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Abstract: Antibodies are central to acquired immunity against malaria. Plasmodium falciparum elicits
antibody responses against many of its protein components, but there is also formation of antibodies
against different parts of the red blood cells, in which the parasites spend most of their time. In
the absence of a decisive intervention such as a vaccine, people living in malaria endemic regions
largely depend on naturally acquired antibodies for protection. However, these antibodies do not
confer sterile immunity and the mechanisms of action are still unclear. Most studies have focused on
the inhibitory effect of antibodies, but here, we review both the beneficial as well as the potentially
harmful roles of naturally acquired antibodies, as well as autoantibodies formed in malaria. We
discuss different studies that have sought to understand acquired antibody responses against P.
falciparum antigens, and potential problems when different antibodies are combined, such as in
naturally acquired immunity.

Keywords: malaria; Plasmodium falciparum; immunity; antibodies

1. Introduction

Malaria still inflicts an extreme level of burden on people living in endemic regions [1].
Africa carries the largest share of this burden, which could also be further aggravated
in some areas by wars, natural disasters, and epidemics or pandemics of other serious
diseases such as Covid-19 [2]. Malaria is caused by different Plasmodium species and is
transmitted in human populations by bites of infective female Anopheline mosquitoes.
The success of Plasmodium species as parasitic organisms is based on their ability to evade
immune attacks directed against them by the human host, as well as the mosquito vector.
During evolution, the genetic background of both humans and mosquitoes has been of
importance in forming which parasites can multiply successfully.

Antibodies are considered an efficient product of the immune system and they are
generally produced by B cells/plasma cells, but there is an increasing body of evidence to
support antibody production by cancerous and normal non-B cells, such as in proximal
tubuli cells and epithelial cells [3–6]. Naturally acquired antibodies against infectious
agents can exert their effector functions by simple binding (steric hindrance), complement
activation, cellular cytotoxicity, and opsonophagocytosis [7]. The attention of the scientific
world was called to the importance of antibodies in malaria immunology by exquisitely
performed experiments where plasma obtained from adult or cord blood was used to treat
parasitological and clinical symptoms of malaria in sick children [8,9]. Later studies have
doubted that antibodies should work as a treatment, but the idea of using monoclonal
antibodies as part of a treatment protocol is a new possibility [10], even though this kind of
treatment might be available mainly for travelers. Despite the fact that the malaria parasite
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presents a number of antigens to the immune system, which has the ability to generate
a substantial variability in the production of antibodies, most people living in endemic
regions are still not able to maintain high levels of effective antibodies for a long period
of time. The half-life of antibodies against measles has, for example, been estimated to be
around 200 years [11], while antibodies against malaria parasites are only stable for a few
months [12–14]. The widespread presence of atypical memory B cells in endemic areas
could be one of the reasons for the immune inefficiency [15,16], but there is also evidence
that this set of B cells participates in the production of parasite neutralizing antibodies [17].
Here, we review the current knowledge about naturally acquired antibodies elicited against
P. falciparum and highlight antibody interactions with important antigens expressed as the
parasite goes through different stages in the human host as well as the mosquito.

2. Antibody Response in the Dermis and at the Liver Stage

The complex and somewhat treacherous interaction of malaria parasites with the
human host begins when a parasite-infected female Anopheles mosquito injects about
10–150 sporozoites into human skin [18]. Recent studies using human skin explant re-
vealed that sporozoites move rapidly through the dermis [19,20] in a similar way as was
observed in rodent Plasmodium, both in vitro and in vivo [21,22]. Moreover, based on
rodent Plasmodium studies, there is evidence to show that about half of the inoculated
sporozoites could remain in the skin where they form extrahepatic exoerythrocytic forms.
P. falciparum is not known to induce a significant dermal immune response, but a recent
study based on a Plasmodium berghei animal model showed that anti-sporozoite antibodies
targeting mainly the circumsporozoite protein (CSP) have protective functions by inhibiting
sporozoite motility through the skin [23]. Although this antibody-mediated protection
against sporozoites at the dermal stage has not been demonstrated in naturally infected in-
dividuals, it could represent a new level in our understanding of the versatility of antibody
responses to Plasmodium species.

