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Introduction
The increased throughput, coupled with reduced cost and 
time, of contemporary sequencing technologies has led to a 
surge in the number of publicly available, complete, annotated 
genomic sequences. For smaller viral species, it is now fea-
sible to not only produce a single genome for a species but also 
capture the diversity present in an ecological niche, the focus 
of numerous metagenomic studies1–3 as well as more targeted 
investigations.4 Furthermore, next-generation sequencing 
technologies have tremendous potential for the future of diag-
nostics and subsequent treatment choices, particularly for viral 
infections.5 The sensitivity of deep sequencing can capture even 
rare variants in mixed infections as well as quasispecies.6–11 
Investigation of the viable variations within a viral species not 
only provides insight into the evolutionary history of a species 
but also unveils putative avenues for targeted therapies, such as 
small interfering RNAs12–15 and control strategies.

Molecular biology is now plagued with the challenges 
facing numerous other fields – big data. Cloud-based solutions, 
eg, CloudBurst,16 Atlas2,17 and Rainbow,18 have provided much 
needed leverage to meet these demands, facilitating large-scale 
sequence analyses, while also introducing new difficulties.19 
Furthermore, noSQL databases afford a streamlined solution 
to both manage large datasets and simplify data retrieval and 

subsequent analysis. The added benefit of agility and scal-
ability of noSQL databases is ideal for the rapidly advancing 
trends in DNA sequencing technologies, and it is thus not sur-
prising that noSQL databases have been gaining traction in 
molecular studies.20–22

With the increase in the amount of publicly available 
genomic sequence data, progress can be stymied by the simple 
task of collecting sequence data and associated, relevant meta-
data. In an effort to facilitate the aggregation and management 
of genomic data for subsequent analyses, we have developed 
a polyglot approach involving multiple languages (Python 
and Scala), libraries (Flask [http://flask.pocoo.org] and Bio-
JavaX [http://biojava.org]), and persistence mechanisms (text 
files and MongoDB NoSQL databases [http://www.mon-
godb.org]). Individual genes or all genes for a given species 
can be examined beyond just the sequence itself, including 
information regarding, for instance, the location and date 
of isolation.

The code developed is agile; it can be applied for any 
organism of interest to the user. The approach can be cus-
tomized for any species of interest. The presented solution is 
developed with downstream evolutionary analyses in mind, as 
shown by a proof-of-concept study of the evolution of HIV. 
Our investigation into the three main HIV genes: gag, pol, 
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and env, reveals spatial and temporal factors influence the 
evolution of the individual genes uniquely. The web service 
for the HIV collection (as well as other datasets investigated 
by the authors) is publicly available at http://hivdb.cs.luc.
edu, and the scripts for generating such a data collection are 
publicly available at https://github.com/LoyolaChicagoCode/
hiv-biojava-scala.

Results and Discussion
Data pipeline for collecting sequence data. Code has 

been developed to aggregate genomic sequence data and avail-
able sequence metadata for subsequent analyses. Figure 1 sum-
marizes this process. All complete and partial genome 
sequences were parsed and separated into individual folders 
for each gene via a Scala parser utilizing the BioJavaX (http://
biojava.org) library. Each sequence was stored in its gene folder 
with any relevant metadata available within the GenBank file. 
The generated folders for each of the parsed genes were then 
pipelined through several python scripts in order to accomplish 

several post-processing tasks. First, duplicate gene sequences 
parsed from the same genome were removed. Second, the gene 
folders were used to create FASTA-formatted records for each 
of the gene sequences with any necessary metadata stored in 
the resulting record’s FASTA header. Finally, the PyMongo 
library (https://pypi.python.org/pypi/pymongo/) was used to 
insert each of the final FASTA records within our publicly 
exposed MongoDB database.

Genomic sequence data can then be accessed via a REST-
ful23 web service located at http://hivdb.cs.luc.edu. This archi-
tecture allows our service to be easily and efficiently accessed 
by any future data consumers via common web protocols. Data 
can be queried based upon attributes regarding the source of 
the data. For example, as shown in Figure  2, the gag gene 
sequences from strains isolated in the USA can be accessed via 
the web service. The user can specify search criteria including 
a year (or range of years) of isolation, the location of isola-
tion, and/or accession number. Sequences meeting the user’s 
search criteria can be returned to the web via the Query but-
ton or downloaded. All sequence results are in FASTA format 
for subsequent analysis, such as sequence alignment, primer 
development, and phylogenetic analysis.

