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Abstract Several universal genomic traits affect trade-offs in the capacity, cost, and efficiency of

the biochemical information processing that underpins metabolism and reproduction. We analyzed

the role of these traits in mediating the responses of a planktonic microbial community to nutrient

enrichment in an oligotrophic, phosphorus-deficient pond in Cuatro Ciénegas, Mexico. This is one

of the first whole-ecosystem experiments to involve replicated metagenomic assessment. Mean

bacterial genome size, GC content, total number of tRNA genes, total number of rRNA genes, and

codon usage bias in ribosomal protein sequences were all higher in the fertilized treatment, as

predicted on the basis of the assumption that oligotrophy favors lower information-processing

costs whereas copiotrophy favors higher processing rates. Contrasting changes in trait variances

also suggested differences between traits in mediating assembly under copiotrophic versus

oligotrophic conditions. Trade-offs in information-processing traits are apparently sufficiently

pronounced to play a role in community assembly because the major components of metabolism—

information, energy, and nutrient requirements—are fine-tuned to an organism’s growth and

trophic strategy.

Introduction
Traits that influence the informational underpinnings of metabolism may be crucial to performance

and community assembly but ecologists have largely focused on the proximal energetic and stoi-

chiometric features of metabolism (Leal et al., 2017; Sibly et al., 2012; Sterner and Elser, 2002).

Organisms must be able to store, copy, and translate the information contained in genetic material.

And, they must be able to update their transcriptome and proteome adaptively in response to

altered environmental conditions. For an organism to grow and reproduce rapidly, rates at every

step of the metabolic network must be sufficiently high such that no single step is unduly rate-limit-

ing, including the information processes that underpin biosynthesis and regulate metabolic net-

works. This necessary integration of functions is a hallmark of all organisms.
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The structure and size of the genome affect the rate, efficiency, and robustness of the information

processes that support metabolism, growth, and reproduction (Appendix 1). There are necessary

tradeoffs in the costs and benefits of these features (Appendix 1; see also Smith, 1976), which

should consequently make individual organisms more competitive in and better-suited to only partic-

ular ranges of growth and trophic conditions (Roller and Schmidt, 2015). Organisms that are best

suited to compete in environments where resources are abundant (copiotrophs) must have the

capacity for intracellular rates of information processing that are sufficiently high to support high

rates of metabolism and reproduction. However, maintaining the genomic and structural capacity

for rapid growth is costly, potentially placing copiotrophic taxa at a disadvantage in stable, nutrient-

poor environments where growth rates are chronically slow (Giovannoni et al., 2014). Oligotrophic

environments may thus instead favor organisms (oligotrophs), which have information processing

machinery that is less costly to build, maintain, and operate, thereby increasing resource use effi-

ciency and growth efficiency (Koch, 2001; Roller and Schmidt, 2015). Genomic traits that affect the

rates and costs of biochemical information processing within cells can thus influence the degree to

which an organism is optimized for oligotrophy versus copiotrophy.

This oligotrophic-copiotrophic strategy continuum is reminiscent of the classic slow-fast life his-

tory continuum (Stearns, 1992), of classical r/K selection theory (MacArthur and Wilson, 2001;

Pianka, 1972; Pianka, 1970), and of their subsequent developments dealing with the evolution of

interspecific variation in rates of resource use, mortality, growth, and reproduction (e.g., Dob-

son, 2012; Grime and Pierce, 2012; Krause et al., 2014; Sibly and Brown, 2007). In conjunction

with research on the role of functional traits and niches in shaping the assembly of communities (e.

g., Fukami et al., 2005; Litchman and Klausmeier, 2008; McGill et al., 2006; Okie and Brown,

2009; Roller and Schmidt, 2015), this work suggests that traits that are associated with

the biological rates and efficiencies of resource use, growth, and reproduction play an important

role in community assembly. It is unclear, however, whether the traits that are specifically related to

rates and costs of biochemical information processing have sufficiently pronounced tradeoffs or

physiological effects to play an important role in the evolutionary ecology of organisms and

in the assembly of communities, although there are some promising indications (Dethlefsen, 2004;

Roller et al., 2016).

Here, by coupling metagenomic analysis with a trait-based framework that synthesizes theory and

hypotheses from genomics, ecology, and evolutionary cell biology, we investigate the role that sev-

eral universal genomic traits play in determining the response of a planktonic microbial community

to nutrient enrichment in a whole-ecosystem experiment. To date, relatively few studies have cou-

pled metagenomics with a trait-based framework to clarify the drivers of community assembly

(Burke et al., 2011; Chen et al., 2008; Mackelprang et al., 2011; Raes et al., 2011). Even fewer

(indeed, none that we are aware of) have deployed such approaches in the context of whole-ecosys-

tem experimentation to test ecologically relevant hypotheses under field conditions. We focus on a

set of four information-processing traits that are hypothesized to affect the ability of organisms to

obtain the high maximum growth rates necessary for thriving in copiotrophic environments, or their

ability to reduce the energetic and resource requirements necessary to persist under nutrient-poor

conditions:

1. Multiplicity of genes essential to protein biosynthesis. Copiotrophs are predicted to have
higher copy numbers of rRNA operons and tRNA genes, because higher numbers of these
genes increase their maximum overall transcription rates, helping maintain higher abundances
of ribosomes (which are constructed from rRNA and proteins) and tRNAs. In turn, the larger
pools of ribosomes and tRNAs facilitate the increased translation rates of protein synthesis
necessary to achieve high growth rates (Condon et al., 1995; Higgs and Ran, 2008;
Rocha, 2004; Roller et al., 2016). However, higher numbers of these genes incur costs, poten-
tially putting organisms that have more copies of rRNA and tRNA genes at a disadvantage
under low-resource conditions. In particular, more DNA has to be synthesized, maintained,
and regulated, and there may be an increased risk of transcribing overly large phosphorus-rich
pools of rRNA and tRNA, increasing phosphorus requirements (Elser et al., 2003; Elser et al.,
1996; Godwin et al., 2017; Makino et al., 2003) and reducing growth efficiency
(Roller et al., 2016).

2. Genome size. Organisms that have smaller genomes are predicted to do better in stable and
oligotrophic environments, as they require fewer resources (such as phosphorus) to maintain
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and replicate their genomes, have higher carbon-use efficiency (Saifuddin et al., 2019), and
have smaller cells with increased surface-area-to-volume ratios that facilitate resource uptake
(Giovannoni et al., 2014). By contrast, organisms that have larger genomes should do better
in complex or copiotrophic environments, where they can take advantage of their typically
higher intrinsic growth rates (DeLong et al., 2006) and their more diverse and flexible gene
and metabolic networks (e.g., Konstantinidis and Tiedje, 2004; Maslov et al., 2009;
Saifuddin et al., 2019) to facilitate substrate catabolism and to respond more rapidly to feasts
following famines.

3. GC content. Genomic GC content (the percentage of DNA composed of the nucleotide bases
guanine (G) and cytosine (C)) varies greatly among taxa. The reasons for this variation are con-
troversial, as multiple different selective and neutral forces may be operating (Bentley and
Parkhill, 2004; Hildebrand et al., 2010). However, researchers have proposed that G and C
have higher energy costs of production and more limited intracellular availability compared to
A and T/U (Rocha and Danchin, 2002). In addition, DNA and RNA that have a higher GC con-
tent have more nitrogen (Bragg and Hyder, 2004). Thus, lower genomic GC content may be
favored in oligotrophic environments, whereas the metabolic and resource-sparing benefits of
low GC content should be less consequential in resource-rich environments, leading to a
relaxed role for GC content in the ecology and evolution of copiotrophs.

4. Codon usage bias. Eighteen of life’s 20 proteinogenic amino acids can be encoded in the
genome by more than one of life’s 61 different proteinogenic codons (nucleotide triplets),
leading to redundancy in the genetic code. However, these synonymous codons have different
kinetic properties, including different translation rates and probabilities of mistranslation
(Higgs and Ran, 2008). In highly expressed genes that are essential to growth (such as
genes encoding ribosomal proteins), there should be increased selection for biasing the usage
of certain synonymous codons over others in order to increase the accuracy and speed of
translation, especially in organisms that have fast growth rates (Hershberg and Petrov, 2008;
Higgs and Ran, 2008; Plotkin and Kudla, 2011; Vieira-Silva and Rocha, 2010). We thus pre-
dict that copiotrophic environments should favor organisms that have higher codon usage bias
in their ribosomal protein genes, whereas codon usage bias should play a relaxed role in oligo-
trophic environments.

Further details and background on these traits are provided in Appendix 1.

Research on the genomic traits described above has revealed correlations of these traits with

growth and trophic strategy in a variety of eukaryotic and prokaryotic species (Vieira-Silva and

Rocha, 2010) and started to unravel the mechanisms by which these traits influence fitness (Appen-

dix 1), suggesting that they may play an important role in ecology (Freilich et al., 2009;

Lauro et al., 2009; Weider et al., 2005). However, the work published to date has tended to look

at only one or two of these traits at a time (Zeigler Allen et al., 2012; Raes et al., 2007). More work

is also required to help resolve incongruities in the literature, such as different views on the evolu-

tionary ecology of bacteria genome size (e.g., DeLong et al., 2010 versus Vieira-Silva and Rocha,

2010) (Appendix 1). It is also necessary to develop a less fragmented understanding of the evolu-

tionary and physiological ecology of these genomic traits (Bentley and Parkhill, 2004;

Freilich et al., 2009; Vieira-Silva and Rocha, 2010) and their role in community assembly across a

wide range of organisms and environments.

