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Abstract

Although classified as an African taurine breed, the genomes of Sheko cattle are an admix-

ture of Asian zebu and African taurine ancestries. They populate the humid Bench Maji

zone in Sheko and Bench districts in the south-western part of Ethiopia and are considered

as a trypanotolerant breed with high potential for dairy production. Here, we investigate the

genome of Sheko cattle for candidate signatures of adaptive introgression and positive

selection using medium density genome-wide SNP data. Following locus-ancestry deviation

analysis, 15 and 72 genome regions show substantial excess and deficiency in Asian zebu

ancestry, respectively. Nine and 23 regions show candidate signatures of positive selection

following extended haplotype homozygosity (EHH)-based analyses (iHS and Rsb), respec-

tively. The results support natural selection before admixture for one iHS, one Rsb and three

zebu ancestry-deficient regions. Genes and/or QTL associated with bovine immunity, fertil-

ity, heat tolerance, trypanotolerance and lactation are present within candidate selected

regions. The identification of candidate regions under selection in Sheko cattle warrants

further investigation of a larger sample size using full genome sequence data to better

characterise the underlying haplotypes. The results can then support informative genomic

breeding programmes to sustainably enhance livestock productivity in East African trypano-

somosis infested areas.

Introduction

The history of cattle in Africa began with the migration of humpless Bos taurus taurus (tau-

rine) from their center of domestication in the Near East to the African continent through

Egypt about 5000 years BC [1]. It was followed by the introduction of Bos taurus indicus (indi-

cine or zebu) from their center(s) of domestication on the Indian subcontinent [2] around

2000 years BC, with further zebu arriving around 700 years AD following Arabs trading along

the East coast of Africa, and the onset of the Swahili civilization [3].

Given the sole presence of taurine mitochondrial DNA haplogroups in African cattle [4, 5],

together with zebu-specific Y chromosome alleles [6], a male-mediated pattern of zebu
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introgression to the continent is the favored hypothesis [6]. Following the African rinderpest

epidemic at the end of the 19th century, which led to a massive eradication of susceptible Afri-

can taurine cattle, dispersal of the more resistant zebu ancestry was accelerated in the western

and southern parts of the continent [3, 7].

Presently there are more than 150 recognized African cattle breeds or populations, classified

as either taurine, zebu, sanga (an ancient stabilized taurine x zebu crossbreed), or a sanga x

zebu crossbreed called zenga [8]. Genetically, most of the African cattle are admixed popula-

tions of zebu x taurine ancestries with a gradient of indicine ancestry peaking amongst the

East African breeds and declining westward and southward to reach its minimum level in

West African cattle [3, 7]. Several African trypanolerant taurine cattle with little or no zebu

ancestry still populate the highly tsetse fly (the vector of trypanosomosis) infested zones of

West Africa (e.g. N’Dama in Guinea and Muturu in Nigeria) [9]. A possible ancient introgres-

sion of the extinct African auroch Bos primigenius opisthonomus within African cattle has been

suggested [7] however this requires further investigation.

Sheko cattle are indigenous to East Africa inhabiting the humid Bench Maji zone mainly in

Sheko and Bench districts at the south-western part of Ethiopia [10, 11]. They were originally

classified as taurine, while recent genetic analyses indicates they are more of a sanga type with

African taurine and Asian zebu genetic ancestry proportions of 0.3 ± 0.014 and 0.7 ± 0.014,

respectively [12]. The presence of a small cervicothoracic hump in them alludes to their zebu

ancestry [11]. Sheko cattle are adapted to these highly tsetse-infested areas and are considered

trypanotolerant [11, 13, 14]. They also have good potential as dairy cattle for Africa, having

large teats and the ability to yield on average 2.79 ± 0.06 liters of milk daily and 850.6 ± 24.16

liters per lactation period, which is 307.69 ± 6.13 days, depending on the on-farm management

practice [11, 15].

