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Diabetes is a highly prevalent metabolic disease that has emerged as a global challenge
due to its increasing prevalence and lack of sustainable treatment. Diabetic kidney disease
(DKD), which is one of the most frequent and severe microvascular complications of
diabetes, is difficult to treat with contemporary glucose-lowering medications. The gut
microbiota plays an important role in human health and disease, and its metabolites have
both beneficial and harmful effects on vital physiological processes. In this review, we
summarize the current findings regarding the role of gut microbial metabolites in the
development and progression of DKD, which will help us better understand the possible
mechanisms of DKD and explore potential therapeutic approaches for DKD.

Keywords: gut microbiota, microbial metabolites, diabetic kidney disease, diabetes, short-chain fatty acids,
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INTRODUCTION

With the continuous improvement of people’s living standards, changes in lifestyle, and
environmental factors, the incidence of diabetes mellitus (DM), which is a metabolic disorder,
has been increasing year by year. According to data released by the International Diabetes
Federation (IDF), about 463 million people worldwide were living with DM in 2019. The global
prevalence of DM is expected to rise to rise to 10.2% (578 million people) by 2030 and to 10.9% (700
million people) by 2045 (1). Patients with DM are more prone to serious complications that
contribute to increased mortality and reduced quality of life. About 30-40% of patients with DM
develop diabetic kidney disease (DKD), which is one of the major complications of DM, and most
cases progress to end-stage renal disease (2).

The hyperglycemic condition initiates multiple events that damage the kidney structurally and
functionally, such as glomerular hyperfiltration, proteinuria, thickening of the glomerular basement
membrane, mesangial matrix accumulation, podocyte damage and glomerulosclerosis (3). Renal
hemodynamics changes, the renin-angiotensin-aldosterone system, oxidative stress, inflammatory
responses and fibrosis are also major factors in the pathogenesis of DKD (4). Current therapy for DKD
includes antihypertensive and antiproteinuric means, as well as the use of angiotensin receptor blockers
and angiotensin converting enzyme inhibitors. In addition, sodium glucose cotransporter 2 (SGLT-2)
inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists are novel diabetes medications that
prevent kidney failure (5). However, these means have limited efficacy in preventing the progression of
n.org May 2021 | Volume 12 | Article 6361751

https://www.frontiersin.org/articles/10.3389/fendo.2021.636175/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.636175/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:801940@csu.edu.cn
https://doi.org/10.3389/fendo.2021.636175
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.636175
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.636175&domain=pdf&date_stamp=2021-05-20


Fang et al. Gut Microbial Metabolites Regulating DKD
DKD (6). The complicated pathogenesis of DKD has not yet been
elucidated. Understanding the pathophysiology of DKD is crucial
for its prevention and treatment.

Recent advances in high-throughput metagenomic
sequencing technologies have increased our knowledge of the
symbiotic relationship between the gut microbiota and its host
(7). The gut microbiota, as an important environmental factor,
has emerged as a crucial regulator of human health and disease
(8–10). The metabolites produced by the gut microbiota may
also have pathogenic or beneficial effects on the host. These
metabolites and their end products may play key roles in the
host’s metabolic network (11), immune processes (12) and
neurobiological processes (13).

Recently, metabolomic studies have found that the microbial
metabolite profile is altered in patients with type 2 diabetes (T2D)
(14) and DKD (15). Mounting evidence supports the critical role
of the gut microbiota as a factor (either beneficial or harmful) in
the development of T2D (11) and DKD (16). Moreover, a number
of metabolites are produced by the gut microbiota, using dietary
nutrients as precursors, suggesting that diet has an important
impact on gut microbial metabolites. In this review, we offer a
summary of short-chain fatty acids (SCFAs), trimethylamine-N-
oxide (TMAO), bile acids (BAs), polyphenols, tryptophan-derived
metabolites, branched-chain amino acids (BCAAs) and other
metabolites that play important roles in the pathogenesis and
progression of DKD. We also discuss the potential mechanisms of
microbial metabolites and DKD.

Short-Chain Fatty Acids
SCFAs, including acetate, propionate, and butyrate, are produced
by the microbial community through the fermentation of
Frontiers in Endocrinology | www.frontiersin.org 2
non-digestible carbohydrates. Acetate and propionate are
mainly produced by Bacteroidetes, whereas butyrate is
primarily generated by Firmicutes (17). SCFAs can be used by
the host for the biosynthesis of lipids, cholesterol, and proteins or
as an energy source by gut mucosal cells (18). The effects of
SCFAs are in part mediated by G-protein coupled receptors
(GPR41, GPR43, and GPR109A) and histone deacetylase
(HDAC), which are related to oxidative stress, immune, and
inflammatory responses (19–22).

