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Synthetic Genomics focuses on the construction of rationally designed chromosomes and
genomes and offers novel approaches to study biology and to construct synthetic cell
factories. Currently, progress in Synthetic Genomics is hindered by the inability to
synthesize DNA molecules longer than a few hundred base pairs, while the size of the
smallest genome of a self-replicating cell is several hundred thousand base pairs. Methods
to assemble small fragments of DNA into large molecules are therefore required.
Remarkably powerful at assembling DNA molecules, the unicellular eukaryote
Saccharomyces cerevisiae has been pivotal in the establishment of Synthetic
Genomics. Instrumental in the assembly of entire genomes of various organisms in the
past decade, the S. cerevisiae genome foundry has a key role to play in future Synthetic
Genomics developments.
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INTRODUCTION

Synthetic Genomics (SG) is a recent Synthetic Biology discipline that focuses on the construction of
rationally designed chromosomes and genomes. SG offers a novel approach to address fundamental
biological questions by restructuring, recoding, and minimizing (parts of) genomes (as recently reviewed
by (Coradini et al., 2020)). SG is now spurring technological developments in academia and has a strong
future potential in industry (Schindler, 2020; Zhang et al., 2020)). Humankind’s best microbial friend, the
baker’s yeast Saccharomyces cerevisiae, has played, and continues to play a key role in SG advances, both
by enabling the construction of chromosomes for other hosts, and in the refactoring of its own genome.
This mini review explores the reasons for this strategic positioning of S. cerevisiae in SG, surveys the main
achievements enabled by this yeast and reflects on future developments.

CURRENT LIMITATIONS OF GENOME ASSEMBLY

While small-sized viral chromosomes were the first to be chemically synthetized, the breakthrough in
the field of SG came with the synthesis and assembly of the 592 kilobase (kb) chromosome of
Mycoplasma genitalium (Gibson et al., 2008a; Gibson et al., 2008b). The unicellular eukaryote
Saccharomyces cerevisiae has made a key contribution to this famous milestone. To understand how
this microbe, commonly used in food and beverages, contributes to the assembly of synthetic
genomes, let us recapitulate how synthetic chromosomes can be constructed (Figure 1).

It starts with the customized synthesis of short DNA molecules called oligonucleotides.
Oligonucleotides are mostly synthetized using phosphoramidite chemistry, a 40 year-old method
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(Beaucage and Caruthers, 1981) that, despite decades of
technological developments, struggles to deliver error-free
oligonucleotides longer than 200 base pairs (bp). While the
implementation of microarrays has substantially decreased the
synthesis cost, it has not increased oligo length, an achievement
that requires new synthesis methods (Hughes and Ellington,

2017). Enzymatic alternatives for DNA synthesis are under
development (Lee H. H. et al., 2019; Lee et al., 2020), but still
have considerable shortcomings regarding automation and
scalability that must be overcome before commercial scale can
be considered (reviewed in (Ostrov et al., 2019; Eisenstein, 2020a;
Hao et al., 2020; Paul et al., 2021)). Considering that a theoretical

FIGURE 1 | In vivo and in vitro approaches for DNA assembly in synthetic genomics (A) Simplified overview of chromosome construction using Saccharomyces
cerevisiae for genome assembly and production (B) Strengths and weaknesses of in vitro and in vivo assembly methods. (1) Assembly of fragments in B. subtilis is
performed by integration into the host genome. (2) Between rounds of sequential assembly, transformation into E. coli is conventional for selection and amplification of
constructs. (3) Requires in vivo amplification and selection in a microbial host.
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minimal genome would be around 113 kb long (Forster and
Church, 2006) and that the first fully synthesized genome of
M. genitalium contains 583 kb (Gibson et al., 2008a), thousands
of oligos must be stitched together to construct a complete
synthetic genome. These DNA oligos can be assembled into
longer DNA fragments by using a plethora of in vitro methods
(reviewed in (Chao et al., 2014; Casini et al., 2015; Paul et al.,
2021)). A method that has gained tremendous popularity since its
development is the homology-based Gibson isothermal assembly
(Gibson et al., 2009), devised to assemble the M. genitalium
genome. As all in vitro methods, Gibson assembly is limited by
the number of fragments that can reliably be stitched together in
one reaction, usually around a dozen, requiring a stepwise
assembly procedure of increasingly large genomic DNA
constructs (Gibson et al., 2010b). DNA must be recovered
from the reaction, amplified and verified in each round, to
allow further processing. Selection and amplification of
correctly cloned DNA is routinely performed in Escherichia
coli, however, maintenance of large constructs of exogenous
DNA, especially from prokaryotic origins, in this bacterium is
often limited by expression and toxicity of gene products (Karas
et al., 2015). In vitro alternatives for efficient and faithful selection
and amplification of correctly assembled DNA are under
development, but these are currently limited in length of
amplified DNA and scalability (Su’etsugu et al., 2017; van Nies
et al., 2018; Libicher et al., 2020; Mukai et al., 2020). While in
principle stepwise in vitro assembly can lead to a DNA molecule
of any size, and selection and amplification in E. coli worked well
for DNA constructs up to 72 kb, E. coli had great difficulties
maintaining quarterM. genitalium genomes, causing Gibson and
others to turn to baker’s yeast (Gibson et al., 2008a; Gibson et al.,
2008b).