Previous studies of East African shorthorn zebu [16, 17], Butana and Kenana zebu from

Sudan [18], and taurine and zebu cattle breeds from the western and eastern parts of the Afri-

can continent [19] have identified signatures of positive selection in genes and quantitative

trait loci (QTL) associated with adaptive traits. Many of the genes and QTL identified were

found to be involved in biological pathways, such as bovine immunity, reproduction, heat tol-

erance and coat color. These studies applied genome-wide analyses of genotype data generated

using the Illumina BovineSNP50 Beadchip [16], the Illumina BovineHD BeadChip [17, 18], as

well as full genome sequence data [17, 19]. In commercial cattle breeds genes associated with

milk yield and composition, muscle development and coat color have also been identified to

be under positive selection [20–22].

In admixed populations, large deviations in genomic local ancestry relative to the average

genome-wide admixture level may represent possible adaptive introgression [22–24], particu-

larly if these regions are of large size and/or overlap with candidate footprints of positive selec-

tion. In humans this approach has been previously used to define positively selected genomic

regions in an admixed Puerto Rican population with local ancestry deviation in the human

leukocyte antigen regions on chromosomes 6, 8 and 11 [23]. A later study on a population of

African–American descent identified genomic regions with significant excess of African

ancestry in genes linked to the onset of diabetes, pancreatic and lung cancer [24].

Analysis of the dairy/beef dual purpose Simmental x Red Holstein-Frisian admixed Swiss

Fleckvieh cattle has revealed recent responses to selection using medium density genome-wide

SNP data [22]. Two regions on BTA 13 and 18 showed significant local ancestry deviation

towards Simmental ancestry. These regions carry genes associated with bovine fertility (NKD1
and NOD2) and the FTO gene, which has a pleiotropic effect being involved in milk composi-

tion and fertility.

Adaptive genomic introgression in Sheko cattle
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In this study, we employ genotype data generated using Illumina’s BovineSNP50 BeadChip

to assess whether or not the genomic landscape of Sheko cattle has been under selection fol-

lowing introgression with zebu. We identify genomic regions in Sheko cattle with substantial

locus-ancestry deviation and unusual extended haplotype homozygosity (EHH) and discrimi-

nate between the pre- and post-admixture selection pressures on the genome.

Materials and methods

SNP genotyping and quality control

Genome-wide SNP genotype data from the Illumina BovineSNP50 BeadChip version 1 [25]

for 20 East African taurine Sheko, 25 West African taurine N’Dama and 21 Asian zebu Nelore

cattle were obtained from the Bovine HapMap consortium [26]. Quality control analyses were

carried out on 54,334 autosomal SNPs mapped to the UMD3.1 bovine reference genome using

the check.marker function of the GenABEL package [27] for R software version 3.2.2 [28]. In

total, 19,417 SNPs with minor allele frequency less than 0.05 and 6,886 SNPs with call rate less

than 0.95 were removed. Among these, 5,766 SNPs failed both criteria, leaving 33,797 SNPs for

downstream analyses. None of the samples had a SNP call rate< 0.95 or identity-by-state

(IBS) > 0.95.

Locus-ancestry deviation analysis

The Asian zebu and African taurine ancestry proportions were estimated in 1 Mb sliding geno-

mic windows using the PCAdmix software version 1.0 [29]. fastPHASE software version 1.4

[30] was used to phase the genotyped SNPs into the corresponding haplotypes using K10 and

T10 criteria. Population label information was provided to estimate the phased haplotype

background. The Asian zebu ancestry proportion of each genomic window was estimated as

the proportion of zebu haplotypes carried by the Sheko samples in that window. Windows

deviating by two standard deviations (SD) from the mean zebu ancestry of all the genomic

windows were considered as candidate regions with substantial excess/deficiency in Asian

zebu ancestry.