SCFAs have been reported to have multiple beneficial
regulatory roles in both type 1 diabetes (T1D) (23, 24) and
T2D (25). Several studies have also indicated their important
roles in DKD (Table 1). SCFAs, especially acetate and butyrate,
inhibit oxidative stress and inflammation in mouse glomerular
mesangial cells that have been induced by high glucose and
lipopolysaccharides (26). Treatment with a high-fiber diet or
directly treatment with SCFAs can both protect against the
development of DKD in mice by regulating the key pathways
and genes involved in innate immunity, inflammation, and
macrophage recruitment. GPR43 and GPR109A are critical to
SCFAs-mediated protection against DKD (31). Exogenous
sodium butyrate administration can improve DKD by reducing
inflammation and oxidative stress, and by ameliorating fibrosis,
apoptosis, and DNA damage, and this has been proven in
different animal models (19, 22, 31). Exogenous sodium
butyrate can also could protect human glomerular mesangial
cells against high glucose-induced pyroptosis (32). These studies
suggest that SCFAs, especially butyrate, may act as potential
therapeutic targets for DKD.

Although much evidence suggests that increased butyrate
production benefits the host through antidiabetic effects, some
TABLE 1 | Beneficial and Harmful effect of SCFAs on DKD in vivo and vitro.

Supplement Animal/Cell Type Mechanism References

SCFAs (acetate, butyrate, propionate) Mouse glomerular mesangial cells (SV40-MES-13) (+) GPR 43;
oxidative stress (ROS↓, MDA↓, SOD↑) ↓;
inflammation (ICAM-1↓, MCP-1↓, IL-1b↓) ↓

(26)

High-fiber diet,
SCFAs (acetate, butyrate,
propionate)

C57BL/6, Gpr43-/-
and Gpr109A-/- mice;
Mouse kidney tubular epithelial cells and podocytes;

(+) GPR43 and GPR109A;
IL-6↓, IFNg↓, CCL2↓, CXCL10↓;
fibronectin↓, TGFb↓

(23)

SCFAs (acetate, butyrate,
propionate)

C57BL/6 mice;
Mouse glomerular mesangial cells
(SV40-MES-13)

(+) GPR43-b-arrestin-2 signaling;
oxidative stress (ROS↓) ↓;
NF-kB inflammatory signaling↓

(27)

NaB SD rats (-) HDACs;
eNOS↓, iNOS↓; a-SMA↓, collagen I↓, fibronectin↓, TGF-b1↓;
NF-kB↓; apoptosis↓; DNA damage↓

(22)

NaB C57BL/6 and Nrf2-/- mice (-) HDACs;
(+) NRF2

(28)

NaB Human renal glomerular endothelial cells (-) caspase 1-GSDMD canonical pyroptosis pathway;
(-) NF-kB/IkB-a signaling pathway

(29)

NaB db/db and db/m mice;
Mouse mesangial cells
(SV40-MES-13)

(-) micro7a-5p/P311/TGF-b1 pathway (30)

NaB Normal rat kidney tubular epithelial (NRK−52E) cells (-) HDAC2;
oxidative stress (ROS↓, SOD↑, LDH↓) ↓

(20)
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(+), active; (-), inhibit; SCFA, short−chain fatty acids; NaB, sodium butyrate; GPR 43, G-protein-coupled receptor 43; HDAC, histone deacetylase; NRF2, nuclear factor erythroid 2-related
factor 2; GSDMD, gasdermin D; ROS, reactive oxygen species; MDA, Malondialdehyde; SOD, superoxide dismutase; ICAM-1, intercellular cell adhesion molecule-1; MCP-1, monocyte
chemotactic protein-1; IL-1b, interleukin-1 b; IL-6, interleukin-6; TGFb, transforming growth factor-b; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; a-SMA,
a-smooth muscle actin; LDH, lactate dehydrogenase.
rticle 636175

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Fang et al. Gut Microbial Metabolites Regulating DKD
studies have suggested that acetate may exacerbate DKD. In
some animal models, plasma acetate levels have been reported to
be positively correlated with the intrarenal angiotensin II protein,
which has long been considered to be one of the initiators of
DKD. Acetate might also be involved in the kidney injury of early
DKD (33). In addition, acetate has been reported to dysregulate
cholesterol homeostasis through activating GPR43, thereby
contributing to the tubulointerstitial injury of DKD (34).
Whether SCFAs production is beneficial or harmful when it
comes to DKD remains to be further studied.