Importantly, most ecological studies of these traits have been based on studies of microbial iso-

lates, comparative analyses, or sampling across environmental gradients (Zeigler Allen et al., 2012;

Foerstner et al., 2005; Freilich et al., 2009; Raes et al., 2007; Roller et al., 2013; Vieira-Silva and

Rocha, 2010). Experimental work examining their role in mediating the structure of communities

under natural conditions is extremely limited. Given (1) the complexity of the biotic and abiotic inter-

actions that shape communities, (2) that most microbial taxa are uncultivable in isolation (Ho et al.,

2017), and (3) that community traits can have widely different responses to temporal/experimental

versus geographic variation in abiotic variables (e.g., Sandel et al., 2010), direct experimentation in

the field with complex communities is required to better establish the validity of inferences about

these purported molecular adaptations for ecological dynamics in nature.

Our study site is Lagunita, an oligotrophic, highly phosphorus-deficient pond in Cuatro Ciénegas,

a biological reserve in Mexico (Lee et al., 2015; Lee et al., 2017). Because of its strong nutrient limi-

tation, this ecosystem offers a useful setting for a fertilization experiment to evaluate the role of

information-processing traits in community assembly and in the trophic strategies of organisms. Our

study is noteworthy as one of the first whole-ecosystem experiments to involve experiment-level
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replicated metagenomic assessments of community response. If it is true that individual genomic

features do indeed affect the ability of organisms to survive and reproduce as a function of nutrient

availability, then collective measures of these features at the metagenomic level (which aggregates

the genomes of all of the individuals constituting a community) should likewise exhibit these charac-

teristics and should reflect the organisms’ responses to experimental fertilization (Krause et al.,

2014; Wallenstein and Hall, 2012).

Results
Biomass and chlorophyll a concentrations increased substantially in response to nutrient enrichment

(biomass—198% mean increase, p=0.009; chlorophyll a—831% mean increase, p=0.001; Appen-

dix 1—figure 1), as did the ratio of phosphorus to carbon (P:C) in seston biomass (19.5% mean

increase, p=0.014, Figure 1A). We observed changes in several components of the predicted geno-

mic signatures of growth and trophic strategy (Figure 1). As the percentages of bacteria, Archaea,

Eukarya, and viruses making up the community were not discernibly different between unfertilized
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Figure 1. Community-level trait responses to nutrient enrichment. (A–F) As predicted, the mean value for each

information-processing trait was higher in the fertilized treatment (Fert) than in the unfertilized treatment (Con).

Because the faster-growing organisms generally have more P-rich ribosomes, seston P:C ratio also increased after

fertilizer treatment (as shown in panel [A]). Boxes show 25/75% quantiles, center horizontal lines show medians,

and vertical lines show the data range. In panel (E), a community’s codon usage bias is the inverse mean effective

number of codons (1/ENC) of a metagenome’s ribosomal protein sequences, with higher 1/ENC values indicating

increased codon usage bias.

Okie et al. eLife 2020;9:e49816. DOI: https://doi.org/10.7554/eLife.49816 4 of 26

Research article Ecology

https://doi.org/10.7554/eLife.49816


and fertilized treatments (p=0.46, 0.37, 0.39, 0.21, respectively), these genomic changes reflected

changes in the abundances of taxa at finer phylogenetic scales, in particular of bacterial taxa, which

made up 94% of the metagenomes (see Appendix 1 and Appendix 1—figures 1, 2, 3, 4 for details).

Furthermore, the genomic changes reflected widespread changes within the community—they were

not driven by just a few specific populations, as 188 genera showed changes in abundance (with

p<0.05) and no single genus dominated the community (the highest relative abundance of a taxon

at the genus level was 4%). Consistent with predictions, the mean estimated genome size of bacteria

was 25% higher in the fertilized treatment (p=0.011), with nutrient enrichment explaining 75% of the

variation between samples in mean genome size (Figure 1). The GC content of open reading frames

of DNA was 9.9% higher in the fertilized treatment: 54% compared to 49% in the unfertilized treat-

ment (p=0.007, R2 = 86%).

Genomic features that are indicative of adaptations for maintaining high rates of transcription

and translation were also positively associated with fertilization. The per sequence occurrence rate

of tRNA genes and the total number of tRNA genes per community were 93% and 64% higher,

respectively, in the fertilized treatment than in

the unfertilized treatment (p<0.001 and p=0.065

with R2 = 53%, respectively). The residuals after

regressing the log number of tRNA genes and

the log total number of reads per sample to con-

trol for differences in sequencing depth were

also higher in the fertilized treatment than in the

unfertilized treatment (p=0.087, R2 = 52%). Like-

wise, in the fertilized treatment, the per

sequence occurrence rate of 16S rRNA genes

and total number of rRNA operons per commu-

nity were 119% and 86% higher, respectively

(p<0.001 and p=0.096 with

R2 = 50%, respectively). The residuals after

regressing log number of rRNA operons versus

log total number of reads per sample were also

higher (p=0.038, R2 = 52%). Fertilization

explained 65% of the co-variation in these two

traits (number of rRNA operons and tRNA

genes) along a single dimension, which was

quantified by principal component analysis and

provides a measure of protein synthesis capacity

(p=0.031).

Consistent with predictions, nutrient enrich-

ment also increased codon usage bias in ribo-

somal protein genes according to two measures

of codon usage bias—the effective number of

codons (ENC) and ENC0 (Figure 1E and Fig-

ure 2). Values of ENC and ENC0 for genes vary

inversely with the level of codon usage bias:

from 20, which signifies extreme codon usage

bias in which one codon is used exclusively for

each of the amino acids encoded by a gene, to

61, which represents the case in which the use of

alternative synonymous codons is equally likely

(no codon usage bias). The mean ENC and ENC0

of ribosomal protein sequences detected in the

metagenomes decreased with fertilization by

6.7% and 4.8%, respectively, indicating

increased codon usage bias (ENC: p=0.018,

R2 = 66%; ENC0: p=0.031, R2 = 55%). Median

ENC and ENC0 were also lower in the fertilized
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treatment than in the unfertilized treatment (p=0.006, R2 = 75% and p=0.010; R2 = 75%), and Kol-

mogorov-Smirnoff tests indicated that the distributions of ENC and ENC0 in ribosomal protein

sequences significantly differed between treatments (all p<0.01). In particular, as shown in

Figure 2A and B, a greater frequency of sequences exhibited little-to-no codon usage bias (ENC

and ENC0 values around 60–61) in the unfertilized communities (Figure 2), whereas in the fertilized

treatment, there were notably higher numbers of ribosomal protein sequences with extremely high

codon usage bias (ENC and ENC0 <~37).

As suggested by Figures 1 and 2, the variance in the P:C ratio and in the mean and median

codon usage bias of communities (quantified by ENC0, the more powerful indicator of codon usage

bias) substantially decreased with fertilization by around an order of magnitude or more—by factors

of 8, 31, and 27, respectively (P:C ratio–p=0.058; mean ENC0–p=0.056; median ENC0–p=0.069;

Appendix 1—table 1). Variance in genome size and mean and median ENC also decreased substan-

tially by factors of 10, 10, and 6, respectively, but these responses are less certain (genome size–

p=0.174; mean ENC–p=0.169; median ENC–p=0.275; Appendix 1—table 1). By contrast, variance

in the log-transformed number of tRNA genes and rRNA operons substantially increased with fertili-

zation, by 846% and 655%, respectively (rRNA–p<0.001; tRNA–p=0.013), whereas GC content vari-

ance did not appear to exhibit any change (p=0.56; Appendix 1—table 1).

Finally, we examined how well nutrient enrichment predicted the covariation of these genomic

traits along a single principal component analysis (PCA) axis, which, according to our trait predic-

tions, should quantify where a community’s infor-

mation-processing traits fall along an

oligotrophy-copiotrophy strategy continuum.

The single PCA axis captured 78% of the vari-

ance in the genomic traits for the communities,

and nutrient treatment explained 86% of the var-

iation in community genomic trait composition

along this single axis of trophic strategy

(general linear model [GLM]–p=0.004; Figure 3).

Discussion
Our fertilization study demonstrated strong

nutrient limitation in the Lagunita ecosystem, as

manifested by increased biomass, chlorophyll

content, and P:C ratios of plankton in the fertil-

ized pond versus the unenriched mesocosms.

Using metagenomics, we found strong differen-

ces in information-processing traits between the

fertilized pond and unfertilized internal meso-

cosms, which agree with all five of our direc-

tional predictions. We are not aware of any

obvious reasons or existing theoretical work to

indicate that a difference in habitat size between

treatments should lead to the observed trait dif-

ferences. We thus interpret the observed geno-

mic trait differences as resulting primarily from

differences in the growth and nutrient conditions

of the two treatments. However, a valuable

future experiment could be to repeat the experi-

ment using internal mesocosms for both the fer-

tilized and unfertilized treatments in order to

help to rule out potential mesocosm effects.

Conservationists and ecologists should also have

an involved discourse on whether it is worth con-

ducting future research to verify our interpreta-

tion by performing much larger experiments
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across multiple ponds (with wider environmental impacts).

We interpret these differences as primarily reflecting trait-mediated ecological dynamics—the dif-

ferential success of lineages present within the pond and colonization by other lineages—rather than

microevolutionary changes within populations. Our reasoning is that the relatively short time period

of our experiment (32 days) encompasses a relatively low maximum number of generations of repli-

cation (Appendix 1), and so limited the opportunity for measurable genomic evolution to occur (e.

g., Lenski and Travisano, 1994). Overall, our study suggests that ecologically significant phenotypic

information about communities can be uncovered using a read-based approach (metagenomics) that

leverages the relevant abundance and DNA characteristics of conserved genetic elements. Impor-

tantly, this approach avoids the biases associated with the massive gaps that are present in microbial

taxonomic databases and cross-taxonomy assembly efficiencies (Kunin et al., 2010; Sogin et al.,

2006; Temperton and Giovannoni, 2012; Yooseph et al., 2010).