SACCHAROMYCES CEREVISIAE AS A
GENOME FOUNDRY

S. cerevisiae seems a logical host for SG as it naturally maintains a
12 Mb genome consisting of 16 chromosomes ranging from 230
to 1,500 kb in its haploid version, lives as polyploid in natural
environments, and is extremely robust to changes in genome
content and architecture (Shao et al., 2018). The extreme
robustness of S. cerevisiae to supernumerary, chimeric
chromosomes, a key feature for SG, was already demonstrated
in the late ‘80s (Burke et al., 1987; Larionov et al., 1996). A second
key feature of S. cerevisiae is its preference for homologous
recombination (HR) to repair double-strand DNA breaks
(Kunes et al., 1985), a rare trait among eukaryotes. S.
cerevisiae ability to efficiently and with high fidelity stitch
together linear DNA molecules that present homologous
regions as short as 40 bp (Noskov et al., 2001) at their ends,
was rapidly valorized for genetic manipulations and assembly of
heterologous DNA. Recently renamed in vivo assembly, this
cloning technique (Figure 1) contributes to the remarkable
genetic tractability and popularity of S. cerevisiae as model and
industrial microbe (Larionov et al., 1994; Gibson et al., 2009). The
combination of S. cerevisiae’s HR efficiency and fidelity,

chromosome maintenance and propagation enabled the
construction of the full Mycoplasma genome. Reflecting that
“in the future, it may be advantageous to make greater use of
yeast recombination to assemble chromosomes”, this study
propelled S. cerevisiae as powerful ‘genome foundry’ (Gibson
et al., 2008a). In the challenge to synthesize genomes, Ostrov and
others rightfully identified assembly of these long DNA
constructs as “the most critical hurdle” (Ostrov et al., 2019).
To date, S. cerevisiae has been key to assembling entire or
partial genomes in most synthetic genome projects (Table 1).
For instance, the entire 785 kb refactored Caulobacter crescentus
(renamed C. ethensis) genome was assembled in vivo from 16
fragments (Venetz et al., 2019), while the recoded E. coli genome
was split over 10 fragments of 91–136 kb which were individually
assembled in yeast, and then sequentially integrated in the E. coli
chromosome to replace native segments (Fredens et al., 2019)
(Table 1). In vivo assembly also proved to be powerful in
assembling and modifying genomes of organisms that are
poorly amenable to genome editing; the rapid and faithful
HR-based assembly of S. cerevisiae recently enabled the
reconstruction of a synthetic SARS-CoV-2 genome in a single
week (Thao et al., 2020), and has been shown to be a promising
host for in vivo assembly and modification of other viral genomes
(Vashee et al., 2020) as well as the genomes of various pathogens
(Benders et al., 2010) and even a 101 kb human gene, which was
transplanted into mouse embryonic cells (Mitchell et al., 2021)
(Table 1). Moreover, S. cerevisiae was selected for the
construction of the first synthetic eukaryotic genome. The
international Sc2.0 consortium, spearheaded by Jef Boeke,
undertook less than 10 years ago the daunting task of
synthesizing recoded versions of the 16 yeast chromosomes.
Via stepwise, systematic replacement of 30–40 kb (using ca. 12
DNA fragments of 2–4 kb) of the native yeast sequence, the
consortium is close to the completion of the largest synthetic
genome to date (Pretorius and Boeke, 2018; Eisenstein, 2020b),
with the ambition to reshape and minimize the S. cerevisiae
genome (Dai et al., 2020).