Trimethylamine-N-Oxide
Dietary choline, phosphatidylcholine, and L-carnitine are
metabolized into trimethylamine (TMA) by intestinal commensal
bacteria. A choline-utilization gene cluster (Cut) responsible for
anaerobic conversion of choline to TMA was identified in the
sulfate-reducing bacterium Desulfovibrio desulfuricans. CutC and
CutD, which are crucial genes in the cluster, encoding for choline
TMA-lyase and its activating protein. Moreover, in some bacteria of
the gender Acinetobacter and Serratia, CntA and CntB gens encode
the two subunits of the oxidoreductase enzyme necessary to convert
L-carnitine into TMA (35). On the other hand, a YeaW/YeaX gene
pair encodes some oxygenase and oxidoreductase enzymes with
substrate promiscuity for betaine, g-butyrobetaine, choline and L-
carnitine. These genes, not onlyCntA/CntB andYeaW/YeaX, but also
orthologs and homologs of them, can be found in a wide range of gut
microbiota: Actinobacteria, Betaproteobacteria (Achromobacter),
Firmicutes (Sporosarcina), and Gammaproteobacteria (Citrobacter,
E.coli, Klebsiella pneumoniae, Providencia, and Shigella) (36).

Once TMA is produced, most TMA is oxidized into TMAO
in the liver predominantly by the enzyme flavin-containing
monooxygenase 3 (37). Some clinical studies have investigated
the role of TMAO in predicting the prognostic outcomes and
mortality of diverse diseases (38–40). In addition to its predictive
value, TMAO has been implicated in the pathogenesis of various
human diseases, including cardiovascular (41), kidney (42),
metabolic (43) and neurological (44) disorders.

TMAO is linked to the pathogenesis of many diseases by
activating inflammatory pathways, such as nucleotide-binding
domain, leucine-rich-containing family, pyrin domain-
containing-3 (NLRP3) inflammasome signals (45–48) and
nuclear factor-kB signals (48–50), resulting in the release of
inflammatory cytokines. Moreover, some studies have indicated
that TMAO and its precursor can contribute to the pathogenesis
of cardiovascular diseases by inducing endothelial dysfunction
(51–54). In addition, both inflammation and endothelial
dysfunction play important roles in the pathogenesis of DKD.

Recently, it has been widely accepted that increased levels of
circulating TMAO directly contribute to renal dysfunction by
promoting inflammation, oxidative stress, and fibrosis. Both
TMAO-supplemented and choline-supplemented mice have
shown elevated TMAO levels, which were associated with
increases in tubulointerstitial fibrosis and collagen deposition
(42). In a mouse model of high-fat-diet-induced obesity, elevated
TMAO levels were found to promote renal oxidative stress and
inflammation, subsequently contributing to renal interstitial
fibrosis and dysfunction (55). In rats with chronic kidney
Frontiers in Endocrinology | www.frontiersin.org 3
disease (CKD), elevated TMAO levels promote vascular
oxidative stress and inflammation, contributing to endothelial
dysfunction (56). In a CKD mouse model , dietary
supplementation with either choline or TMAO was found to
significantly augment multiple indices of renal functional
impairment and fibrosis (57). Supplementation with 3,3-
dimethyl-1-butanol (an inhibitor of trimethylamine formation)
or iodomethylcholine (an inhibitor of prototypic mechanism-
based gut microbial choline TMA-lyase) can reduce plasma
TMAO levels and prevent adverse renal structural and
functional alterations in animal models (55–57). Therefore,
high TMAO levels may exacerbate DKD, and TMAO
inhibitors may have therapeutic potential to ameliorate DKD
(Figure 1).

The regulation of TMAO in the DKD still warrants more
investigation. Despite growing interest in TMAO biology, the
receptor for TMAO is not yet known. Recent evidence has shown
that TMAO directly bounds to and activates the protein kinase
R-like endoplasmic reticulum kinase, which is an endoplasmic
reticulum stress kinase (43). The next milestone is to identify the
direct targets of TMAO.

Bile Acids
BAs are host-microbial co-metabolites and important signaling
molecules. The primary BAs produced by the host can be
metabolized by the gut microbiota into a secondary BAs (58).
When a small portion of unabsorbed BAs enter the distal ileum,
cecum, and colon, they undergo various reactions via microbiota:
deconjugation, dehydroxylation, oxidation and epimerization
reactions (59, 60). BA deconjugation is driven by bile salt
hydrolase, which have been identified in Bacteroides,
Bifidobacterium, Clostridium, Enterococcus, and Lactobacillus (61).
Dehydroxylation occurs after deconjugation, and is catalyzed by
members of the Firmicutes phylum, including Clostridium (C.
scindens or C. hylemonae) and Eubacterium. Oxidation and
epimerization require BA hydroxysteroid dehydrogenases
produced by intestinal Bacteroides, Firmicutes (including
Clostridium, Eubacterium, and Ruminococcus), and Escherichia (60).