An oligotrophy-copiotrophy gradient in information-processing traits
Remarkably, nutrient enrichment explained 50% or more of the variation in each trait and 88% of the

co-variation of these five traits along a single statistical dimension quantifying the oligotrophy-copio-

trophy strategy continuum (Figure 3). The congruence of all trait responses with our predictions sug-

gests that the effects of these genomics traits on the rates and costs of biochemical information-

processing are sufficiently pronounced to play a role in community assembly.

We found that the fertilized community had genomic traits that were expected to augment trans-

lational capacity, whereas the unfertilized communities had genomic traits that lower the costs of

biochemical information processing. For instance, the fertilized community had increased codon

usage bias in ribosomal protein genes, which can improve the speed and accuracy of translation of

ribosomal proteins by increasing the rate at which tRNAs bind to mRNA codons of ribosomal protein

genes, as well as by possibly reducing the likelihood of mistranslation (Higgs and Ran,

2008; Figures 1E and 2). The resulting increase in the rate of production of ribosomes supports the

larger ribosomal pools undergirding higher overall rates of protein synthesis. The fertilized communi-

ties also had higher numbers of rRNA and tRNA genes. In conjunction with the observed increase in

the biomass P:C ratio, this finding supports the ‘Growth Rate Hypothesis’—that fast-growing cells

should have higher P-contents that reflect higher concentrations of P-rich ribosomal RNA, which are

maintained by increased copies of rRNA and tRNA genes (Elser et al., 2000).

Mean genome size was also higher in the fertilized pond, reflecting the need to encode a larger

array of genes that are needed to support the expanded translational and catabolic capacity of

faster growing cells, and possibly also reflecting the benefits of maintaining a streamlined genome

that requires minimal resources for maintenance and replication in nutrient-poor conditions (e.g.,

Giovannoni et al., 2005; Figure 1B). Consistent with our prediction that low GC-content in oligotro-

phic taxa is a valuable resource conservation strategy, GC content was lower in the unfertilized com-

munities (Figure 1F).

These results contrast with those of Vieira-Silva and Rocha (2010), who found no significant

interspecific correlation of GC content and genome size with generation time in a comparative study

of bacteria (Vieira-Silva et al., 2010). The difference in results may reflect multiple factors, including:

(1) the presence of confounding variables and pronounced statistical error (measurement and

biological) inherent to interspecific microbial growth and trait databases that are collated from a

variety of sources (e.g., ecosystems, conditions such as temperature), as in their study; (2)

an underrepresentation in databases of the unculturable prokaryotic species that may comprise

the majority of species in microbiomes, such as Lagunitas, and which typically have different

evolutionary ecologies than culturable taxa (Pande and Kost, 2017; Swan et al., 2013). Such differ-

ences in results highlight the value of conducting in situ experiments.

Overall, however, our findings are largely consistent with observational studies of metagenomes

and genomes along productivity gradients, and with comparisons across species varying in growth

rate (Zeigler Allen et al., 2012; DeLong et al., 2010; Foerstner et al., 2005; Lauro et al., 2009;

Raes et al., 2007; Roller et al., 2013; Swan et al., 2013). Our experiment on communities in situ

suggests that much of the variation in these genomic traits along productivity gradients or across

species may similarly be attributed to effects of information-processing costs and rates on an oligo-

trophy-copiotrophy strategy continuum and related adaptive strategies, such as r/K selection and

Grime’s ‘C-S-R Triangle’ (e.g., Grime and Pierce, 2012).
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Variance changes in the genomic traits
We also observed changes in the variances of several community-level traits (Appendix 1—table 1).

The direction of the changes that occur in response to enrichment differed among the traits, so the

variance responses do not simply reflect potential for increased dispersal limitation in unfertilized

mesocosms as compared to enriched pond samples (see ’Materials and methods’). Instead, all-else-

being equal, the responses suggest that the strength of a trait’s role in filtering the community

differs between unenriched and enriched treatments, which could reflect differences in the degree

to which a trait affects the costs versus the rates of information processing. In general, traits

that have much more of an impact on the costs of information processing should play more of a role

in oligotrophic environments, whereas traits that have more of an impact on the rates of information

processing (e.g., probably codon usage bias) should play more of a role in copiotrophic

environments.

The substantial reduction in variance levels in codon usage bias in response to fertilization are in

agreement with this viewpoint: the evolution of low codon usage bias is primarily thought to reflect

relaxed selection rather than positive selection for neutral (random) codon usage, although many

complex issues remain to be resolved (Hershberg and Petrov, 2008). By contrast, the highly

increased variance in rRNA operon and tRNA gene numbers in response to fertilization may indicate

that the augmented P and N requirements of taxa that have high rRNA and tRNA gene copy num-

bers, which tend to have larger pools of ribosomes and other translation machinery, are particularly

detrimental in oligotrophic conditions (Stevenson and Schmidt, 2004). In nutrient-rich conditions,

on the other hand, some organisms may still do well even with fairly low numbers of these genes,

for example by having multiple genome copies (e.g., Mendell et al., 2008) or other mechanisms

that increase the concentrations and kinetics of RNA polymerase, aminoacyl-tRNA synthetase, rRNA

and tRNA (e.g., Yadavalli and Ibba, 2012).

We also observed a 10-fold decrease in variance of mean genome size in the unfertilized meso-

cosms, implying that genome size has a more variable ecological role in oligotrophic ecosystems,

although this change was only suggestive (p=0.17). On the basis of genome streamlining theory

alone, which suggests that small genomes should be favored in oligotrophic conditions

because of the favoring of cellular architectures that minimize resource requirements

(Giovannoni et al., 2014; Morris et al., 2012), we would expect reduced variance in genome size in

oligotrophic environments, in contradiction with our results. Consideration of metabolic scaling may

provide the explanation. There is presumably an interspecific increase in active mass-specific meta-

bolic rate and rmax with genome size in bacteria (DeLong et al., 2010), so under abruptly enriched

conditions, community members that have larger genomes may displace the complex and diverse

original community by growing faster. By contrast, it appears that the effects of genome size

on metabolic costs may be insufficient to play as strong a role in the evolutionary ecology and

assembly of these oligotrophic communities. This suggestion agrees with others who have argued

that the elemental costs of DNA play a negligible role in the evolutionary ecology of genome size

(Lynch, 2006; Mira et al., 2001; Sterner and Elser, 2002; Vieira-Silva et al., 2010)—the smaller

genomes found in many parasites, symbionts, and oligotrophs may instead reflect the mutational

loss of genes as the result of relaxed positive selection for keeping non-essential genes (Mira et al.,

2001).

Unlike the other information-processing traits, we observed no change in variance of GC content

between treatments. Although we expected environmental filtering for low GC content in oligotro-

phic conditions, it is less clear why there may be filtering for high GC content in response to nutrient

enrichment, pointing to a need for further investigations into the implications of GC content for

microbial physiological and community ecology.

Concluding remarks
The genomic traits studied here affect the costs and rates of biochemical information processing

within cells, and all of these traits responded as predicted to nutrient enrichment. Cells proliferating

under nutrient-enriched conditions had increased capacities for transforming and storing informa-

tion, whereas those persisting in oligotrophic conditions had genomic traits associated with reduced

costs for the information processes that underpin metabolism and reproduction. Optimizing trade-

offs in the efficiency and capacity of information processing may thus play a vital role in the
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evolutionary specialization of a microbe’s cellular biology to the particular trophic conditions of an

ecosystem. Information processing traits should be included in the development of trait-based theo-

ries and frameworks for microbial community ecology, as apparently all three core components of

metabolism—information, energy, and material requirements and transformations—must be closely

fine-tuned to the growth and trophic strategy of a microorganism.

Materials and methods

Study site description
The whole-ecosystem fertilization experiment took place in Lagunita, a shallow (<0.33 m) pond aver-

aging 35,000 L in volume and roughly ~12 m x 4 m. It is adjacent to a larger lagoon (Laguna Interme-

dia from the Churince system) in the Cuatro Ciénegas basin (CCB), an enclosed evaporitic valley in

the Chihuahuan desert, Mexico. Despite its aridity, the CCB harbors a variety of groundwater-fed

springs, streams, and pools. Past research has also shown that these aquatic environments harbor a

high diversity of unique microbiota (Souza et al., 2018; Souza et al., 2006), which have evolved

under strong stoichiometric imbalance (high nitrogen (N):phosphorus (P) ratios) and prevalent eco-

system P limitation (Corman et al., 2016; Elser et al., 2005). Lagunita water is high in conductivity,

dominated by Ca2+, SO4
2–, and CO3

2–, and has an average molar TN:TP ratio of 122 indicative of

strong P limitation, as previously demonstrated in this system during a mesocosm experiment com-

pleted in 2011 (Lee et al., 2015; Lee et al., 2017). During the summer season, the pond shrinks sub-

stantially and the surface water temperature increases.

Experimental design
On 25 May 2012, prior to initiation of fertilization, five replicate enclosures were established in differ-

ent parts of the pond; these were unenriched treatments that served as reference systems for com-

parison with the pond after enrichment. As in Lee et al. (2015) and Lee et al. (2017), each

unenriched mesocosm consisted of a 40 cm diameter clear plastic tube enclosing around 41 L (based

on an average depth of 0.33 m at the time at which the mesocosms were installed). This volume fluc-

tuated slightly during the experiment and decreased very slightly towards the end of the experiment

because of evaporation (which decreased the pond volume by 1.4%). The mesocosms were fully

open to the atmosphere and sediments. Each mesocosm’s water column was gently mixed periodi-

cally during our regular sampling (described below). Thus, with exposure to both the air and the bot-

tom sediments, the unenriched mesocosms were essentially cylindrical ‘cross-sections’ of the

ecosystem. The 41 L volume is a typical size for an aquatic mesocosm (e.g., see review of 350 meso-

cosms by Petersen et al., 1999) and appropriate for microbial studies, encompassing in the order

of 30 billion prokaryotic cells (estimated from our cell counts). See Appendix 1 for more details.