The few sporozoites that are able to make it to the bloodstream quickly invade the
hepatocytes and are exposed to the immune system for a relatively short period of time.
However, naturally acquired antibodies against whole P. falciparum sporozoites have been
demonstrated in endemic areas [24,25]. Circumsporozoite protein (CSP) is the dominant
antigen on sporozoites and contains an amino acid central repeat region that is composed of
different numbers of asparagine–alanine–asparagine–proline (NANP) repeats. Strong anti-
body responses have been found to be produced against NANP repeats [26–30] and against
the other regions of CSP [31]. Naturally acquired antibodies against whole sporozoites
are more widespread and could even be higher in children [30] than antibodies against
the dominant repeat region (NANP) of CSP. This indicates that antibodies are also elicited
against other sporozoite antigens than the immunodominant CSP. Functional activities
of anti-sporozoite antibodies have not been well characterized, but recent evidence has
shown that naturally acquired IgG antibodies directed against CSP can fix the complement
to prevent hepatocyte invasion and kill parasites in vitro [32].

3. Antibodies against Merozoites

The asexual stage of P. falciparum is responsible for all known symptoms of malaria;
thus, functional antibodies against parasite antigens at this stage should be able to reduce
or prevent clinical symptoms of malaria. Merozoite-filled vesicles, merozomes, from
parasite-infected hepatocytes release merozoites into the blood stream where they invade
erythrocytes to begin a 48-h life cycle that will lead to an exponential increase in production
of merozoites. Merozoites in the bloodstream are more exposed to the immune system
and studies have identified naturally produced antibodies against a majority of the known
merozoite surface proteins as well as against merozoite organelles such as rhoptries and
micronemes [33].

Merozoite surface protein 1 (MSP1) is the most abundant protein on the merozoites
and plays an important role in erythrocyte binding and invasion [34]. Some studies have
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found correlations between anti-MSP1 antibodies and protection against clinical symptoms,
while others have not [33,35]. Anti-MSP1 antibodies have been shown to inhibit erythrocyte
invasion, enhance monocyte-mediated phagocytosis of parasites, and aid in complement
fixation [36–38]. Vaccination of humans with full-length MSP1 leads to the production of
antibodies with several of these effector mechanisms [39]. MSP1 is produced as a 196-kDa
precursor that undergoes a two-step proteolytic processing essential for both egress [40]
and invasion. There is evidence for the existence of naturally acquired antibodies that block
this important proteolytic processing of MSP1 [41], called processing inhibitory antibodies,
but it is interesting to note that the same study also found antibodies that could interrupt
the binding of the processing inhibitory antibodies. Thus, any protective advantage that
may be associated with interrupting the MSP1 proteolytic process could also be abrogated
by these blocking antibodies, because they target the same epitope. This is one of the few
studies that have elegantly shown that antibodies can be beneficial not only for the human,
but also for the parasite. Binding of blocking antibodies to the epitope in the presence
of processing inhibitory antibodies would ensure the parasite full proteolytic processing
of MSP1 and thus a proper invasion of RBCs. Most studies in the field of malaria have
focused on finding the antibodies that inhibit the parasites, since these antigens could
be potential vaccine targets, but we should probably put more emphasis on showing
those results that could also be beneficial for the parasites. Having antibodies that can
be both good and bad could be one of the explanations for why no malaria vaccine has
yet proven to be fully successful. We have ourselves, for example, shown that inhibitory
results can be severely affected depending on which parasite line of P. falciparum is used
for the experiments [42]. When purified plasma samples (containing mostly antibodies)
from endemic areas of Tanzania were used in growth inhibitory assays, parasite-specific
antibodies in most samples inhibited the growth of 3D7 and K1 P. falciparum lines, but
when W2mef was used, the growth was actually enhanced, sometimes as much as 25–50%.
It is well established that in endemic areas, many different parasites circulate [43,44] and
if antibodies are produced naturally that can enhance the growth of parasites, this is an
efficient way for parasites to avoid getting cleared by the human immune system and this
should be studied more in detail. It is also known that parasites can vary their invasion
pathways to evade inhibitory antibodies [45] and there is evidence that an increase in
the growth of parasites can be obtained when naturally acquired antibodies from some
individuals are added to P. falciparum parasites in vitro [46]. For other pathogens such as
the parasite Leishmania or viruses like Zika and Dengue, it has been shown that antibody-
mediated responses involving the complement or FcR pathways do not always lead to
protection or reduced infection, but can sometimes be exploited by these pathogens for
enhanced invasion of host cells [47]. This phenomenon is known as antibody-dependent
enhancement (ADE) and it is not clear whether P. falciparum could also use this mechanism
to enhance hepatocyte or erythrocyte invasion. A study suggested that this could definitely
be possible, since a monoclonal antibody obtained from MSP142 vaccines enhanced parasite
invasion and polyclonal IgG enhanced invasion in a complement-dependent manner [48].