BAs are endocrine signaling molecules that affect host
physiology via the activation of BA receptors. The two major
BA receptors that regulate the host metabolism are the nuclear
farnesoid X receptor (FXR) and the membrane-bound Takeda G
protein-coupled receptor 5 (TGR5) (62). Both FXR and TGR5
have protective roles in DKD (63).

Renal expression of FXR is predominantly tubular and less
prominently glomerular, mesangial, and podocytal (64). FXR
expression is decreased in people with diabetes- and obesity-
related kidney disease. In a series of rodent models of diabetes,
the expression levels of FXR and its target genes were found to be
downregulated in the kidney (65). Supplementation with FXR
agonists, such as tauroursodeoxycholic acid, has been shown to
attenuate glomerular and tubular injury in db/db mice and
diabetic endothelial nitric oxide synthase-deficient mice (66).
Moreover, the FXR agonist GW4064 can improve the functional
and structural changes in the kidney of db/db mice (67).

TGR5 expression and activity is impaired in the kidneys of
humans and rodents with obesity and diabetes (68). TGR5
May 2021 | Volume 12 | Article 636175
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activation reduces the renal inflammatory reactions in diabetic
mice, thereby improving renal fibrosis (69). In high glucose-
treated glomerular mesangial cells, TGR5 activation was found to
significantly decrease the expression levels of transforming
growth factor beta 1 and fibronectin, which can both accelerate
renal fibrosis (70, 71).

The BA signaling pathway plays an extremely important role
in T2D and DKD, and it is an important target for drug
intervention (Figure 2). BAs have been used directly to treat
diabetes and obesity. Metformin, which is a first-line antidiabetic
drug, acts in part through the intestinal FXR axis to improve
T2D. Oral synthetic FXR antagonists may be of potential
translational value in the clinical treatment of T2D (72)
Moreover, both BA sequestrants and apical sodium-dependent
BA transporter inhibitors can reduce BA absorption and have a
therapeutic effect on T2D by activating FXR (73). In the future,
semisynthetic BA analogues for the treatment of T2D and DKD
need more focus.

Protein-Bound Uremic Toxins
Protein-bound uremic toxins, such as indoxyl sulfate (IS), p-
cresyl sulfate (pCS), p-cresyl glucuronide (pCG), and phenyl
sulfate, originate from the gut microbial metabolism of the
aromatic amino acids, tyrosine, phenylalanine, and tryptophan.
These uremic toxins have been associated with cardiovascular
disease and mortality in CKD, and several uremic toxins have
also been found to exert toxic effects in the kidney. The levels of
these uremic toxins are elevated in T2D patients who progress to
Frontiers in Endocrinology | www.frontiersin.org 4
end-stage kidney disease (74, 75) and elevated levels of these
uremic toxins increase the risk of progression to end-stage
kidney disease in patients with T2D (74).

IS is derived from tryptophan metabolism. Tryptophan is
digested by intestinal bacteria (E. coli, Proteus vulgaris,
Paracolobactrum coliforme, Achromobacter liquefaciens, and
Bacteroides spp) to indole, and it is metabolized to IS in the
liver (76). Increasing levels of IS are correlated with changes in
albuminuria and the estimated glomerular filtration rate, and
they are associated with the progression of DKD in patients with
T1D and T2D (77–79), as well as in animal models of DM (80–
82). IS also can directly induce tubulointerstitial injury, renal
oxidative stress and inflammation in mice that undergone
nephrectomy (83, 84), as well as in human renal proximal
tubular epithelial (HK-2) cells (85, 86).

Both pCS and pCG originate from the intestinal microbial
fermentation of tyrosine into p-cresol, and p-cresol is
subsequently conjugated to either sulfate or glucuronic acid
resulting in the formation of pCS or pCG, respectively (87).
The intestinal bacteria generating p-cresol mainly belong to the
families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae,
Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae,
Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae,
Ruminococcaceae, and Veillonellaceae (88). The levels of pCS and
pCG are elevated in patients with CKD, and pCG can cause
phenotypical changes in renal proximal tubule cells (89). In
addition, pCS can directly influence cell viability and induce cell
death (90, 91). It has also been reported that pCS can induce reactive
FIGURE 1 | A proposed model of diabetic kidney disease mediated by TMAO. The mechanism of TMAO promoting the progression of diabetic kidney disease may
be through promoting inflammation, oxidative stress and fibrosis in renal system. The choline TMA lyase inhibitor DMB and IMC may improve diabetic kidney disease
by inhibiting TMAO levels. DMB, 3,3-dimethyl-1-butanol; IMC, iodomethylcholine; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3,
Nod-like receptor pyrin domain 3 inflammasome, TNF-a, tumor necrosis factor a; IL-1b, interleukin-1b; IL-6, interleukin-6; ROS, reactive oxygen species; a-SMA,
alpha sarcomeric actin; TGF-b, transforming growth factor-b.
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oxygen species and inflammatory cytokines in 5/6 nephrectomized
rats and HK-2 cells (92).