Extended haplotypes homozygosity (EHH)-derived statistics (Rsb and iHS)

Intra-population iHS [31] and inter-population Rsb [32] analyses were conducted using the

rehh package [33] for R software to define candidate genomic regions with signatures of posi-

tive selection. The iHS analysis was carried out using genotyped SNPs with intra-population

minor allele frequency� 0.05. The iHS statistic is calculated by first defining the integral of the

observed decay of EHH against the physical genomic position of the SNP, as one moves away

from a core SNP for both the reference and alternative alleles until it reaches an arbitrary value

of 0.05. These integrals, which are summed over both directions from the core SNP, are called

iHHRef and iHHAlt for the reference and alternative alleles, respectively. The natural log of the

ratio (iHHRef/iHHAlt) is standardized to generate an iHS value for each SNP with a mean 0 and

variance 1, as described in Voight, Kudaravalli (31). As the standardized iHS values are nor-

mally distributed "Panel A in S1 Fig" and signatures of selection on both the reference and

alternative alleles are equally important, a two-tailed Z test was applied to identify statistically

significant SNPs. Two-sided P-values were derived as–log10(1–2|F(iHS)-0.5|), where F(iHS)
represents the Gaussian cumulative distribution function. Inter-population Rsb analyses [32]

were conducted separately between Sheko cattle and African taurine (N’Dama) and Asian

zebu (Nelore) cattle. In the Rsb analysis, the EHH for the two alleles of a SNP was averaged

and weighted by their squared allele frequencies, which provided the site-specific EHH

Adaptive genomic introgression in Sheko cattle
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(EHHS). As with EHH, the observed decay of EHHS for each core SNP was integrated and

summed over both directions in both populations (iES). An Rsb value for each SNP was

obtained by standardizing the natural log ratio between the iES of Sheko population (iESSheko)
with iES of the second reference population (iESReference), as described in Tang, Thornton (32).

As the standardized Rsb values are normally distributed " Panels B and C in S1 Fig" a one-tailed

Z-test was applied to identify statistically significant SNPs under selection in Sheko cattle (pos-

itive Rsb value). One-sided P-values were derived as–log10(1- F(Rsb)), where F(Rsb) represents

the Gaussian cumulative distribution function. In both iHS and Rsb, -log10 (P-value) = 3,

equivalent to a P-value of 0.001, was used as a threshold to define significant iHS and Rsb val-

ues. A candidate region was defined if at least two SNPs not separated by more than 500 Kb

passed the significant threshold as followed by [16], which is the extent of linkage disequilib-

rium determined in the genomes of different taurine and indicine breeds [34].

Functional characterization of the candidate regions

Genes mapped on the UMD3.1 reference bovine genome within substantial excess/deficiency

Asian zebu ancestry regions and candidate regions with signatures of positive selection were

retrieved from the Ensemble Genes 86 database [35]. Bovine Quantitative Trait Loci (QTL)

mapped on the UMD3.1 reference genome (http://www.animalgenome.org/cgi-bin/QTLdb/

BT/index) intersecting with the Sheko candidate regions were also identified.

Genetic differentiation Fst analysis

Genetic differentiation analysis was conducted between the Asian zebu Nelore and the African

taurine N’Dama breeds using Weir and Cockerham’s Fst estimator [36] calculated by the hierf-

stat package [37] for R software. Fst values were estimated for each genotyped SNP and aver-

aged over 1 Mb sliding windows overlapping by 10 kb, in which windows with a single SNP

were excluded. Genomic windows in the top 1% tail of the windows Fst values distribution

were considered as differentiated windows for further analyses. Overlapping windows were

merged into candidate genomic regions.

Results

Asian zebu ancestry deviation on Sheko cattle genome

The locus-ancestry deviation analysis on the sliding 1 Mb genomic windows indicates a mean

Asian zebu and African taurine ancestry proportions of 0.56 ± 0.18 and 0.44 ± 0.18, respec-

tively. Out of the total 2,314 genomic windows, 15 of these distributed across 12 autosomes

show substantial excess in Asian zebu ancestry. Whilst, 72 genomic windows distributed across

24 autosomes show substantial deficiency in Asian zebu ancestry “Fig 1 and S1 Table”.

Candidate iHS and Rsb regions on Sheko cattle

The intra-population iHS analysis reveals nine candidate regions with signatures of positive

selection across six autosomes, one on BTA 2, 7 and 8, and two on BTA 3, 4 and 5 “Fig 2A”.