The fertilization procedure was based on a previous mesocosm experiment in Lagunita

(Lee et al., 2015; Lee et al., 2017). Prior to the initiation of the experiment, a morphometric map of

the pond was created, allowing us to estimate the pond’s water volume and to adjust that volume

estimate as water depth changed through the season. Based on the pond’s volume, we fertilized to

increase the PO4
3– concentration in the water by 1 mM (as KH2PO4). We also added NH4NO3 in a

16:1 (molar) N:P ratio with the added P. The soluble reactive phosphorus (SRP) concentration of the

pond was then measured every 3–4 days, after which we added sufficient KH2PO4 to bring the

pond’s in situ concentration back to 1 mM, along with the appropriate amount of NH4NO3 to achieve

a 16:1 molar ratio. Fertilizer was added by mixing fertilizer solution with ~2 L pond water and broad-

casting the mixture into all regions of the pond.

We thus performed a sustained whole-ecosystem fertilization treatment, with replicate internal

unfertilized mesocosms serving as reference systems. Whole-ecosystem manipulation assures that

any experimental responses are ecologically relevant, because the manipulated system encompasses

the full scale and scope of ecosystem processes that might modulate that response (Carpen-

ter, 1998). Such a whole-ecosystem approach can be especially powerful when coupled to appropri-

ate reference systems. Although our internal unfertilized mesocosms were smaller than the

surrounding fertilized pond, we consider them to be pertinent references for investigating the role

of genomic traits in community assembly under differing nutrient conditions for several theoretical,

empirical, practical, and ethical reasons. Although replicate whole ponds for comparison would be
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preferred, the availability of multiple ponds at Cuatro Ciénegas for such experimentation is

extremely limited given the basin’s arid nature. Indeed, true replication of whole-ecosystem manipu-

lations is very rarely achieved, at least in aquatic ecosystems. We thus followed the recommenda-

tions of Carpenter (1989) and Carpenter (1998), relying on the application of a strong

experimental treatment at the ecosystem scale and informed by previous experimentation

(Lee et al., 2017) together with replication of internal reference mesocosms to assess the impacts of

nutrient fertilization. In this way, we maximized the ecological realism of our perturbation by apply-

ing it at the ecosystem scale, while retaining the ability to compare manipulated dynamics against a

benchmark. We preferred a whole-ecosystem fertilization of the pond over fertilizing internal meso-

cosms within the pond because the smaller enclosures might have provided an artificial view of how

the microbial community responds to a nutrient perturbation at the ecosystem scale. In addition,

mesocosms cut off many sources of colonizing species (such as shore sediments/soils in ponds) that

can contribute to community reorganization following a perturbation (e.g., Thibault and Brown,

2008). Since this study aimed to understand the role of genomic traits in the assembly of communi-

ties (not just the disassembly caused by extinctions), it was thus important to avoid inhibiting com-

munity responses driven by the colonization of species.

Given the enormous heterogeneity between communities and water chemistry from different sites

within the area, as well as the ability of microbes to disperse between ponds, using internal refer-

ence systems rather than other whole ponds is arguably more informative as it avoids introducing

confounding factors related to variation between ponds (such as contrasting microbial communities)

and instead introduces just one potentially confounding factor, the difference in size between the

unfertilized mesocosms and the fertilized pond. We thus consider our approach to be the scientifi-

cally appropriate one for this conservation area. The design is a natural first step from experiments

in small, homogenous bottles or bags. Scaling such experiments across multiple ponds/lakes may be

a future step for experimental metagenomic research but not a responsible current step for research

in the ecologically sensitive Cuatro Ciénegas basin area.

Field monitoring, sampling, and routine water chemistry
Following initiation of fertilization, the pond and internal unfertilized mesocosms were sampled every

four days to monitor basic biogeochemical and ecological responses (see Appendix 1 for water

chemistry sampling details). At the end of the experiment (32 days), we sampled for metagenomics:

five water samples from the pond itself (fertilized treatment) and one water sample from inside each

of the five unfertilized internal mesocosms. It is worth noting that, given the substantial seasonal

changes in temperatures and water chemistry, we think that comparing metagenomic data from the

pond pre-fertilization to those from the fertilized pond 33 days later would be an inappropriate

approach for gaining insight into the effects of fertilization. Thus, we focus on comparing post-fertili-

zation metagenome data with temporally matched data from the unfertilized mesocosms.

The water inside the mesocosm was gently stirred with a dip net prior to sampling. Sampling

involved submerging a 1 L polycarbonate beaker just under the surface of the water. Microbes in the

water samples were filtered onto sterile GF/F filters (0.7 mm nominal pore size, Whatman, Piscat-

away, NJ, USA), frozen immediately in liquid nitrogen, and held at <80˚ C until laboratory DNA

extraction, purification, and sequencing. Given the 0.70 mm pore size, extremely small prokaryotes

were not part of our metagenomes and so our results do not apply to these picobacterioplankton. If

anything, their inclusion would augment predicted community-level trait responses to fertilization,

as picoplankton are slow-growers, tend to do poorly in nutrient-rich waters, have small genomes,

and so are likely to decrease in abundance in the fertilized treatment. Routine water chemistry meth-

ods were used, as in Lee et al. (2015) and Lee et al. (2017).

DNA extraction, sequencing, annotation, and phylogenetics
DNA was extracted using the MO BIO PowerWater DNA Isolation kit with a slight modification

(increasing volume of PW1 solution to 1.5 mL). DNA yield and quality were assessed by PicoGreen

assay (Appendix 1) and prepared for sequencing on Illumina MiSeq with 12 samples per v2 2 � 250

bp sequencing run. Raw reads were trimmed of barcodes, quality filtered, and rarefied to 100,000

sequences per sample (Appendix 1). For the quality filtering, we used the standard Qscore of 25.

Two samples from the fertilized treatment and one sample from the unfertilized treatment were left
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out of subsequent analyses because they had sequencing depths less than 20% of the rest of the

samples (whose sequencing depth averaged 2.5 � 106 reads) and low-quality scores. Sequences

were phylogenetically annotated using the Automated Phylogenetic Inference System (APIS) with

default parameters, which is designed to optimize annotation accuracy (Zeigler Allen et al., 2012).

PCoA was used to visualize a Bray-Curtis distance matrix of the APIS annotations using the R

(R Development Core Team, 2011) package vegan (Oksanen et al., 2016). We also used the statis-

tical package edgeR (Robinson et al., 2010) in R to identify the taxonomic groups at the genus,

class, phylum, and domain levels that exhibited discernable changes in relative abundance and

to calculate the p-value of these changes. edgeR is specifically designed for dealing with sequencing

count data in which there are minimal levels of replication (Robinson et al., 2010).

Trait bioinformatics
We used Phylosift (Darling et al., 2014) to annotate non-sub-sampled libraries, allowing us to count

the number of bacterial and archaeal 16S rRNA genes in each sample, which averaged 2607. Count-

ing 16S rRNA genes provides a means of evaluating the copy number of rRNA operons, because

16S RNA genes in prokaryotes are typically transcribed as part of a rRNA operon. Furthermore, the

typical situation, at least in the genomes of cultivated organisms, is that each bacterial rRNA operon

has a single 16S rRNA gene (Grigoriev et al., 2012). The program tRNAscan-SE v1.4 (Lowe and

Eddy, 1997), which is specifically designed for recognizing tRNA genes, was used with the provided

general tRNA model in order to count the number of tRNA genes in non-sub-sampled libraries. Vari-

ation in the total number of tRNA genes indicates variation in gene copy numbers, as the number of

tRNA genes per genome is driven by variation in tRNA gene copy number rather than by tRNA

diversity (Higgs and Ran, 2008). In ’Statistics’, we describe our method for ensuring that results

were not sensitive to variation in DNA sequencing depth. Although the tRNAscan-SE

approach that we employed did not distinguish between Bacteria, Archaea and Eukaryotes, the

observed rarity of Eukarya and insignificant changes in the groups’ relative abundances between

treatments (see ’Results’) indicate that the tRNAscan-SE results, and data from our other bioinfor-

matic analyses, reflect variation in prokaryotes, namely Bacteria (Archaea are very rare in CCB

samples; Lee et al., 2017), rather than in Eukaryotes.

Bacterial genome sizes were estimated according to methods in Zeigler Allen et al. (2012)

(Appendix 1). Briefly, length normalized core marker gene counts that were identified as bacterial by

APIS were used to determine the number of genome equivalents in a sample. The total number of

predicted proteins annotated as bacterial by APIS was then divided by the number of genome

equivalents.

To quantify the degree of synonymous codon usage bias for each observed bacterial and archaeal

ribosomal protein gene sequence, we first used Phylosfit (Darling et al., 2014) to identify the

sequences and then used the program ENCprime to calculate two commonly used metrics, the

effective number of codons (ENC) (Wright, 1990) and a related measure, ENC0 (Novembre, 2002),

for each sequence. ENC and ENC are relatively statistically well-behaved and insensitive to short

gene lengths compared to other measures of codon usage bias (Novembre, 2002; Wright, 1990).

ENC0 also accounts for departures in background nucleotide composition from a uniform distribution

and is therefore considered to provide a more powerful and reliable measure of codon usage bias

(Novembre, 2002). Background nucleotide composition for each sample was considered to be the

average nucleotide frequencies of all of the samples’ reads.