Phenyl sulfate is produced by the metabolism of the amino
acid tyrosine by the gut microbiota. First, phenol is synthesized
in the gut and then metabolized into phenyl sulfate by the liver.
The intestinal bacteria generating phenol mainly belong to the
families Clostridiaceae, Enterococcaceae, Staphylococcaceae,
Bacteroidaceae, Bifidobacteriaceae, and Enterobacteriaceae (93,
94). Phenyl sulfate is then secreted by proximal tubular cells
through the action of SLCO4C1, which is the only organic acid
transporter polypeptide in the human kidney (95). In a cohort of
diabetic patients, phenyl sulfate levels were found to be
statistically significantly correlated with both basal albuminuria
and the 2-year progression of DKD. Further, phenyl sulfate was
found to directly induce albuminuria via podocyte damage in
diabetic animal models (15).

These protein-bound uremic toxins are not only markers of
the risk for DKD occurrence in diabetic patients, but they are
also risk factors that directly facilitate the development of DKD
(Figure 3). However, the molecular mechanisms of these uremic
toxins in DKD still need further study. Some drugs that target
uremic toxins, such as AST-120 (Kremezin), which is an oral
adsorbent, protect against the progression of both DKD (84, 96)
and CKD (97, 98) by removing serum and urinary uremic toxins.

Polyphenols-Derived Microbial
Metabolites
Polyphenols are produced in plants and have excellent
antibacterial, antifungal, antioxidant, and photo-protective
properties (99). Natural polyphenols, such as ellagitannins,
Frontiers in Endocrinology | www.frontiersin.org 5
lignans, isoflavones, and flavanones, which are poorly absorbed
or not absorbed at all. Interaction with gut microbiota leads to
the biochemical transformations of the native phytochemicals
into more bioavailable metabolites. These gut microbiota
transformations are grouped into three major catabolic
processes: hydrolysis (O-deglycosylations and ester hydrolysis),
cleavage (C-ring cleavage; delactonization, demethylation), and
reductions (dehydroxylation and double bond reduction) (100).
Lactobacillus, Bifidobacterium, Bacteroides, Enterococcus,
Enterobacter, and Firmicutes have been demonstrated to
participate in hydrolysis (101–103). Cleavage reactions are
catalyzed by Clostridium, Coriobacteriaceae, Eubacterium and
Eggerthella strains (101, 104). Gordonibacter urolithinfaciens and
Lactonifactor longoviformis catalyze different reduction reactions
(105–107).

Enterolactone and enterodiol, which are therapeutically
relevant polyphenols, are formed as the secondary gut bacterial
metabolites of lignans. Urinary levels of enterolactone are
associated with lower risk of developing T2D in women in the
United States (108). Pre-diagnostic enterolactone concentrations
are inversely associated with all-cause and diabetes-specific
mortality (109). Enterolactone was found to increase glucose
uptake in an AMPK-dependent manner in L6 myotubes and to
improve glucose tolerance in db/db mice (110). Many studies
have reported that enterolactone may have some benefit for T2D.
However, there are also some opposite conclusions. One study
did not find a significant association between urine enterolactone
levels and T2D risk in Chinese adults (111). Moreover,
enterolactone was found to enhanced the hepatic insulin
resistance via increased sphingolipid concentrations in the
FIGURE 2 | A proposed model of diabetic kidney disease mediated by bile acids. Bile acids may inhibit endoplasmic reticulum stress, inflammation and fibrosis by
activating FXR and TGR5 to improve diabetic kidney disease. BAs, bile acids; FXR, Farnesoid X receptor; TGR5, G protein-coupled receptor 5; ER stress,
endoplasmic reticulum stress; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; ICAM-1, intercellular adhesion molecule-1; TGF-b1,
transforming growth factor-b1; FN, fibronectin.
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palmitate-rich condition of HepG2 cells (112). Thus, the
relationship between enterolactone and T2D should be
further studied.