Apical membrane antigen 1 (AMA1) is a micronemal protein that is transferred to the
merozoite surface just prior to merozoite egress [49]. Like MSP1, AMA1 undergoes prote-
olytic processing [50] to be functional in erythrocyte invasion. The ability of AMA1-specific
invasion inhibitory antibodies raised in rabbits to inhibit proteolytic processing [51] may
suggest that naturally acquired AMA1-specific antibodies in humans could also function
through inhibiting proteolytic processing. Indeed, protective antibodies directed against
AMA1 have been reported in children and adults living in some endemic areas [52,53], but
these antibodies could be strain-specific due to high polymorphisms seen in AMA1 [54].
Erythrocyte binding antigens (EBAs), especially EBA175, EBA140, and EBA 180, have
repeatedly been shown to elicit antibodies, which may possess invasion inhibitory activ-
ities in endemic populations [14,45] and they have also been associated with protection.
The reticulocyte-binding homologue family of proteins is localized in the rhoptries and
is also the target of blood-stage antibody response. Prominent among this protein fam-
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ily are PfRH1, PfRH2, PfRH3, PfRH4, and PfRH5; they coordinate with EBA members
to make erythrocyte invasion successful. A study in a Kenyan population showed that
antibodies produced against PfRH2a/b and PfRH4 were acquired in an age-dependent
manner [45]. A prospective study conducted in Papua New Guinea showed that IgG
subclass responses to PfRH2 were predominantly IgG1 and IgG3 and strongly associated
with a reduced risk for symptomatic malaria [55]. This study was important because the
entire PfRh2a/b was expressed in eight fragments and all of them elicited an antibody
response that showed a significant association with reduced risk for malaria. Another study
in a low malaria transmission region of Peru also found that the IgG1 response against
PfRh2a/b was significantly higher in asymptomatic individuals, and that the elevated
total IgG antibody response against the proteins was positively associated with decreased
parasitemia [56]. PfRH5 is a potential vaccine, because it is a highly conserved protein and
also plays essential roles in invasion [57]. A recent study reported a low seroprevalence
of antibodies against PfRH5 in a complex with Pf113 and CyRPA (cysteine-rich protec-
tive antigen) in a Ghanaian population [58], and an earlier study [59] also found a low
seroprevalence of PfRH5-specific antibodies in Mali, but these antibodies were found to
have parasite inhibitory activities. It is intriguing that naturally acquired IgG antibodies
produced against highly polymorphic parasite antigens, such as MSP1 and AMA1, are
more prevalent and also have approximately two orders of magnitude higher IgG reactivity
than PfRH5-specific antibodies. However, it is known from before that not only the level,
but also the function of antibodies could be of importance in the development of natural
immunity against malaria [60]; thus, even if the concentration of PfRH5 antibodies might
not be high, the antibodies could still be of major significance. The majority of the parasite
antigens enumerated above, and those not mentioned such as MSP2, MSP2, MSP3, MSP7,
MSP9, MSP10, and GAMA, elicit complement fixing antibodies and they can all contribute
to the immune system armament against the asexual stage of P. falciparum [61]. Protection
from an antibody response to a single antigen is not likely to be sufficient for sustained
protection against malaria in endemic regions. This was demonstrated in a Kenyan popula-
tion where high levels of antibodies as well as responses to multiple antigens were found
to be predictive of protection against malaria [62].