The inter-population Rsb analyses of Sheko with the N’Dama and Nelore cattle reveal 22 can-

didate regions with signatures of positive selection on 11 autosomes for the N’Dama compari-

son (one on BTA 3, 6, 14, 18 and 24; two on BTA 5, 11 and 12; three on BTA 2; four on BTA 7

and 13), and a single candidate region for the Nelore comparison on BTA 24 “Fig 2B and 2C

and S2 Table”.

Adaptive genomic introgression in Sheko cattle
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Overlap among the EHH-based statistics and the locus-ancestry deviation

analysis

A total of four iHS candidate regions on BTA 2, 3, 5 and 7 overlap with the N’Dama compari-

son Rsb candidate regions. Whilst the single Rsb candidate region with Nelore cattle on BTA

24 overlaps with a genomic window showing substantial deficiency in Asian zebu ancestry

(BTA 24: 4.46–5.43 Mb; Table 1).

Functional annotation of the Sheko candidate regions

A total of 71 genes are found within substantial excess zebu ancestry regions and 721 genes

within deficient zebu ancestry regions “S3 Table”. The candidate iHS signatures of positive

selection regions have 57 annotated genes, while 85 genes are present within the N’Dama com-

parison Rsb regions, and two genes in the single Nelore comparsion Rsb region “S4 Table”.

These genes are associated with several biological functions, such as immunity (e.g. IL7, IL15,

FCN2, ICOS, LTA4H and NFAM1), fertility (e.g.MEA1, CLGN and RXFP2), heat tolerance

(HSPA6 and DNAJC6) and lactation (PRLH) “Table 2”.

A total of 188 QTL overlap with the excess zebu ancestry regions and 706 with the deficient

zebu ancestry regions “S5 Table”. Moreover, 124, 284 and eight QTL intersect with iHS,

N’Dama comparison Rsb and Nelore comparison Rsb candidate regions, respectively “S5

Table”. These QTL are linked with different biological pathways, such as lactation (e.g. milk

yield, milk fat percentage and milk protein yield), fertility (e.g. calving ease, gestation length

and sperm motility), body composition (e.g. rump angle, foot angle and height) and immunity

(e.g. tick resistance). Trypanotolerance-controlling QTL, identified by a cross between tolerant

West African N’Dama and susceptible East African Boran cattle by [38], are found within two

zebu ancestry excess, five zebu ancestry deficient and four N’Dama comparison Rsb regions

“S6 Table”.

Fig 1. Manhattan plot of standardized Asian zebu ancestry deviation on Sheko autosomes. Sheko cattle autosomes plot showing deviation

(excess/deficiency) in standardized Asian zebu ancestry in 1Mb sliding windows.

https://doi.org/10.1371/journal.pone.0202479.g001
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Genetic differentiation regions between the Asian zebu and African taurine

cattle

The mean Fst value of sliding 1 Mb windows between the Nelore and N’Dama cattle breeds is

0.15 ± 0.07. Upon merging genomic windows, the top 1% tail of the Fst values distribution

contained a total of 57 regions distributed across 21 autosomes. These are considered as highly

differentiated genomic regions between these two cattle breeds “Fig 3 and S7 Table”.

Two of the Fst regions overlap with candidate regions for signatures of selection in Sheko

cattle (one iHS region and one N’Dama comparison Rsb region). Three Fst regions overlap

with regions showing substantial deficiency in zebu ancestry in the Sheko cattle genome

“Table 1”.

Discussion

The genome of Sheko cattle was analyzed, using genome-wide medium density SNP data, to

identify candidate genomic regions with signatures of adaptive introgression and positive

selection. These regions were defined based on locus-ancestry deviation analysis and two

EHH-based statistics (iHS and Rsb). We inferred the origin of these selection footprints as pre-

or post-admixture based on genetic differentiation analysis between the two Sheko ancestral

cattle breeds: N’Dama and Nelore.