While S. cerevisiae is not the only microbial host available for
the construction of (neo)chromosomes (Figure 1), several key
features make it superior to its bacterial alternatives Bacillus subtilis
and E. coli as genome foundry: 1) S. cerevisiae has the natural ability
to carry large amounts of DNA and therefore to host multiple
exogenous bacterial genomes (Benders et al., 2010); 2) E. coli
frequently struggles with toxicity caused by the expression of
exogenous bacterial sequences (Sorek et al., 2007; Gibson et al.,
2008b; Karas et al., 2015), while S. cerevisiae is very robust to the
presence of heterologous DNA from prokaryotic or eukaryotic
origin (Tagwerker et al., 2012); 3) S. cerevisiae can, in a single
transformation, assemble many DNA oligonucleotides into
(partial) genomes. B. subtilis can also maintain large exogenous
DNA constructs, but requires a stepwise method for DNA
assembly, in which each DNA part is integrated sequentially
into B. subtilis genome (Itaya et al., 2018). This approach is
intrinsically more labor-intensive and time-consuming than S.
cerevisiae single transformation assembly.

Surprised by S. cerevisiae genetic tractability, Gibson and
others wondered “how many pieces can be assembled in yeast
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TABLE 1 | Overview of the contribution of S. cerevisiae in synthetic genomics by the assembly of large (>100 kb) DNA constructs.

Donor DNA Number of
transformed
fragmentsa

Approximate size
of transformed
fragmentsa,b

Approximate
size

of final
construct

Aim of yeast
assembly

References

Viruses Herpes simplex type 1 11 14 kb 152 kb Assembly and modification of viral
genome, transfection and reconstitution in
mammalian cells

Oldfield et al.
(2017)

Autographa californica
nucleopolyhedrovirus

4 45 kb 145 kb Assembly and modification of viral
genome, transfection and reconstitution in
insect cells

Shang et al. (2017)

Cytomegalovirus isolate
Toledo

3 116 kb 230 kb Assembly and modification of viral
genome, transfection and reconstitution in
mammalian cells

Vashee et al.
(2017)

Prokaryotes Mycoplasma genitalium 6 Up to 144 kb 592 kb Assembly of synthetic M. genitalium
genome which could not be stably
maintained in E. coli

Gibson et al.
(2008a)

Mycoplasma genitalium 25 17–35 kb 592 kb Assembly of synthetic M. genitalium
genome from short fragments, exploring
assembly capacity in yeast

Gibson et al.
(2008b)

Mycoplasma mycoides 11 100 kb 1 Mb Assembly of synthetic M. mycoides
genome, transplantation to a recipient cell
to create the first bacterial cell controlled
by a synthesized genome

Gibson et al.
(2010a)

Mycoplasma pneumonia 2 10–816 kb 826 kb Insertion of yeast regulatory elements in
the fullM. pneumonia genome to allow for
cloning and engineering of the genome

Benders et al.
(2010), Ruiz et al.
(2019)

Mycoplasma hominis 2 5–665 kb 670 kb Insertion of yeast regulatory elements in
the full M. hominis genome to allow for
cloning and engineering of the genome

Rideau et al.
(2017)

Acholeplasma laidlawii 33 121–897 kb 1.38 Mb Exploring potential toxicity when
assembling bacterial genomes in yeast

Karas et al. (2012)

Escherichia coli 3 185–660 kb 1.03 Mb Assembly of a minimal E. coli genome by
Cas9-induced recombination of partial
genomes

Zhou et al. (2016)

Escherichia coli 7–14 6–13 kb 100 kb Assembly of recoded E. coli partial
genomes, used to replace the E. coli
genome by a recoded synthetic genome

Fredens et al.
(2019)

Caulobacter crescentus 16 38–65 kb 785 kb Assembly of a minimized and synthetic C.
crescentus genome, recoded to be
compatible with chemical DNA synthesis
and transplanted in a recipient cell

Venetz et al. (2019)

