference cluster 1 and 40% reference cluster 2; rather than
listing of all specific rates). For its demonstration, an inter-
nal validation was performed for a batch-fermentation
on glycerol utilizing the C. pasteurianum R525 strain,
while the quality of the approximation (non-negative least
square fitting) is described as residual sum of squares
(RSS) (Figure 6A). Shortly after initiation of the fermen-
tation, approx. 30% to 40% of cluster 13 (high acetic acid
and 1,3-propanediol production) and 11 (high butanol pro-
duction) represent the phenotypic behavior. Comparing
these two clusters, the only common feature of clusters
11 and cluster 13 are the relatively high growth rates of
0.171 and 0.120 h-1, respectively. The presence of two
cluster-specific manifestations during the lag phase (and
transition to the exponential growth phase) potentially
indicates cellular adaptation as diverse phenotypes. Then,
cluster 14 becomes with the highest representative cluster
(up to 77%) during the growth phase (starting at approx.
15 h) with relatively dominant 1,3-propanediol production
rate of 5.22 mmol g-1 h-1 and minor acid production rate
of 0.84 mmol g-1 h-1. Interestingly, nearing the stationary
phase, three temporary transitions are to be seen: starting
with cluster 9 (2.72 mmol g-1 h-1 butanol production
rate), followed by cluster 4 (2.23 mmol g-1 h-1 ethanol

production rate) and cluster 6 (almost no biological
activity).
Such simplified description does not provide any ben-

efits, when individual cultivation experiments are con-
sidered. However, for established production processes,
where the process is repeatedly running and the desired
phenotypic manifestation is clearly defined (or ranked),
such reference-based descriptionmay constitute a tool that
indicates the process state as an entirety of phenotypic
manifestations rather than relying on individual parame-
ters (e.g. production rate of product).

4 CONCLUDING REMARKS

The demonstrated method of unsupervised learning for
identification of clusters as reference manifestations
enables simplified processing and comprehensive com-
parison of phenotypic manifestation from multiple series
of fermentation data within seconds. Also, by abstract-
ing excessive number of “data points” as representative
centroids, streamlined analysis is enabled (1025 sampling
points→ 14 clusters) as demonstrated by few examples of
cluster-based analysis.
While the automated process of learning to abstract

generic phenotypic behavior was demonstrated success-
fully for C. pasteurianum, the required inputs and param-
eters needed individual consideration for transfer of this
methods to alternative dataset (other strains or types of
data), where the operator needs to readjust clustering
parameters to obtain desired clustering accuracy andman-
ageability.

NOMENCLATURE

𝐴∗∗ [-] Matrix of all [0,1]-rescaled
centroids of all clusters

𝑀 [g mol−1] Molar mass
𝑅𝐶 [%] Carbon recovery
𝑅𝑆𝑆 [-] Residual sum of squares
𝑆 [various] Sample standard deviation
𝑌𝐵𝑀∕𝐴𝑇𝑃 [g mol−1] ATP-specific biomass yield

coefficient
𝑎 [various] Vector of specific rates (𝜇 and

𝑟𝐷) as phenotypic
manifestation

𝑐 [g L−1 or mmol L−1] Concentration
𝑐𝑒 [-] Cultivation experiment
𝑑𝐶𝐷 [-] Cosine distance as measure of

dissimilarity
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𝑑𝑆𝐸𝐷 [various] Squared Euclidean distance
as measure of dissimilarity

𝑘 [-] Number of clusters
𝑛𝐶 [-] Number of carbon
𝑛𝐶𝐿,𝛼𝑗,𝑝

[-] Number of vectors (𝑎𝑗,𝑝)
assigned to a specific
cluster 𝐶𝐿

𝑛𝑝𝑚𝑖𝑛
[-] Minimum number of

neighbors for a core point
used for DBSCAN

𝑞𝑚
𝐴𝑇𝑃

[mmol g-1 h -1] Biomass-specific ATP
consumption rate for
cellular maintenance

𝑟 [mmol g-1 h -1] Biomass-specific rate
𝑠𝐴𝑇𝑃∕𝐷 [-] Stoichiometric factors for ATP

recovery via substrate-level
phosphorylation for
biosynthesis of compound
in 𝐷

𝑡 [h] Time
𝑥 [-] Portions of cluster for

superposition-based
approximation

𝑦 [-] Residual term of the
non-negative least squares
fitting problem

𝑧 [-] Z-score normalized specific
rates (𝜇 and 𝑟𝐷)

Greek symbols
𝛿𝑐𝑜𝑛𝑑 [-] Logarithmic difference of a

specific cluster to the
sample population incl. all
clusters

𝜀 [-] Scalar for neighborhood
search radius used for
DBSCAN

𝜁 [various] Centroid of a cluster
𝜃 [-] Angle between two vectors
𝜇 [h−1] Specific growth rate
Indices
∗ [-] Z-score normalized value
∗∗ [-] To [0,1]-rescaled value
𝐶𝐿 [-] Cluster [1, 𝑘]
𝐷 [-] Dimensions of phenotypic

manifestations (biomass,
substrates, metabolites) [1,
𝑚]

𝑖 [-] Indices for sampling points [1,
𝑛]

𝑗 [-] Indices for
PCHIP-interpolated points
[1, 𝑗𝑚𝑎𝑥]

𝑝 [-] Indices for cultivation
experiment [1, 𝑝𝑚𝑎𝑥]

Comparable to other machine learning methods, the
quality and quantity of the original data set influences
greatly the results. In this regard, customized “filter” for
raw data, as well as additional weighting of specifically
required parameters or alternative algorithms, can be addi-
tionally employed to the presented method. Nevertheless,
the usage and processing of “raw” concentration data is
possible as it was demonstrated in this work. For its full
exploitation and accentuation of its perks and identifi-
cation of other limitations, application and comparison
of clustering based on alternative data sets is necessary.
Clearly purposed data (e.g. cultivation data of industrial
fermentation) would also be an opportune approach for a
qualitative assessment of its avail.
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