Urolithin A (UA), which is a main gut microbiota-derived
metabolite of pomegranate ellagitannins, plays a direct role in
improving systemic insulin sensitivity (113). In addition, UA can
prevent high-fat-diet-induced insulin resistance and glucose
intolerance in mice (114). Further, UA can effectively improve
b-cell dysfunction, possibly by regulating autophagy and the
AKT/mTOR signaling pathway in the pancreas of diabetic mice
(115). Moreover, UA has shown a protective effect in some acute
kidney injury animal models via modulation of inflammation,
oxidative stress, autophagy, and apoptosis (52, 116–118), which
are also some of the main mechanisms of DKD. Thus, UA may
be capable of attenuating DKD. Urolithin C (UC), which is
another microbiota ellagitannin metabolite, is a glucose-
dependent activator of insulin secretion via the facilitation of
the opening of L-type Ca2+ channels in b-cells (119). UC can also
influence b-cell function by affecting the activation of
intracellular signaling proteins, specifically ERK1/2 (120).
Urolithin also has been reported have some certain benefits for
diabetes complications. Urolithins (includes urolithin A, B, C, D
and urolithin B-3-O-glucuronide) may exert positive effects in
modulating the pro-inflammatory mediators and growth factors
by rat cardiac myocytes and fibroblasts exposed to high glucose
concentrations (121). In streptozotocin-induced diabetic rat,
both urolithin A and B administration may be able to prevent
the initial inflammatory response of myocardial tissue to
Frontiers in Endocrinology | www.frontiersin.org 6
hyperglycemia and the negative impact of the altered diabetic
milieu on cardiac performance (122).

Taken together, polyphenols might have differential microbial
metabolites that may improve T2D and its complications. Thus,
it is crucial to understand the bacterial pathways involved in the
metabolism of polyphenols and their specific roles in T2D
and DKD.

Branched-Chain Amino Acids
BCAAs, including leucine, isoleucine, and valine, are among the
nine essential amino acids synthesized by the gut microbiota.
The food sources most enriched in BCAAs are meat, fish, dairy
products, and eggs (123).

BCAAs are known as biomarkers for insulin resistance and
predictors of diabetes development (124). In a recent prospective
cohort study, BCAAs showed a strong association with early risk
of T2D (125). The serum metabolomes of insulin-resistant and
T2D individuals are characterized by increased BCAAs levels
(126). Higher intake of total dietary BCAAs, leucine and valine in
particular, may increase the incidence of insulin resistance by
more than 60% in adults and play an important role in the
development of diabetes (127). In contrast, short-term reduction
of dietary BCAAs may acutely decrease meal-induced insulin
secretion, and improve postprandial insulin sensitivity (128).
Furthermore, in both animal and cell models, excess BCAAs
have been found to result in liver insulin resistance (129, 130).
These results suggest that BCAAs may not only be biomarkers,
but also causal agents of insulin resistance and T2D. Evidence of
FIGURE 3 | A proposed model of diabetic kidney disease mediated by protein-bound uremic toxins. The mechanism of protein-bound uremic toxins promoting the
progression of diabetic kidney disease may be through promoting inflammation and oxidative stress in renal system. AST-120 may improve diabetic kidney disease
by removing serum and urinary uremic toxins. IS, Indoxyl sulfate; pCG, p-cresyl glucuronide; pCS, p-cresyl sulfate; ROS, reactive oxygen species; MAPK, mitogen-
activated protein kinase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells.
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a causal role of BCAAs in human diabetes has also been
suggested in some genetic studies. In a mendelian
randomization analysis, researchers used genome-wide
association studies coupled with large-scale metabolomic
measurements to investigate the aetiologic relationship
between BCAA metabolism and T2D. They suggested that
BCAA-raising polymorphisms were associated with a higher
risk of T2D (131). In addition, genetic evidence suggests that
genetically elevated insulin resistance is associated with higher
concentrations of all BCAAs, supporting the idea that BCAA
metabolism lies on a causal pathway from adiposity and insulin
resistance to T2D (132). Another study showed that higher
BCAA levels do not have a causal effect on insulin resistance
while increased insulin resistance drives higher fasting levels of
circulating BCAAs (133).

In T2D patients with stages 1 or 2 CKD, high serum BCAA
levels are independently associated with a decline in the
estimated glomerular filtration rate (134). BCAAs can also
directly influence renal function. In one animal model, 5/6
nephrectomized rats receiving a BCAA diet showed a decrease
in the estimated glomerular filtration rate and an increase in
smooth muscle actin and collagen mRNA expression levels,
suggesting renal dysfunction, greater inflammation, and
fibrosis in the kidney (135).

However, several studies have suggested that BCAAs may be
an effective means of preventing and treating DM and DKD.
Moderate intake of BCAA-rich protein was found to improve
glucose homeostasis in mice fed a high-fat diet (136). In
streptozotocin-induced diabetic rats, treatment with a low dose
of BCAAs was found to recover islet function (137). Moreover,
one study found that BCAAs countered oxidative stress in the
kidney of diabetic rats and alleviated diabetic kidney injury (138),
while another study showed that BCAAs protected renal
mesangial cells from high-glucose-induced stress (139). More
studies are needed to clarify the relationships between BCAAs
and T2D. Furthermore, the factors resulting in the differences
among these studies needed to be identified.