Genomic regions with signatures of adaptive introgression and natural

selection

The first cattle on the African continent were of the taurine types. Subsequently, the spread of

Asian zebu ancestry in the African continent from their center of domestication in the Indian

subcontinent has led to various indigenous African cattle breeds with admixed Asian zebu x

African taurine genomic structure [3]. The genome of these admixed cattle breeds would have

been subjected to selective pressures to maximize the reproductive fitness of the crosses and

their adaptability to the environmental challenges.

Adaptive introgression for advantageous zebu characteristics may be expected, while some

taurine genomic regions previously selected for local adaptation would have resisted

Fig 2. Manhattan plots of genome-wide signatures of positive selection analyses. (A) iHS analysis (B) Rsb analysis with the African

taurine N’Dama cattle and (C) Rsb analysis with the Asian zebu Nelore cattle. The significance threshold is set at–log10 (two-tailed P-

value for iHS analysis) and (one-tailed P-value for Rsb analysis) = 3.

https://doi.org/10.1371/journal.pone.0202479.g002

Table 1. Chromosomes and positions (in Mb) of overlapping candidate selected regions detected by locus-ancestry deviation, iHS, Rsb and Fst analyses.

Zebu deficient

genome regions

His

Sheko

Rsb

Sheko -N’Dama

Rsb

Sheko -Nelore

Fst

Nelore–N’Dama

2: 129.61–129.68 2: 129.61–130.4

3:79.18–79.22 3:78.2–79.5

3: 75.83–76.12 3: 75.83–76.8

5: 60.58–61.4 5: 60.51–61.4

7: 20.66–21.6 7: 21.55–21.6

8:40.28–41.28 8:39.6–40.8

8:42.44–43.24 8:42.5–43.5

11:46.82–47.18 11:46.3–48.7

23:10.5–11.48 23:10.4–11.5

24: 4.46–5.53 24: 4.47–4.61

https://doi.org/10.1371/journal.pone.0202479.t001
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introgression. In the Sheko cattle, 87 candidate genomic regions showed substantial deviation

in Asian zebu ancestry, of which 15 regions showed an excess and 72 showed a deficit of zebu

ancestry, indicating candidate signatures of positive selection. Although the genome of Sheko

cattle is mainly composed of zebu ancestry [12], about 83% of the candidate ancestry deviation

regions showed deviation towards the taurine haplotypes. This supports the likelihood that

these regions are of importance for the adaptability of Sheko cattle to the local environment.

Interestingly, five of these zebu ancestry deficient regions overlap with five trypanotolerant

QTL, while two of these regions with excess of zebu ancestry overlap with two trypanotolerant

Table 2. Examples of candidate genes within the candidate regions of the different analyses conducted in the study. Candidate regions are represented as (BTA: start

Mb—stop Mb).

Biological role Candidate regions Analysis Gene ID

Immunity 2:91.99–92.950 Locus-ancestry analysis� ICOS
5:60.51–61.4 Rsb (Sheko-N’Dama) LTA4H

5:112.95–113.91 Locus-ancestry analysis� NFAM1
11:106.24–107.04 Locus-ancestry analysis� FCN2

14:43.35–44.35 Locus-ancestry analysis�� IL7
17:15.94–16.87 Locus-ancestry analysis� IL15

Fertility and reproduction 12:29.03–29.72 Rsb (Sheko-N’Dama) RXFP2
17:15.94–16.87 Locus-ancestry analysis� CLGN
23:16.02–17.01 Locus-ancestry analysis� MEA1

Heat tolerance 3:7.74–8.72 Locus-ancestry analysis� HSPA6
3:80.1–80.93 Locus-ancestry analysis� DNAJC6

Lactation 3:116.99–117.96 Locus-ancestry analysis�� PRLH

�Zebu ancestry deficient region

��Zebu ancestry excess region

https://doi.org/10.1371/journal.pone.0202479.t002

Fig 3. Manhattan plot of the genome-wide Fst analysis between the Asian zebu Nelore cattle and the African taurine N’Dama cattle breeds

(1 Mb sliding window). The significance threshold is set at the top 1% of the Fst values distribution tail.

https://doi.org/10.1371/journal.pone.0202479.g003
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QTL. This is not surprising as it has been shown that both regions of zebu and taurine origin

may contribute to the trypanotolerance characteristic of West African N’Dama and East Afri-

can Boran crossbreeds [38].