Statistics
We used t-tests assuming unequal variances to evaluate mean differences between treatments. For

community-level genomic traits, these tests were one-tailed with the alternative hypothesis based on

the predicted differences described in the ’Introduction’. General Linear Models (GLM) with treat-

ment (unfertilized vs fertilized) as a fixed factor were used to determine the amount of variation (R2)

in traits that was explained by treatment. Numbers of tRNA genes and rRNA operons were log-

transformed before these analyses to achieve normality. In order to account for potential effects of

sequencing depth on the number of rRNA operons and tRNA genes, we also regressed the numbers

against a sample’s log total number of reads and then performed GLM analyses on the residuals
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(ascertaining whether or not, for a given sequencing depth, samples from the fertilized treatment

have higher numbers of these genes, that is, higher residuals).

We also employed single-tailed Poisson rate tests to examine differences in the numbers of rRNA

operons and tRNA genes. The Poisson rate test is more powerful than the t-test for examining differ-

ences in the per sequence rate of occurrences of tRNA genes and rRNA operons between treat-

ments. In the Poisson rate test, the sample size for each treatment was the number of DNA samples

and the treatment’s observation length was the mean number of reads per metagenome. Two-sided

Bonett’s tests were used to test for treatment effects on variance between samples of community-

level traits. Kolmogorov-Smirnoff tests were conducted to evaluate whether or not within-sample

distributions of the ENC and ENC0 values of ribosomal protein gene sequences differ between

treatments.

Finally, we examined how well nutrient enrichment predicted the covariation (correlation) of these

genomic traits along a single axis quantified by principal component analysis (PCA). Should nutrient

enrichment explain substantial variation in the communities along this single axis, then the PCA val-

ues would provide a measure of molecular adaptiveness to oligotrophic versus copiotrophic condi-

tions. We used median ENC0 as the measure of codon usage bias in the PCA. We calculated the

principal component score of each metagenomic sample along the first dimension and used GLM

analysis to determine how well fertilization explained variation in the communities’ scores along this

dimension. Before performing PCA, in order to give equal weight to each trait, variables were first

standardized (z-scored) by subtracting means and dividing by standard deviations. Overall, we

aimed to avoid overreliance on significance levels and p-values in judging scientific results

(Carver, 1993; Halsey et al., 2015; McGill et al., 2006; Rothman, 2016), so we report p-values and

effect sizes and let readers judge the significance of the results for themselves.

We focused on the community response of genomic traits to varying nutrient conditions, rather

than on a detailed natural history of the phylogenetic composition of the community, not only

because we are interested in interrogating metagenomic changes within a trait-based framework,

but also for pragmatic reasons. There are multiple bioinformatic challenges to resolving precisely the

phylogenetic composition of entire microbial prokaryotic communities and ensuring that the phylo-

genetic biases of various molecular methods do not differ between environments or growth condi-

tions (Kunin et al., 2010; Sunagawa et al., 2013). For instance, there are massive gaps in

prokaryotic taxonomic databases (Rinke et al., 2013; Temperton and Giovannoni, 2012), and

metagenomes generated from low and high growth communities in oceans have different levels of

taxonomy blindness (Kalenitchenko et al., 2018; Sogin et al., 2006; Yooseph et al., 2010). Also,

DNA sequence assembly introduces a bias, as clonal populations with even low coverage assemble

very well whereas high abundance populations with strain diversity will not assemble well.
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Data availability

Raw sequence data and metadata have been submitted to the NCBI Sequence Read Archive, acces-

sible through BioProject PRJEB22811.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

J Craig Venter Insti-
tute

2017 Cuatro Cienegas Lagunita
Fertilization Experiement

https://www.ncbi.nlm.
nih.gov/bioproject/?
term=PRJEB22811

NCBI BioProject,
PRJEB22811

Okie et al. eLife 2020;9:e49816. DOI: https://doi.org/10.7554/eLife.49816 13 of 26

Research article Ecology

https://orcid.org/0000-0002-7884-7688
http://orcid.org/0000-0003-3284-0605
http://orcid.org/0000-0002-5906-9737
http://orcid.org/0000-0002-2992-4229
https://doi.org/10.7554/eLife.49816.sa1
https://doi.org/10.7554/eLife.49816.sa2
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB22811
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB22811
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB22811
https://doi.org/10.7554/eLife.49816


References
Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. 2004. Divergence and redundancy of 16S rRNA sequences in
genomes with multiple rrn operons. Journal of Bacteriology 186:2629–2635. DOI: https://doi.org/10.1128/JB.
186.9.2629-2635.2004, PMID: 15090503

Arar EJ, Collins GB. 1997. Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin ain Marine and
Freshwater Algae by Fluorescence Cincinnati, United States:: Environmental Protection Agency.

Bentley SD, Parkhill J. 2004. Comparative genomic structure of prokaryotes. Annual Review of Genetics 38:771–
791. DOI: https://doi.org/10.1146/annurev.genet.38.072902.094318, PMID: 15568993

Bragg JG, Hyder CL. 2004. Nitrogen versus carbon use in Prokaryotic genomes and proteomes. Proceedings of
the Royal Society of London. Series B: Biological Sciences 271:S374–S377. DOI: https://doi.org/10.1098/rsbl.
2004.0193

Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. 2011. Bacterial community assembly based on functional
genes rather than species. PNAS 108:14288–14293. DOI: https://doi.org/10.1073/pnas.1101591108, PMID: 21
825123

Carpenter SR. 1989. Replication and treatment strength in Whole-Lake experiments. Ecology 70:453–463.
DOI: https://doi.org/10.2307/1937550

Carpenter SR. 1998. The need for large-scale experiments to assess and predict the response of ecosystems to
perturbationSuccesses, Limitations, and Frontiers. In: Pace M. L, Groffman P. M (Eds). Ecosystem Science.
Springer. p. 287–312. DOI: https://doi.org/10.1007/978-1-4612-1724-4_12

Carver RP. 1993. The case against statistical significance testing, revisited. The Journal of Experimental
Education 61:287–292. DOI: https://doi.org/10.1080/00220973.1993.10806591

Chen Y, Dumont MG, Neufeld JD, Bodrossy L, Stralis-Pavese N, McNamara NP, Ostle N, Briones MJ, Murrell JC.
2008. Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement
amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands. Environmental
Microbiology 10:2609–2622. DOI: https://doi.org/10.1111/j.1462-2920.2008.01683.x, PMID: 18631364

Condon C, Liveris D, Squires C, Schwartz I, Squires CL. 1995. rRNA operon multiplicity in Escherichia coli and the
physiological implications of rrn inactivation. Journal of Bacteriology 177:4152–4156. DOI: https://doi.org/10.
1128/JB.177.14.4152-4156.1995, PMID: 7608093

Corman JR, Poret-Peterson AT, Uchitel A, Elser JJ. 2016. Interaction between lithification and resource
availability in the microbialites of rı́o mesquites, cuatro ciénegas, méxico. Geobiology 14:176–189. DOI: https://
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M, Rappé MS, Short JM, Carrington JC, Mathur EJ. 2005. Genome streamlining in a cosmopolitan oceanic
bacterium. Science 309:1242–1245. DOI: https://doi.org/10.1126/science.1114057, PMID: 16109880

Okie et al. eLife 2020;9:e49816. DOI: https://doi.org/10.7554/eLife.49816 14 of 26

Research article Ecology

https://doi.org/10.1128/JB.186.9.2629-2635.2004
https://doi.org/10.1128/JB.186.9.2629-2635.2004
http://www.ncbi.nlm.nih.gov/pubmed/15090503
https://doi.org/10.1146/annurev.genet.38.072902.094318
http://www.ncbi.nlm.nih.gov/pubmed/15568993
https://doi.org/10.1098/rsbl.2004.0193
https://doi.org/10.1098/rsbl.2004.0193
https://doi.org/10.1073/pnas.1101591108
http://www.ncbi.nlm.nih.gov/pubmed/21825123
http://www.ncbi.nlm.nih.gov/pubmed/21825123
https://doi.org/10.2307/1937550
https://doi.org/10.1007/978-1-4612-1724-4_12
https://doi.org/10.1080/00220973.1993.10806591
https://doi.org/10.1111/j.1462-2920.2008.01683.x
http://www.ncbi.nlm.nih.gov/pubmed/18631364
https://doi.org/10.1128/JB.177.14.4152-4156.1995
https://doi.org/10.1128/JB.177.14.4152-4156.1995
http://www.ncbi.nlm.nih.gov/pubmed/7608093
https://doi.org/10.1111/gbi.12168
https://doi.org/10.1111/gbi.12168
http://www.ncbi.nlm.nih.gov/pubmed/26663088
https://doi.org/10.7717/peerj.243
http://www.ncbi.nlm.nih.gov/pubmed/24482762
https://doi.org/10.1126/science.1120250
http://www.ncbi.nlm.nih.gov/pubmed/16439655
https://doi.org/10.1073/pnas.1007783107
https://doi.org/10.1073/pnas.1007783107
http://www.ncbi.nlm.nih.gov/pubmed/20616006
https://doi.org/10.1073/pnas.1207932109
https://doi.org/10.1073/pnas.1207932109
http://www.ncbi.nlm.nih.gov/pubmed/22699497
https://doi.org/10.2307/1312897
https://doi.org/10.1046/j.1461-0248.2000.00185.x
https://doi.org/10.1046/j.1461-0248.2000.00185.x
https://doi.org/10.1046/j.1461-0248.2003.00518.x
https://doi.org/10.1111/j.1365-2427.2005.01451.x
https://doi.org/10.1038/sj.embor.7400538
http://www.ncbi.nlm.nih.gov/pubmed/16200051
https://doi.org/10.1186/gb-2009-10-6-r61
https://doi.org/10.1186/gb-2009-10-6-r61
http://www.ncbi.nlm.nih.gov/pubmed/19500338
https://doi.org/10.1111/j.1461-0248.2005.00829.x
https://doi.org/10.1111/j.1461-0248.2005.00829.x
https://doi.org/10.1126/science.1114057
http://www.ncbi.nlm.nih.gov/pubmed/16109880
https://doi.org/10.7554/eLife.49816