Interethnic differences in antibody responses to some blood-stage antigens such as
ring-infected erythrocyte surface antigen (RESA) and Pf322 have been used as indirect
evidence for the existence of an association between naturally acquired immunity and
human genetic factors [63]. A genome-wide association that assayed 174950 single nu-
cleotide polymorphisms (SNPs) found 25 SNPs with a possible influence on MSP1 antibody
responses [64]. However, an earlier multicenter study in Africa and Asia that assayed
202 SNPs only found moderate evidence for an association of antibody responses to MSP2
and CD36 [65]. Meanwhile, earlier investigations based on classical twin and parent–
offspring studies have demonstrated heritability of antibody responses against RESA,
MSP1, and MSP2 [66–68]. These genetics studies have shown that host factors could also
play important roles, apart from parasite factors, in the pattern of natural antibody response
observed in endemic regions. Bigger studies involving many different populations and
SNPs are needed to show if and how genes have been selected during our co-evolution
with P. falciparum.

4. Antibodies against the Surface of the Infected Red Blood Cell

Obstructions of small blood vessels are caused by binding of proteins expressed
by P. falciparum on the surface of infected red blood cells (iRBC) to human endothelial
cells. This process is central for the development of severe forms of malaria mainly in
children. One of the main iRBC proteins is P. falciparum erythrocyte membrane protein
1(PfEMP1), and antibodies targeting PfEMP1 have been shown to be associated with a
reduced risk of severe malaria in children in endemic areas [69]. A study comparing
antibodies against merozoite surface proteins and anti-PfEMP1 antibodies found the latter
to be more protective in younger and older children, while the former exerted protective
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effects only in older children [70]. VAR2CSA is a member of the PfEMP1 protein family
that is responsible for sequestration of P. falciparum-iRBC in the placenta by binding to
chondroitin sulphate A (CSA) [71]. The sequestration of parasites expressing VAR2CSA
is mainly responsible for pregnancy-associated malaria (PAM) and causes significant
damage to maternal and neonate health in endemic areas. VAR2CSA is produced as a
protein with six Duffy-binding like (DBL) domains and three antigenically important
interdomain (ID) regions [72]. Natural antibodies targeting these domains and antibodies
that prevent CSA binding have been shown to be acquired in a sex and parity-dependent
manner in endemic areas and are considered to be protective against PAM [73–77], but
they have also been shown to exist in men and children [78]. The main mechanism
of action of these antibodies has been shown to be inhibition of binding to CSA, but
more cytophilic antibodies directed against VAR2CSA could also function by opsonic
phagocytosis of placenta-specific parasites [79,80]. However, a recent systemic and meta-
analysis of 33 studies conducted in endemic areas [81] could not find anti-VAR2CSA to
be associated with protection against PAM or birth outcomes, but rather with exposure
to infection. This strong correlation of anti-VAR2CSA antibodies with exposure has made
these antibodies be considered as a powerful tool for monitoring the levels of malaria
burden and transmission in endemic areas, irrespective of whether they are protective or
not [82,83].

5. Autoantibodies at the Blood-Stage

Autoantibodies targeting different human cellular components have been associated
with P. falciparum infections in endemic areas. Autoantibodies can be directed against
membrane phospholipids [84–86], erythrocyte membrane proteins [87,88], or DNA [89].
During an acute episode of malaria, it is quite common to become DAT (Direct Antiglobulin
Test)-positive, a sign that there are autoantibodies bound to RBC. This can later disappear,
even though studies have found around 5% of an apparently healthy adult population in
Kenya and Thailand to be DAT-positive [90,91]. Another study has shown a relationship
between DAT-positivity and acquired protective immune responses against malaria [92],
indicating that these antibodies could have a protective effect.

Not much is known about the mechanisms through which autoantibodies are gener-
ated in malaria infection, but it has been suggested that the expression of parasite proteins
such as PfEMP1 on erythrocyte membranes could be an initiation step. For instance, a
genome-wide study [93] found that PfEMP1 shares a 14-amino acid motif with a human
serum protein, vitronectin. This creates a molecular mimicry pathway for autoantibody
generation during a normal immune response directed against PfEMP1. Cysteine-rich
interdomain region 1 (CIDR1α) of PfEMP1 has also been suggested as a polyclonal ac-
tivator of B cells that can cause production of non-specific IgM [94], which could be a
pathway for autoreactivity. Autoantibodies could also be generated against components
such as phosphatidylserine (PS), which is a membrane phospholipid not normally exposed,
since it is a resident of the plasma membrane inner leaflet, but it is exposed when the
erythrocyte ruptures.