Many bacterial species are capable of regulating biosynthesis,
transport, and metabolism of BCAAs (140). Moreover,
transplantation of the microbiota from obese humans to germ-
free mice causes a significant increase in circulating BCAAs
(141). Additional studies are needed to quantify the microbiota-
derived BCAAs in the circulating pool of these metabolites.

Other Metabolites
Imidazole propionate, which is a microbially produced amino
acid-derived metabolite, is present at higher concentrations in
people with T2D. A study demonstrated that imidazole
propionate directly impaired glucose tolerance and insulin
signaling through mTORC1, meaning that imidazole
propionate may contribute to the pathogenesis of T2D (142).

4-Cresol is a product of the colonic fermentation of tyrosine
and phenylalanine, and it has been reported to be related to T2D.
Serum concentrations of 4-cresol are inversely correlated with
T2D. The chronic administration of nontoxic doses of 4-cresol
was found to reduce adiposity and glucose intolerance in an
animal model, and 4-cresol was found to stimulate insulin
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secretion and b-cell proliferation in vivo and in vitro (143,
144). 4-Cresol may be a regulator of T2D endophenotypes and
have potential therapeutic applications.

The metabolism of dietary and host-derived sulfur-
containing compounds to hydrogen sulfide (H2S) by the gut
microbiota has many prominent connections to host health and
disease (145). H2S potentially has both beneficial and toxic effects
(146). The plasma H2S levels of Japanese patients with T2D were
found to be reduced and significantly associated with their
hemoglobin A1c levels (147). H2S also has been suggested to
be linked with GLP-1, which has become an important
therapeutic target in the treatment of T2D and obesity. By
supplementing with a prebiotic chondroitin sulfate, mice were
found to enhanced GLP-1 and insulin secretion, improved oral
glucose tolerance, and reduced food consumption, suggesting
that H2S plays a stimulatory role in GLP-1 secretion (148).
However, chronic administration of H2S-releasing agents was
found to increase serum glucose, decrease glucose tolerance, and
decrease insulin secretion in rats with T2D (149). In the future,
studies are needed to clarify the effects of different doses of H2S in
T2D. As for DKD, H2S has been reported to have a protective
effect and may be used as a novel therapeutic agent.

Hippuric acid is a gut microbial mammalian co-metabolite of
benzoic acid; it is subsequently conjugated with glycine in the
mitochondria, and then excreted in the urine (150). Several
metabolomics studies have shown that hippuric acid levels in
patients with impaired glucose tolerance and diabetes are lower
than those in healthy people (151). Hippuric acid has also been
proposed as a potential urinary biomarker for fruit, vegetable,
and polyphenol consumption. Consumption of bilberries and
flavonoids, which can increase hippuric acid levels, is associated
with a favorable risk factor profile for T2D and better glucose and
insulin metabolism (152, 153). Further, hippuric acid has been
reported to be decreased in both human diabetic renal pathology
studies (154) and animal DKD models (155), and it has been
suggested as an additional indicators of DKD. However, there is
no evidence to excluded the direct effect of hippuric acid on T2D
or DKD. Further studies are needed to infer causality between
hippuric acid and T2D or DKD.
THERAPEUTIC DRUGS FOR DKD AND
GUT MICROBIAL METABOLITES

In general, none of the widely used current treatments
specifically address the underlying molecular processes
responsible for DKD. Several interventional strategies have
involved multifactorial approaches, including blood pressure
and glucose lowering (156).

RAAS inhibitors have been the treatment of choice for DKD,
following the publication of clinical trial results demonstrating
benefits of angiotensin converting enzyme inhibitors and
angiotensin receptor blockers for decreasing albuminuria in
patients with DKD (157). Metformin, the most frequently
administered medication to decrease blood glucose, has recently
been suggested to enrich SCFA-producing microbiota, such as
May 2021 | Volume 12 | Article 636175
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such as Blautia, Bacteroides, Butyricoccus, Bifidobacterium,
Prevotella, Megasphaera, Butyrivibrio (158). SGLT2 inhibitors,
GLP-1 receptor agonists, and dipeptidyl peptidase 4 (DPP4)
inhibitors are three new classes of glucoselowering agents for
patients with DKD (159–161). SGLT2 inhibition has been
reported to promote elevations in the levels of the SCFAs
acetate and butyric acid in cecal contents of hypertensive mice
Frontiers in Endocrinology | www.frontiersin.org 8
(162). Vildagliptin, a DPP4 inhibitor, has been reported to enrich
SCFA-producing bacteria (163). Moreover, mice on HFD with
DPP-4 inhibitor PKF-275-055 treatment showed enriched
butyrate-producing Rumminococcus and of the acetogen
Dorea (164).