Prechlorococcus marinus 2 580–675 kb 1.66 Mb Exploring assembly capacity and DNA
stability of exogenous genomes in yeast

Tagwerker et al.
(2012)

Synechococcus elongatus 4 100–200 kb 454 kb Exploring the ability to clone genomes
with high G/C-content in yeast

Noskov et al.
(2012)

Algae Phaeodactylum
tricornutum

5 106–128 kb 497 kb Assembly of DNA with a moderate G + C
content as a case study for assembly and
modification of eukaryotic chromosomes
in yeast

Karas et al. (2013)

Chlamydomonas reinhardtii
chloroplast genome

6 34–129 kb 230 kb Assembly of a partial C. reinhardtii
chloroplast genome to create genetic
diversity at multiple loci at once

O’Neill et al. (2012)

Yeasts Yeast chromosome XII 33d 26–39 kb 976 kb Assembly of a megabase synthetic yeast
chromosome harboring the highly
repetitive ribosomal DNA locus

Zhang et al. (2017)

Single-chromosome yeast 15d 230–1,500 kb 11 Mb Assembly of all sixteen S. cerevisiae
chromosomes into a single chromosome

Shao et al. (2018)

Yeast neochromosome 44 2.5 kb 100 kb Assembly of a circular supernumerary S.
cerevisiae neochromosome that can act
as a platform for modular genome
engineering

Postma et al.
(2021)

Yeast neochromosome for
pathway engineering

43 2.5–5 kb 100 kb Assembly of circular and linear
supernumerary S. cerevisiae

Postma et al.
(2022)

(Continued on following page)
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in a single step?” (Gibson et al., 2008a). Pioneering a SG approach
for metabolic engineering based on modular, specialized
synthetic chromosomes, Postma et al. probed this limit
recently in our lab by constructing 100 kb artificial linear and
circular neochromosomes from 44 DNA parts in a single
transformation (Postma et al., 2021; Postma et al., 2022). The
remarkable efficiency of in vivo assembly (36% of assemblies
faithful to design) revealed that its limit has clearly not been
reached yet, and that future systematic studies are required to
evaluate the true potential of S. cerevisiae as a genome foundry.
The supernumerary chromosomes were shown to stably maintain
complete heterologous pathways as well as the yeast’s central
carbon metabolism, underlining the potential of yeast synthetic
genomics in the development of optimized cell-factories. Once
assembled, synthetic chromosomes could be easily edited in S.
cerevisiae thanks to its efficient HR and rich molecular toolbox.

CHALLENGES IN GENOME ASSEMBLY
USING YEAST

While S. cerevisiae is natively proficient for SG, several aspects of
in vivo assembly in yeast are still far from optimal. Firstly,
compared to bacterial alternatives, S. cerevisiae cells grow
slowly with a maximum specific growth rate around
0.4–0.5 h−1 and are hard to disrupt due to their sturdy cell
wall. Considering that large DNA constructs above a few
hundred kilobases are sensitive to shear stress, chromosome
extraction and purification from S. cerevisiae is possible, but
remains tenuous and inefficient, leading to low DNA yields
and potentially damaged chromosomes (Blount et al., 2016).
Secondly, the strength of S. cerevisiae can become its
weakness, as the HR machinery can be overzealous and
recombine any (short) DNA sequence with homology within
or between the (neo)chromosomes, which may lead to
misassemblies. Lastly, non-homologous end joining and
microhomology-mediated end joining, DNA repair
mechanisms that assemble pieces of DNA with no or minimal

homology, are present in S. cerevisiae with low activity (Ranjha
et al., 2018; Lee K. et al., 2019), and can also cause misassemblies.
Similar to how E. coli was engineered to become a lab tool for
DNA amplification, these shortcomings could be alleviated by
engineering S. cerevisiae into a more powerful genome foundry.

Are there future alternatives to S. cerevisiae? Naturally, B.
subtilis and E. coli could also be engineered. However, considering
the minute fraction of the vast microbial biodiversity that has
been tested for genetic accessibility and DNA assembly, it is likely
that microbes yet to be discovered are even better genome
foundries. Environments causing extreme DNA damage (high
radiation, toxic chemicals, etc.) might be a source of HR-
proficient organisms (e.g. (Albarracín et al., 2012; Sato et al.,
2020)) better suited for SG.