Giovannoni SJ, Cameron Thrash J, Temperton B. 2014. Implications of streamlining theory for microbial ecology.
The ISME Journal 8:1553–1565. DOI: https://doi.org/10.1038/ismej.2014.60, PMID: 24739623

Godwin CM, Whitaker EA, Cotner JB. 2017. Growth rate and resource imbalance interactively control biomass
stoichiometry and elemental quotas of aquatic Bacteria. Ecology 98:820–829. DOI: https://doi.org/10.1002/
ecy.1705, PMID: 27995610

Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA,
Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I. 2012. The genome portal of the
department of energy joint genome institute. Nucleic Acids Research 40:D26–D32. DOI: https://doi.org/10.
1093/nar/gkr947, PMID: 22110030

Grime JP, Pierce S. 2012. The Evolutionary Strategies That Shape Ecosystems. John Wiley & Sons. DOI: https://
doi.org/10.1002/9781118223246

Gyorfy Z, Draskovits G, Vernyik V, Blattner FF, Gaal T, Posfai G. 2015. Engineered ribosomal RNA operon copy-
number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number. Nucleic Acids
Research 43:1783–1794. DOI: https://doi.org/10.1093/nar/gkv040, PMID: 25618851

Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. 2015. The fickle P value generates irreproducible
results. Nature Methods 12:179–185. DOI: https://doi.org/10.1038/nmeth.3288

Hershberg R, Petrov DA. 2008. Selection on codon bias. Annual Review of Genetics 42:287–299. DOI: https://
doi.org/10.1146/annurev.genet.42.110807.091442, PMID: 18983258

Higgs PG, Ran W. 2008. Coevolution of Codon usage and tRNA genes leads to alternative stable states of
biased Codon usage. Molecular Biology and Evolution 25:2279–2291. DOI: https://doi.org/10.1093/molbev/
msn173, PMID: 18687657

Hildebrand F, Meyer A, Eyre-Walker A. 2010. Evidence of selection upon genomic GC-content in Bacteria. PLOS
Genetics 6:e1001107. DOI: https://doi.org/10.1371/journal.pgen.1001107, PMID: 20838593

Ho A, Lonardo DPD, Bodelier PLE. 2017. Revisiting life strategy concepts in environmental microbial ecology.
FEMS Microbiology Ecology 93:fix006. DOI: https://doi.org/10.1093/femsec/fix006

Kalenitchenko D, Le Bris N, Peru E, Galand PE. 2018. Ultrarare marine microbes contribute to key sulphur-
related ecosystem functions. Molecular Ecology 27:1494–1504. DOI: https://doi.org/10.1111/mec.14513,
PMID: 29412497

Kanaya S, Yamada Y, Kudo Y, Ikemura T. 1999. Studies of Codon usage and tRNA genes of 18 unicellular
organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of
Codon usage based on multivariate analysis. Gene 238:143–155. DOI: https://doi.org/10.1016/S0378-1119(99)
00225-5

Klappenbach JA, Dunbar JM, Schmidt TM. 2000. rRNA operon copy number reflects ecological strategies of
Bacteria. Applied and Environmental Microbiology 66:1328–1333. DOI: https://doi.org/10.1128/AEM.66.4.
1328-1333.2000, PMID: 10742207

Koch AL. 2001. Oligotrophs versus copiotrophs. BioEssays 23:657–661. DOI: https://doi.org/10.1002/bies.1091,
PMID: 11462219

Konstantinidis KT, Tiedje JM. 2004. Trends between gene content and genome size in prokaryotic species with
larger genomes. PNAS 101:3160–3165. DOI: https://doi.org/10.1073/pnas.0308653100, PMID: 14973198

Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, Grossart HP, Philippot L, Bodelier
PL. 2014. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Frontiers
in Microbiology 5:251–261. DOI: https://doi.org/10.3389/fmicb.2014.00251, PMID: 24904563

Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. 2010. Wrinkles in the rare biosphere: pyrosequencing
errors can lead to artificial inflation of diversity estimates. Environmental Microbiology 12:118–123.
DOI: https://doi.org/10.1111/j.1462-2920.2009.02051.x, PMID: 19725865

Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J,
Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S,
et al. 2009. The genomic basis of trophic strategy in marine Bacteria. PNAS 106:15527–15533. DOI: https://
doi.org/10.1073/pnas.0903507106, PMID: 19805210

Leal MC, Seehausen O, Matthews B. 2017. The ecology and evolution of stoichiometric phenotypes. Trends in
Ecology & Evolution 32:108–117. DOI: https://doi.org/10.1016/j.tree.2016.11.006, PMID: 28017452

Lee ZM, Steger L, Corman JR, Neveu M, Poret-Peterson AT, Souza V, Elser JJ. 2015. Response of a
stoichiometrically imbalanced ecosystem to manipulation of nutrient supplies and ratios. PLOS ONE 10:
e0123949. DOI: https://doi.org/10.1371/journal.pone.0123949, PMID: 25881015

Lee ZM, Poret-Peterson AT, Siefert JL, Kaul D, Moustafa A, Allen AE, Dupont CL, Eguiarte LE, Souza V, Elser JJ.
2017. Nutrient stoichiometry shapes microbial community structure in an evaporitic shallow pond. Frontiers in
Microbiology 8:949. DOI: https://doi.org/10.3389/fmicb.2017.00949, PMID: 28611750

Lenski RE, Travisano M. 1994. Dynamics of adaptation and diversification: a 10,000-generation experiment with
bacterial populations. PNAS 91:6808–6814. DOI: https://doi.org/10.1073/pnas.91.15.6808, PMID: 8041701

Litchman E, Klausmeier CA. 2008. Trait-Based community ecology of phytoplankton. Annual Review of Ecology,
Evolution, and Systematics 39:615–639. DOI: https://doi.org/10.1146/annurev.ecolsys.39.110707.173549

Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic
sequence. Nucleic Acids Research 25:955–964. DOI: https://doi.org/10.1093/nar/25.5.955, PMID: 9023104

Lynch M. 2006. Streamlining and simplification of microbial genome architecture. Annual Review of Microbiology
60:327–349. DOI: https://doi.org/10.1146/annurev.micro.60.080805.142300, PMID: 16824010

MacArthur RH, Wilson EO. 2001. The Theory of Island Biogeography. Princeton University Press.

Okie et al. eLife 2020;9:e49816. DOI: https://doi.org/10.7554/eLife.49816 15 of 26

Research article Ecology

https://doi.org/10.1038/ismej.2014.60
http://www.ncbi.nlm.nih.gov/pubmed/24739623
https://doi.org/10.1002/ecy.1705
https://doi.org/10.1002/ecy.1705
http://www.ncbi.nlm.nih.gov/pubmed/27995610
https://doi.org/10.1093/nar/gkr947
https://doi.org/10.1093/nar/gkr947
http://www.ncbi.nlm.nih.gov/pubmed/22110030
https://doi.org/10.1002/9781118223246
https://doi.org/10.1002/9781118223246
https://doi.org/10.1093/nar/gkv040
http://www.ncbi.nlm.nih.gov/pubmed/25618851
https://doi.org/10.1038/nmeth.3288
https://doi.org/10.1146/annurev.genet.42.110807.091442
https://doi.org/10.1146/annurev.genet.42.110807.091442
http://www.ncbi.nlm.nih.gov/pubmed/18983258
https://doi.org/10.1093/molbev/msn173
https://doi.org/10.1093/molbev/msn173
http://www.ncbi.nlm.nih.gov/pubmed/18687657
https://doi.org/10.1371/journal.pgen.1001107
http://www.ncbi.nlm.nih.gov/pubmed/20838593
https://doi.org/10.1093/femsec/fix006
https://doi.org/10.1111/mec.14513
http://www.ncbi.nlm.nih.gov/pubmed/29412497
https://doi.org/10.1016/S0378-1119(99)00225-5
https://doi.org/10.1016/S0378-1119(99)00225-5
https://doi.org/10.1128/AEM.66.4.1328-1333.2000
https://doi.org/10.1128/AEM.66.4.1328-1333.2000
http://www.ncbi.nlm.nih.gov/pubmed/10742207
https://doi.org/10.1002/bies.1091
http://www.ncbi.nlm.nih.gov/pubmed/11462219
https://doi.org/10.1073/pnas.0308653100
http://www.ncbi.nlm.nih.gov/pubmed/14973198
https://doi.org/10.3389/fmicb.2014.00251
http://www.ncbi.nlm.nih.gov/pubmed/24904563
https://doi.org/10.1111/j.1462-2920.2009.02051.x
http://www.ncbi.nlm.nih.gov/pubmed/19725865
https://doi.org/10.1073/pnas.0903507106
https://doi.org/10.1073/pnas.0903507106
http://www.ncbi.nlm.nih.gov/pubmed/19805210
https://doi.org/10.1016/j.tree.2016.11.006
http://www.ncbi.nlm.nih.gov/pubmed/28017452
https://doi.org/10.1371/journal.pone.0123949
http://www.ncbi.nlm.nih.gov/pubmed/25881015
https://doi.org/10.3389/fmicb.2017.00949
http://www.ncbi.nlm.nih.gov/pubmed/28611750
https://doi.org/10.1073/pnas.91.15.6808
http://www.ncbi.nlm.nih.gov/pubmed/8041701
https://doi.org/10.1146/annurev.ecolsys.39.110707.173549
https://doi.org/10.1093/nar/25.5.955
http://www.ncbi.nlm.nih.gov/pubmed/9023104
https://doi.org/10.1146/annurev.micro.60.080805.142300
http://www.ncbi.nlm.nih.gov/pubmed/16824010
https://doi.org/10.7554/eLife.49816


Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK.
2011. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature
480:368–371. DOI: https://doi.org/10.1038/nature10576, PMID: 22056985

Makino W, Cotner JB, Sterner RW, Elser JJ. 2003. Are Bacteria more like plants or animals? growth rate and
resource dependence of bacterial C : n : p stoichiometry. Functional Ecology 17:121–130. DOI: https://doi.org/
10.1046/j.1365-2435.2003.00712.x

Maslov S, Krishna S, Pang TY, Sneppen K. 2009. Toolbox model of evolution of prokaryotic metabolic networks
and their regulation. PNAS 106:9743–9748. DOI: https://doi.org/10.1073/pnas.0903206106, PMID: 19482938

McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. Trends
in Ecology & Evolution 21:178–185. DOI: https://doi.org/10.1016/j.tree.2006.02.002, PMID: 16701083

Mendell JE, Clements KD, Choat JH, Angert ER. 2008. Extreme polyploidy in a large bacterium. PNAS 105:
6730–6734. DOI: https://doi.org/10.1073/pnas.0707522105, PMID: 18445653

Mira A, Ochman H, Moran NA. 2001. Deletional Bias and the evolution of bacterial genomes. Trends in Genetics
17:589–596. DOI: https://doi.org/10.1016/S0168-9525(01)02447-7, PMID: 11585665

Morris JJ, Lenski RE, Zinser ER. 2012. The black queen hypothesis: evolution of dependencies through adaptive
gene loss. mBio 3:e00036. DOI: https://doi.org/10.1128/mBio.00036-12, PMID: 22448042

Novembre JA. 2002. Accounting for background nucleotide composition when measuring Codon usage Bias.
Molecular Biology and Evolution 19:1390–1394. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a004201,
PMID: 12140252

Okie JG. 2013. General models for the spectra of surface area scaling strategies of cells and organisms: fractality,
geometric dissimilitude, and internalization. The American Naturalist 181:421–439. DOI: https://doi.org/10.
1086/669150, PMID: 23448890

Okie JG, Brown JH. 2009. Niches, body sizes, and the disassembly of mammal communities on the sunda shelf
islands. PNAS 106 Suppl 2:19679–19684. DOI: https://doi.org/10.1073/pnas.0901654106, PMID: 19805179

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH,
Wagner H. 2016. vegan: community ecology package. 2.4-1. https://CRAN.R-project.org/package=vegan

Pande S, Kost C. 2017. Bacterial unculturability and the formation of intercellular metabolic networks. Trends in
Microbiology 25:349–361. DOI: https://doi.org/10.1016/j.tim.2017.02.015, PMID: 28389039

Petersen JE, Cornwell JC, Kemp WM. 1999. Implicit scaling in the design of experimental aquatic ecosystems.
Oikos 85:3–18. DOI: https://doi.org/10.2307/3546786

Pianka ER. 1970. On r- and K-Selection. The American Naturalist 104:592–597. DOI: https://doi.org/10.1086/
282697

Pianka ER. 1972. R and K selection or b and d selection? The American Naturalist 106:581–588. DOI: https://doi.
org/10.1086/282798

Plotkin JB, Kudla G. 2011. Synonymous but not the same: the causes and consequences of Codon bias. Nature
Reviews Genetics 12:32–42. DOI: https://doi.org/10.1038/nrg2899, PMID: 21102527

R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for
Statistical Computing. Vienna, Austria, http://www.r-project.org

Raes J, Korbel JO, Lercher MJ, von Mering C, Bork P. 2007. Prediction of effective genome size in metagenomic
samples. Genome Biology 8:R10. DOI: https://doi.org/10.1186/gb-2007-8-1-r10, PMID: 17224063

Raes J, Letunic I, Yamada T, Jensen LJ, Bork P. 2011. Toward molecular trait-based ecology through integration
of biogeochemical, geographical and metagenomic data. Molecular Systems Biology 7:473. DOI: https://doi.
org/10.1038/msb.2011.6, PMID: 21407210

Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA,
Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R,
Rubin EM, et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:
431–437. DOI: https://doi.org/10.1038/nature12352, PMID: 23851394

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics 26:139–140. DOI: https://doi.org/10.1093/bioinformatics/
btp616, PMID: 19910308

Rocha EP. 2004. Codon usage Bias from tRNA’s point of view: redundancy, specialization, and efficient decoding
for translation optimization. Genome Research 14:2279–2286. DOI: https://doi.org/10.1101/gr.2896904,
PMID: 15479947

Rocha EP, Danchin A. 2002. Base composition Bias might result from competition for metabolic resources.
Trends in Genetics 18:291–294. DOI: https://doi.org/10.1016/S0168-9525(02)02690-2, PMID: 12044357
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Appendix 1

Further background on the genomic traits
We have highlighted reasons for the choice of genomic traits used in this study in the

introduction of the main text. Below, we provide more details and references on the relevance

of these traits for the rates and costs of information processing and their role in community

assembly and the trophic strategy of organisms.

Copy number of highly expressed genes essential to biosynthesis
In order to grow quickly, organisms must be able to transcribe genes, translate mRNA, and

synthesize proteins at a sufficiently fast rate. As ribosomes catalyze protein synthesis,

increased capacity to replenish diminished ribosomal pools or to maintain large standing

stocks facilitates growth. Thus, faster-growing organisms should benefit from increasing their

number of rRNA operon copies (and so the 16S rRNA gene) in order to increase the rate of

transcription of rRNAs, allowing the size and rate of turnover of the ribosomal pool to be

larger and thereby preventing translation by the ribosomes from becoming the rate-limiting

step in cellular growth.

Indeed, in Bacteria and Eukaryotes there are intraspecific and interspecific correlations

between rRNA operon copy number per genome, which can vary by over an order of

magnitude in bacteria (Acinas et al., 2004; Větrovský and Baldrian, 2013), and growth rate

or generation time (Condon et al., 1995; Gyorfy et al., 2015; Klappenbach et al., 2000;

Lauro et al., 2009; Shrestha et al., 2007; Stevenson and Schmidt, 2004; Yano et al., 2013).

Thus microbes that are competitive in fast-growing environments are likely to have to have a

greater number of copies of the rRNA gene operon.

Furthermore, because faster-growing organisms must have larger cellular quotas of

rRNA, they should have higher phosphorus contents (Elser et al., 2003; Elser et al., 1996;

Makino et al., 2003) as rRNA is phosphorus rich, and thus require more phosphorus-rich

resources in order to build these rRNA pools. These observations, known as the ‘growth rate

hypothesis’ (Elser et al., 2000), have received considerable empirical support from

comparative studies, but research exploring their usefulness as a predictive trait for

community ecology has been limited.

Likewise, since the concentrations of tRNAs affect the rate of protein translation, having

more copies of tRNA genes, as well as a greater diversity of anticodons among the tRNA

genes, may help a cell to maintain larger pools of tRNAs (as has been observed [Higgs and

Ran, 2008; Kanaya et al., 1999]) and thereby maintain the faster translation rates required for

faster growth rates. Indeed, the total number of tRNA genes (which, for example, varies from

under 30 to over 120 per genome in bacteria) has been shown to be correlated

negatively with generation time (Higgs and Ran, 2008; Rocha, 2004).

Genome size
Genome size is a complex trait that affects multiple aspects of an organism’s ecology,

physiology, and molecular biology, making it both an important trait to study as well as a

challenging one because its influence on ecology may differ between environments,

organisms, and historical circumstances. Many microbiologists previously thought that there

was no relationship between growth rate and genome size (Mira et al., 2001). Recent work

suggests that among species growth rate and genome size may be positively correlated

(DeLong et al., 2010), although this remains controversial and conflicts with some studies that

may not have addressed confounding variables such as the effects of temperature on growth

rate (Vieira-Silva et al., 2010; Vieira-Silva and Rocha, 2010). In addition, bacteria in

oligotrophic zones of the oceans tend to have smaller genomes than bacteria in copiotrophic

zones (Zeigler Allen et al., 2012; Lauro et al., 2009). Thus, organisms with larger genomes
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may, all else being equal, do better under high growth conditions and so respond favorably to

nutrient fertilization.

There are several non-mutually exclusive reasons why genome size may be correlated with

growth rate and response to fertilization. For one, because DNA is P-rich, large-genome

organisms require more phosphorus to maintain and replicate their genomes and so they have

greater difficulty than small-genome species in obtaining sufficient amounts of P in

oligotrophic, P-limited environments. Larger-genome species also tend to have larger cells,

leading to, on average, decreased surface-to-area-volume ratios and a

consequent disadvantage in obtaining sufficient nutrients (Okie, 2013). Genome size also

affects the size, structure and function of the metabolic networks of organisms by allowing for

a greater diversity of enzymes, a higher diversity of metabolic pathways, and enhanced

metabolic multi-functionality, which may affect an organism’s ability to take up a variety of

substrates, the speed of resource uptake and transformation, and the yield of resource

transformation (DeLong et al., 2010; Maslov et al., 2009). Finally, larger genomes allow

organisms to encompass greater copy numbers of highly expressed genes and genes involved

in protein translation machinery, such as tRNA and rRNA genes, which in turn allow for greater

translation rates, as discussed above.

Nucleotide base composition of DNA
The percentage of a genome’s DNA composed of the nucleotide bases guanine and cytosine

is known as a genome’s GC content. Genome GC content varies widely across life, and there

appears to be pervasive selection on the GC content of bacterial genomes, leading to

selection for high GC content in some bacterial genomes (Hildebrand et al., 2010). The

reasons for positive selection on GC content are contested, and it is likely that there are

multiple different selective forces on GC content related to the niches and environmental

conditions of different species. Because GC bonds have eight nitrogen atoms whereas AT

bonds contain only seven, higher GC content genomes tend to have higher nitrogen content

(Bragg and Hyder, 2004), so that higher GC content organisms have increased nutrient

requirements for replication, DNA repair, and their mRNAs.