Autoantibodies targeting DNA and other cytoplasmic components could be a form of
homeostatic response to mop up cellular fragments, or debris produced during erythrocyte
rupture that accompany blood-stage infection, or are generated by oxidative damage asso-
ciated with antimalarial drug use [95]. If this is the case, then these antibodies will not have
any protective effect against future P. falciparum infections. On the contrary, they could
instead do more harm than good. Autoantibodies have been shown to aggravate malaria
pathology by inducing cell lysis, microthrombosis, and inflammation [96]. A recent study
demonstrated a clear correlation between kidney injury and autoantibodies against DNA
and PS in Ugandan children with severe P. falciparum malaria [89]. Anemia, a major symp-
tom of malaria, has also been shown to be associated with anti-PS antibodies [85,89,97].
However, there are also autoantibodies that could be associated with protection against
malaria, as found in a Liberian population where antibodies targeting Band 3 neoanti-
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gens were found [98], and sera obtained from autoimmune patients could have similar
effects [99]. Anti-Band 3 (neoantigen) antibodies correlated with lower parasite density and
higher hematocrit [98,100], suggesting a possible role in protection against malaria, even
though the correlation could also just be a result of exposure, since the neoantigens are not
naturally exposed when there is no malaria. However, it is interesting to note that during
the recent years, it has been speculated that having malaria is protective against certain
autoimmune diseases such as systemic lupus erythematosus (SLE), and sera of patients
with SLE has been shown to inhibit in vitro the growth of P. falciparum [101].

6. Antibodies at the Human–Mosquito Junction

Gametocytes are specialized and permanently differentiated forms of Plasmodium
that are responsible for parasite transmission from the human host to the Anopheles
mosquito. Mosquitoes pick up gametocytes when they take blood meals from infected
humans. In response to the environment in the mosquito lumen, gametocytes transform
and after fertilization, they form a zygote. Pfs230 and Pfs48/45 belong to the 6-cystein
protein family that is expressed on the surface of gametocytes and play important roles in
fertilization [102]. Studies have found naturally produced antibodies against these antigens
in most endemic areas, even in individuals with limited exposure to malaria [103]. A
more recent study found non-febrile school children living in a high transmission area to
produce more anti-Pfs230 antibodies compared with a similar group of children in a low
transmission area [104]. Mosquitoes also ingest these antibodies as they take blood meals
and the antibodies can exert their transmission blocking activities by blocking fertilization,
which is an important step in malaria transmission. Pfs47 is also a member of the 6-cysteine
family of proteins [105]. The immune system of Anopheles mosquitoes can limit Plasmodium
infection, but Pfs47 can be used by the parasite to subvert the complement-like immune
mechanism of the mosquito in order to establish an infection [106]. The interaction of
Pfs47 with its receptor on midgut cells disrupts an apoptosis pathway mediated by the
JNK/caspase complex, a step necessary for killing the invading parasite by membrane
lysis [107]. The midgut cell receptor of Pfs47 was recently shown to be P47Rec, a highly
conserved protein [108]. This efficient evasion of the cellular and humoral components of
the mosquito immune system is the first significant barrier cleared by P. falciparum parasites
in their transmission cycle. It could be challenging to produce effective antibodies against
Pfs47 as the majority of monoclonal antibodies produced against full-length recombinant
Pfs47 lacked transmission blocking activities, and some antibodies even seemed to increase
the transmission [109].

7. Conclusions

There is no lack of antibody attacks against P. falciparum in the human host as an-
tibodies accompany the parasites through all the stages of development, and human
anti-parasite antibodies are even carried on into the mosquitoes. Although the functional
roles of autoantibodies are still enigmatic, their contribution to malaria pathogenesis cannot
be disregarded. The ability of malaria parasites to complete their life cycle despite the
abundance of antibody attacks is probably a high level of evolutionary success with a
win–win situation between the human host and the parasites. Antibody responses are able
to protect the host enough for the host to survive, but not enough to kill the parasites; thus,
parasites can survive in low numbers and be transmitted to a new host. The field of malaria
research where combinations of antibodies with different specificities are used together
needs more focus in future studies to elucidate what happens in real life in a human being
during the development of natural immunity against malaria.
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