In a more distant future, in vitro alternatives might replace the
need for live DNA foundries altogether, thereby accelerating and
simplifying genome construction. However, this will require
major technological advances in in vitro DNA assembly and
amplification. Already substantial efforts have led to the
development of methods for DNA amplification, such as
rolling circle amplification by the phage φ29 DNA polymerase
(Dean, 2001; Lau et al., 2017), recently implemented for the
amplification of a 116 kb multipartite genome (Libicher et al.,
2020) and the in vitro amplification of synthetic genomes using
the E. coli replisome, which already demonstrated to be capable of
amplification of 1 Mb synthetic genomes (Mukai et al., 2020).
Targets for improvement of these methods are the maximal
length of amplified DNA fragments, the yield of amplification,
the need for restriction of the amplified, concatenated molecules
or the formation of non-specifically amplified products. The
development of an in vitro approach that can parallel S.
cerevisiae in vivo assembly capability seems even more
challenging. While an interesting avenue might be to
transplant S. cerevisiae HR DNA repair in vitro, it presents a
daunting task considering that all players and their respective role
have not been fully elucidated yet (Kwon et al., 2017; Ranjha et al.,
2018). Still, considering that highly complex systems such as the
transcription and translation machineries have been successfully

TABLE 1 | (Continued) Overview of the contribution of S. cerevisiae in synthetic genomics by the assembly of large (>100 kb) DNA constructs.

Donor DNA Number of
transformed
fragmentsa

Approximate size
of transformed
fragmentsa,b

Approximate
size

of final
construct

Aim of yeast
assembly

References

neochromosomes for expression of
heterologous and essential metabolic
pathways

Other Human HPRT1 gene 13 3–83 kb 125 kb Assembly of a synthetic human HRPT1
gene and transplantation and expression
in mammalian cells

Mitchell et al.
(2021)

Artificial data storage
chromosome

5 40 kb 254 kb Assembly of a S. cerevisiae artificial
chromosome containing data-encoded
DNA for digital data storage

Chen et al. (2021)

aIn case of a sequential assembly, the fragment number and size of the last assembly is used.
bShort backbones containing regulatory elements such as CEN/ARS, and markers not included.
cInitial assembly of the entire genome failed due to gene toxicity.
dAssembly was performed by stepwise integration in multiple rounds.
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implemented in vitro and are commercially available (Shimizu
et al., 2001), cell-free S. cerevisiae HR might become a reality in
the coming years.

OUTLOOK

Since the first genome synthesis in 2008, relatively few genomes have
been synthetized. Low-cost, customizable construction of designer
genomes, currently accessible for small viral, organellar or bacterial
constructs, is still out of reach for large (eukaryotic) genomes. There
are still numerous technical, financial, and computational hurdles
that must be overcome on the road to microbial designer genomes,
tailored to applications in bio-based industry. Here we reviewed why
the yeast S. cerevisiae is a key organism in the field of SG, however,
the spectrum of available hosts is expected to increase as research in
SG advances. For example, a recent study shows improving the HR
capacity of the industrially relevant yeast Yarrowia lipolytica could
greatly expand the potential applications of SG in bio-based
processes (Guo et al., 2020).

In the near future, SG is anticipated to contribute to various
fields, such as a platform technology for industrial
biotechnological processes (Schindler, 2020; Postma et al.,
2022), as a new means for data storage (Chen et al., 2021)
and for the development of new cell therapies and other medical
applications, which is the ambition of the Genome Project-
Write (Boeke et al., 2016). In parallel, worldwide bottom-up
approaches endeavor to construct synthetic cells from scratch,

such as the European consortia BaSyC (http://www.basyc.nl),
MaxSynBio (https://www.maxsynbio.mpg.de) and the Synthetic
cell initiative (http://www.syntheticcell.eu) and the US-based
Build-a-cell initiative (http://buildacell.io) (reviewed in
Mutschler et al., 2019). Looking further ahead, SG may even
assist in understanding and engineering entire ecosystems by
assembly of a metagenomes in a single cell (Belda et al., 2021).
SG, albeit still in its infancy and mostly limited to academic
research, has bright days ahead, and S. cerevisiae is foreseen to
remain a valuable, if not indispensable, SG tool for the coming
decade.
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