Some drugs for the treatment of DKD can increase the level of
SCFA by enriching SCFA-producing microbiota. Whether the
FIGURE 4 | Gut microbial metabolites regulating DKD. Food is digested and absorbed by the gastrointestinal tract, and various gut microbial metabolites are
produced under the action of the gut microbiota. Then, the microbial metabolites are absorbed into the blood vessels and finally enter the kidney. In nephrocytes,
gut microbial metabolites of SCFAs, TMAO, BAs, protein-bound uremic toxins, polyphenols-derived microbial metabolites and BCAAs may trigger or inhibit
inflammation, oxidative stress, ER stress, fibrosis or apoptosis, which will improve or excacerbate the progress of DKD. DKD, diabetic kidney disease; SCFA, short-
chain fatty acid; TMAO, trimethylamine N-oxide; BA, bile acids; BCAA, branched-chain amino acid; ER stress, endoplasmic reticulum stress.
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mechanism of these drugs in the treatment of DKD is mediated
by gut microbial metabolites remains unknown. The relationship
between these drugs and gut microbial metabolites still needs
more research.
CONCLUSIONS AND FUTURE
PERSPECTIVES

There is growing evidence of the roles of gut microbial
metabolites as biomarkers of the pathophysiological features or
as pathogenic agents of DKD. In this review, we highlighted
aspects relating to the involvement of microbiota metabolites in
the pathogenesis of DKD (Figure 4). In the future, we should
continue to look for microbial metabolites that can be used to
diagnose and treat DKD. However, there are still many
challenges to be overcome on the path toward using microbial
metabolites for therapies.

First, most microbial metabolites act as signaling molecules
by binding to receptors and triggering downstream signaling
cascades. Therefore, we should identify the targets of these
microbial metabolites in humans. Some metabolites, such as
SCFAs and BAs, interact with G-protein-coupled receptors
(GPCRs) associated with diverse functions. Many studies have
shown that large-scale functional screening for GPCRs can
identify microbial metabolites that exert various physiological
functions by activating GPCRs. There are many undiscovered
receptors similar to GPCRs, and efforts should be made to
identify these receptors and generate drugs targeting these
receptors in host tissues.

Second, most studies to date have only clarified the
correlations between microbial metabolites and T2D, and lack
of research on causality. Large prospective cohort studies are
needed to determine if microbial metabolites are altered prior to
or after disease onset. The result of some studies showing causal
effects in rodents should be confirmed in humans. If the results
on causality can be confirmed in humans, then further research
on the human intestinal microbiota may lead to the development
of novel diagnostic and therapeutic tools.

Finally, the concentrations of intestinal metabolites might be
highly context-dependent. If the metabolite is beneficial to
human health, it needs to be supplemented once its level falls
below the physiological level. The supplementation strategy
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needs to consider the route and frequency of administration,
individual differences in pharmacokinetics, and side effects for
doses that exceed physiological concentrations. If the metabolite
contributes to the pathophysiology of the disease, then the
production of the metabolite needs to be suppressed. Inhibiting
related enzymes that produce metabolites is a promising method.
Developing inhibitors targeting bacterial enzymes is another
therapeutic strategy to prevent the action of harmful microbial
metabolites, as in the case of TMA lyase producing TMA, a
precursor for TMAO. Metabolites do not act in isolation, and
thus the combined signals mediated by different metabolites
need to be investigated.

We believe that numerous challenges must be overcome on the
path toward using microbial metabolites for therapies. Despite
these difficulties, the metabolic pathways involved in the
production and signaling of microbiome-related metabolites are
huge untapped opportunities to regulate disease susceptibility.
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Trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new
therapeutic target. Nutrients (2018) 10(10):57–63. doi: 10.3390/nu10101398

38. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, et al. Gut microbial
metabolite TMAO enhances platelet hyperreactivity and thrombosis risk.
Cell (2016) 165(1):111–24. doi: 10.1016/j.cell.2016.02.011

39. Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, et al.
Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic
dysfunction, and adverse clinical outcomes in chronic systolic heart failure.
J Card Fail (2015) 21(2):91–6. doi: 10.1016/j.cardfail.2014.11.006
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104. Tomas-Barberan F, Garcıá-Villalba R, Quartieri A, Raimondi S, Amaretti A,
Leonardi A, et al. In vitro transformation of chlorogenic acid by human gut
microbiota. Mol Nutr Food Res (2014) 58(5):1122–31. doi: 10.1002/
mnfr.201300441
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