Moreover, the two different EHH-based analyses, iHS and Rsb, identified 32 candidate

regions with signatures of positive selection in Sheko cattle (nine regions for iHS, 22 regions

for Rsb Sheko—N’Dama comparison, one region for Rsb Sheko—Nelore comparison). The

Rsb Sheko—N’Dama analysis results support selection pressures on zebu haplotypes, whilst,

the Rsb Sheko–Nelore analysis indicates that the taurine haplotypes within this region are the

target of selection. These results require further investigation and validation using full genome

sequence data of Sheko cattle and the ancestral cattle breeds.

The confounding effect of the natural demographic history and selection

Demographic population processes, such as migration and the associated gene flow and genetic

drift, also shape the genome diversity of livestock populations and may lead to similar signals as

natural selection at the genome-wide level [39]. This will be the case in pure breeds as well as in

admixed populations. Concerning the latter, taurine or zebu haplotypes may have become fixed

following random segregation of alleles subsequent to admixture. However, it could be argued

that in the absence of selection such taurine or zebu fixed regions in the crossbreed will show

sequence diversity. The overlap between four iHS and Rsb candidate regions, and between a single

zebu-deficient region with an Rsb candidate region “Table 1” supports the role of selection pres-

sures, and not natural demographic processes, in shaping the genomic pattern of these regions.

This low level of overlap between iHS and Rsb selection and introgression may be a consequence

of a lack of power in the analyses performed here. A caveat of the iHS analysis is that it will not

identify a selected haplotype which has reached or is close to reaching fixation, while the Rsb anal-

ysis cannot identify signatures of selection for haplotypes that are under selection in both breeds

being compared [39]. The methods we have applied target different selection timeframes, with the

ancestry deviation approach targeting recent post-admixture selection, while the EHH-based sta-

tistics identify much older signals of selection [40], and as such we would not expect to observe

significant overlap across the results. Indeed, a study on the admixed Swiss Fleckvieh cattle breed,

which is a composite of Simmental and Red Holstein-Friesian cattle breeds, also resulted in little

overlap when applying the same approaches [22]. Increasing the sample size and density of the

SNP data, for example through whole-genome sequencing, will greatly improve the power of

these tests, enabling a more robust investigation into signatures of selection in Sheko cattle. None-

theless, 24 candidate regions (three zebu excess, 11 zebu deficient, two iHS and eight Sheko—

N’Dama Rsb regions) do overlap with candidate genomic regions under positive selection

reported in previous studies on indigenous African cattle breeds such as the East African Short-

horn Zebu [16, 17], and the Butana and Kenana cattle [18], as well as commercial cattle breeds,

Murray Grey, Shorthorn and Charolais [20].

Functional annotation of the candidate regions

Several genes and QTL associated with different biological pathways, e.g. immunity, fertility

and reproduction, heat stress, and the dairy production characteristics of Sheko cattle, have

been identified within the candidate selected regions. These genes and QTL might be related

to the adaptation of Sheko cattle to the local environment and hence can be considered as tar-

gets of natural selection in Sheko cattle. These cattle are known to be tolerant to different

endemic parasitic diseases [11, 41], and so the immunity-related genes within the candidate

regions identified (e.g. LTA4H, IL7, IL15, FCN, LTA4H and NFAM1) are potential targets of

natural selection. An immunity-related gene identified in a Sheko—N’Dama Rsb candidate
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region on BTA 5 is leukotriene A-4 hydrolase (LTA4H). This gene is associated with immune

response regulation and inflammation response in mammals [42]. LTA4H was also been iden-

tified within a candidate region of positive selection in East African shorthorn zebu cattle

(EASZ) from Kenya [16]. Two interleukin genes (IL7 and IL15) were identified in zebu-excess

and zebu-deficient regions on BTA 14 and BTA 17, respectively. Interleukin-7 is an important

cytokine involved mainly in the early development of B- and T-cells [43]. Whilst, Interleukin-

15 mediates the activation of natural killer cells [44].