Rocha and Danchin (2002) found that parasitic and symbiotic bacteria have lower GC

content than free-living bacteria, and proposed an explanation based on the biochemical

details of nucleotide metabolism and differences in the energetic expense of GTP and CTP

nucleotides versus ATP and UTP nucleotides. The explanation boils down to the difference

resulting from increased selection by competition for scarce resources in parasites and

symbionts. Here, we extend this explanation to include extremely oligotrophic genomes as

similarly susceptible to these evolutionary forces as parasites and symbionts, and thus propose

that an emergent consequence of these effects should be a positive association between GC

content and growth rate. Suggestive support for this possibility is provided by the observation

that GC content tends to be higher in the DNA of environmental samples from complex

environments, such as soils, and from environments with high amount of nutrients, such as

whale carcasses and copiotrophic waters, compared to the DNA of samples from simple and

lower productivity environments, such as oligotrophic pelagic communities in the Sargasso Sea

(Zeigler Allen et al., 2012; Foerstner et al., 2005; Raes et al., 2007).

Codon usage bias
An amino acid can be encoded by multiple different codons (nucleotide triplets), but these

synonymous codons have different kinetic properties, including different probabilities of

mistranslation. In highly expressed genes that are essential for growth, such as ribosomal

protein genes, there should be increased selection for biasing the usage of certain

synonymous codons over others in order to optimize the accuracy and speed of translation,

especially in organisms with fast growth rates.

As 18 of the 20 standard amino acids are encoded by two or more synonymous codons,

genomes and genes may favor certain codons over others without altering translation
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products. Different synonymous codons have different probabilities of mistranslation. Thus,

the use of more accurately translated codons can be beneficial because mistranslation wastes

energy, reduces the translation rate (all else being equal), and/or can cause cytotoxic protein

misfolding. Codon usage bias (CUB) has been documented in Bacteria, Archaea, and

Eukaryotes (Satapathy et al., 2014; Subramanian, 2008; Vieira-Silva and Rocha, 2010). The

highly expressed genes of a genome, such as ribosomal protein genes, tend to have greater

CUB (Subramanian, 2008; Vieira-Silva and Rocha, 2010). As CUB can alter the accuracy and

speed of translation, this greater CUB presumably reflects selection for a greater translational

accuracy and/or or efficiency (Hershberg and Petrov, 2008), which should increase rates of

translation.

It follows from this positive effect of CUB on translation that faster-growing organisms

should tend to have greater CUB, especially in genes that are highly expressed and essential

for growth (such as ribosomal protein genes). Indeed, a negative relationship between an

organism’s generation time and the CUB of its ribosomal protein genes has been reported

(Subramanian, 2008; Vieira-Silva and Rocha, 2010). A few studies have compared the CUB

of metagenomes from different environments (Roller et al., 2013; Vieira-Silva and Rocha,

2010), but more work is required to clarify the role of CUB in community assembly.

Additional methods

Experiment
A small number of fish and larger aquatic macroinvertebrates (~1 cm or greater) were

removed from the unfertilized mesocosms with a dip net before beginning the experiment.

Such removals were necessary to ensure that enclosures did not experience unduly large

stochastic disruption from animal activities resulting from differing numbers of large animals

being trapped inside at unnaturally high densities. This would have confounded the difference

in nutrient conditions between the enriched and unenriched treatments, undermining the

purpose of the experiment. To the extent that such consumers augmented nutrient availability

outside of the unenriched enclosures, then their removal from the enclosures would have

amplified the nutrient enrichment contrast between the fertilized pond and the unenriched

enclosures.

Field monitoring and sampling
Water was sampled adjacent to and within each of the five internal mesocosms. Samples were

filtered onto Whatman GF/C filters for analysis of chlorophyll (chl a) concentrations and passed

through 0.2 mm polyethersulfone membrane filters (Pall Life Sciences, Port Washington,

NY). Filtrate was used for analyses of nitrate (NO3), ammonia/ammonium (NH3/4), soluble

reactive phosphorus (SRP), and total dissolved phosphorus (TDP). After 16 and 32 days of

fertilization, water samples were also filtered onto pre-combusted Whatman GF/F filters for

analysis of concentrations of C, N, and P in suspended particulate matter (seston particles).

Unfiltered water samples were frozen for later analysis of total N (TN) and total P (TP)

concentrations.

Routine water chemistry
Chl a on GF/C filters was quantified fluorometrically using a TD-700 fluorometer (Turner

Designs, Sunnyvale, CA) after 16–24 hr of extraction in cold absolute methanol (Arar and

Collins, 1997). TN concentrations were measured using a Shimadzu TOC/TN analyzer. TDP

and TP concentrations were measured using the same colorimetric method after persulfate

digestion of the filtered or unfiltered samples, respectively. GF/F filters with seston were

thawed, dried at 60˚C and then packed into tin discs (Elemental Microanalysis, UK) for C and N

analyses with a Perkin Elmer PE 2400 CHN Analyzer at the Arizona State University Goldwater

Environmental Laboratory. Another set of dried GF/F filters prepared from the same water
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samples was used for estimation of seston P content. These filters were digested in persulfate

followed by colorimetric analysis for P.

Calculations on the potential for evolutionary change during the
experiment
For microorganisms with 2 hr minimum generation times—the approximate average minimum

generation time of prokaryotic isolates in many data sets (e.g., DeLong et al., 2010; Vieira-

Silva and Rocha, 2010)—a maximum of 384 generations of replication can occur in the 32 day

period of the experiment, which is barely sufficient for much evolutionary change (Lenski and

Travisano, 1994), especially for change in some of the genome-scale traits such as GC

content and codon usage bias. Many of the microorganisms in natural ecosystems (that is, the

unculturable taxa underrepresented in generation time datasets that make up the majority of

prokaryotic communities) probably have minimum generation times greater than 2 hr, and

under field conditions, they do not achieve or sustain their minimum generation times for the

whole course of the experiment. Thus, we expect that in our experiment, populations

experienced much fewer than 384 generations, providing very limited opportunity for

evolutionary change to affect the genomic traits.

Results – changes in taxonomic composition
The percentages of Bacteria, Archaea, Eukarya, and viruses making up the communities were

not discernibly different between unfertilized and fertilized treatments (p=0.46, 0.37, 0.39,

0.21, respectively). For Bacteria and Eukarya, the percentages varied relatively little between

samples within and across treatments (R2 = 9.6% and 13.5%, respectively). For Archaea and

viruses, the mean percentages were substantially different between treatments (mean

percentages in the fertilized treatment were 43% and 46% lower, respectively, than those in

the unfertilized treatment), but owing to the high within-treatment variance, treatment

explained limited variation in the relative abundances of these domains (R2 = 14% and 27%,

respectively). The mean relative abundances in the unfertilized versus fertilized treatments

were, respectively, 94% versus 93% for Bacteria, 6.0% versus 6.6% for Eukarya, 0.40% versus

0.23% for Archaea, and 0.05% versus 0.03% for viruses. Thus, Bacteria dominated the

communities in both treatments. However, as expected, nutrient enrichment altered microbial

community composition at a finer phylogenetic resolution, as indicated by the Principal

Coordinates Analysis (PCoA) plot of community phylogenetic composition (based on the APIS

analyses; Appendix 1—figure 2) and supported by statistical analysis: the PCoA scores from a

two-dimensional analysis differed between treatments (first dimension—R2 = 45.6%, p=0.096;

second dimension—R2 = 51.3%, p=0.070) and several taxonomic groups changed in

abundance with fertilization (Appendix 1—figures 3 and 4, all p<0.01). Our results thus

confirm the rarity of microbial eukaryotes in the pond and show modest changes in the

group’s relative abundance between treatments, indicating that the tRNA counts and our

other bioinformatic analyses mostly reflect the response in Bacteria.
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Appendix 1—figure 1. Chlorophyll a concentration increased with nutrient enrichment, whereas

it remained relatively invariant in the unfertilized treatment.
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Appendix 1—figure 2. Principal coordinates analysis (PCoA) of the community phylogenetic

structure inferred from the metagenomes shows that the phylogenetic composition of samples,

as indicated by each point, is substantially different between unfertilized and fertilized treat-

ments. Microbial community phylogenetic composition also varied notably within the

unfertilized mesocosms, falling into two clusters driven by variation in the relative abundance
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of Alphaproteobacterum, whereas enriched communities all shared relatively similar

phylogenetic composition, indicating a convergence of effects of fertilization on community

composition.

Appendix 1—figure 3. Relative abundances of taxonomic phyla in the samples from the unfer-

tilized (Cont) and fertilized (Fert) treatments.
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Appendix 1—figure 4. The significant relative abundance changes in taxonomic classes sug-

gested by the statistical analysis of the phylogenetic composition determined by APIS. The

statistical analysis is based on the statistical methods developed in the EdgeR package

(Robinson et al., 2010). Note that less than 50% of reads could be annotated. All p<0.01.
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Appendix 1—table 1. Differences in the variance of community-level traits between treatments.

Community-level trait

Variance
Ratio of
variances

Bonett’s test p-
valueUnfertilized Fertilized

P:C ratio 2.09 � 10�7 2.06 � 10�8 0.13 0.058

Mean genome size 105,315.4 10,984.8 0.1 0.174

Log number of rRNA genes 0.0056 0.0422 7.55 <0.001

Log number of tRNA genes 0.0148 0.1396 9.46 0.013

GC content 0.0001 0.0002 1.9 0.56

Mean ENC 3.0554 0.3034 0.1 0.169

Median ENC 2.5861 0.413 0.16 0.275

Mean ENC’ 2.5494 0.0824 0.03 0.056

Median ENC’ 1.832 0.0671 0.04 0.069
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