Genes related to fertility and reproduction are hotspots of selection in indigenous cattle

breeds living in tropical environments. The relaxin/insulin-like family peptide receptor 2

(RXFP2) gene is present in a Sheko—N’Dama Rsb candidate region on BTA 12. This gene is

involved in the testicular descent development [45], and has also been found to be under selec-

tion in two different tropical-adapted admixed cattle population; EASZ [16, 17] and Creole

cattle [46]. The calmegin (CLGN) gene, located in a zebu-deficient candidate region on BTA

17, is a testis-specific Ca+2-binding protein involved in mediating the binding between eggs

and sperms during fertilization [47]. The male-enhanced antigen-1 (MEA1) gene found within

a zebu-deficient candidate region on BTA 23 is expressed mainly in spermatids indicating a

possible role in late stages of spermatogenesis [48].

The agro-ecological zone of the sheko is classified as warm and humid to peri-humid, charac-

terized by a mean annual temperature of 22.6˚C and annual rainfall from 1200 to 2200 mm [49].

In such an environment tolerance to heat and humidity will be advantageous.HSPA6 and

DNAJC6 genes are both found within zebu-deficient candidate regions on BTA 3. The heat shock

protein family A member 6 (HSPA6) is a member of the heat shock protein (Hsp70) family which

protect cells from lethal damage caused by heat stress through maintaining the folding of newly

synthesized proteins and assembly of multi-protein complexes [50]. DNAJC6 acts as a co-factor

for Hsp70 family to mediate their cellular function [51]. Members of these two gene families have

also been found previously to be under selection in EASZ [16, 17].

Sheko cattle are considered a breed with good dairy potential. Several dairy production-

related QTL (e.g. milk yield, milk fat percentage and milk protein yield) overlap the candidate

regions identified, including the prolactin releasing hormone (PRLH) gene which overlaps

with a zebu ancestry-excess region. A study in African zebu cattle also identified a candidate

selection peak at the prolactin releasing hormone (PRLH) gene [19]. In addition, it has been

shown that mutation at prolactin (PRL) and its receptor (PRLR) genes have an impact on ther-

moregulation and hair morphology [52]. The prolactin pathway might therefore have been

selected in Sheko cattle both in relation to milk production and heat tolerance.

Origin of selection: Pre- or post-admixture?

Highly differentiated genomic regions between the ancestral populations of an admixed popu-

lation may indicate ancient signatures of selection prior to admixture [22, 24]. We found over-

laps between three zebu ancestry deficient regions and a Sheko—N’Dama Rsb candidate

region with highly differentiated regions between Nelore and N’Dama cattle. While the former

suggest signals of ancient selection within African taurine prior to admixture, the later suggest

an ancient zebu selected region. However, these results require further validation using a

higher density genome-wide SNP chip, such as the Illumina BovineHD Genotyping BeadChip,

and/or full genome sequence data.

Conclusion

In this study we employed genome-wide medium density SNP data to investigate the genome

of Sheko cattle for regions with signatures of adaptive introgression and positive selection.
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Several candidate regions were identified showing excess and deficiency in zebu ancestry and

unusual extended haplotype homozygosity. These regions are associated with different biologi-

cal traits such as immunity, reproduction, heat tolerance and lactation. Some of these selection

signals are likely to be a result of ancient selection prior to the admixture of the ancestral Afri-

can taurine and Asian zebu breeds. Our findings contribute towards improving our under-

standing the genome of the Sheko cattle breed, and can inform breeding programmes to

enhance the productivity and sustainability of the indigenous African cattle in their native

environment. However, further validation and investigation using a larger sample size and

high-resolution data, such as that from a high-density SNP array or full genome sequence data,

is required to better characterize the favorable haplotypes or variants under selection.
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