The pipeline has been developed to facilitate users to cre-
ate repositories for an organism(s) of interest as well as query
able aspects of the sequence annotations. Users need only 
supply sequences and select attributes and/or genes of inter-
est (otherwise all attributes and genes will be selected). Data 
are automatically processed. Furthermore, the pipeline is not 
restricted to publicly available data; any GenBank-formatted 
file (public or private) can be included. Given the increased 
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Figure 1. Schematic of data pipeline and access.

Figure 2. Gene sequence data presented through RESTful web service. Users can query for specific information, eg, as shown here are HIV isolates 
from the USA, via the Query button or download sequence files in FASTA format meeting their search criteria.
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throughput of contemporary sequencing technologies and the 
decreased cost in sequencing runs, whole genome sequencing 
is being conducted at unprecedented rates. As such, research-
ers sequencing novel strains or isolates can incorporate their 
strains into the data repository once GenBank files are gener-
ated. Although this pipeline has been employed by the authors 
for the analysis of several different taxa, the RESTful web 
service presented here includes publicly available data for 
HIV-1 sequences.

Case study: investigation of the evolution of HIV-1. All 
publicly available complete and near-complete HIV-1 genomic 
sequences, totaling more than 6,000 sequences, were retrieved 
from the National Center for Biotechnology Information 
(NCBI) and processed by our pipeline (see the “Methods 
and materials” section). Individual gene sequences are pub-
licly available at http://hivdb.cs.luc.edu. Data are accessible in 
FASTA format to facilitate downstream analyses. To incorpo-
rate the metadata collected, including country and date of iso-
lation, this information has been integrated into the FASTA 
record header. HIV-1  sequences were selected as a proof of 
concept for this tool as HIV sequences are among the most 
well curated, thanks in large part to efforts such as those at 
the Los Alamos National Laboratory’s HIV sequence data-
base (http://www.hiv.lanl.gov/).

Previously, phylogenetics has shed light on the origin 
of HIV and played a key role in identifying recombination 
events.24,25 As previous molecular studies have shown, the evo-
lutionary history of the HIV-1 lineage includes three groups 
(M, N, and O) representative of separate transfers from chim-
panzees.26 Focusing on the three HIV genes gag, pol, and env, 
the hivdb data repository was queried for coding regions iso-
lated from the same country as well as globally over a particular 
time period. Host, immunological and antiretroviral drug 
selection pressures have shaped much of the diversity observed 
within these three genes.27 For instance, the investigation of 
the HIV gag gene sequences from the USA (2,048 sequences: 
1990–2011) and Thailand (872  sequences: 2000–2011) is 
shown in Figure 3A and B, respectively. The phylogenic trees 

derived for different geographic regions revealed different tree 
topologies as expected. Sequences isolated during 2005 in the 
USA exhibit significant sequence variation, including a num-
ber of sequences which are distinctly different from sequences 
isolated during any other year (Fig. 3A). These two gag trees 
reveal a general trend observed for other countries and other 
genes: sequences isolated during the same year do not nec-
essarily group together or exhibit a ladder-like topology fre-
quently observed for intra-host HIV phylogenies28; this is in 
concordance with previous HIV survey findings that multiple 
lineages coexist at any given time.29

In addition to looking at the viral diversity from isolates 
collected within the same country, we also investigated the 
variants present globally at a given time. Again sequences were 
retrieved for gag (725 sequences), pol (818 sequences), and env 
(427  sequences) coding regions. In this example, sequences 
were retrieved if annotated as being isolated between 2000 and 
2005. As shown in Figure 4, there are three main groups within 
the tree, regardless of the gene being considered. Sequences 
isolated from Asia are typically found within the same clade, as 
are sequences from Africa. The third group includes sequences 
from Europe, North America, and South America. There are, 
of course, deviations from this trend; these deviations can be 
the result of multiple introductions, group, or the presence 
of more than one subtype or recombinant form in circula-
tion, a factor that has been observed by other studies.26,29–32 
Sequences isolated from the same geographic region within the 
same clade, however, suggest that signatures of origin can be 
extrapolated even despite increased globalization.

Conclusions
Genomic studies often must consider not only sequences but 
also the metadata surrounding those sequences. One barrier 
to such studies is a simple method to collect and organize 
sequences such that their metadata is also easily accessible. 
We have taken a polyglot approach to develop a tool which 
pipelines the process of collecting genomic data and orga-
nizing it as automated. As a proof of concept, our pipeline 
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Figure 3. Phylogenetic analysis of the HIV gag coding region from strains isolated before 2012 in (A) the USA and (B) Thailand.
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tool. Although utilized for the investigation of a virus here, 
the approach can be applied to any species of interest.

Methods and Materials
Database development. All generated FASTA-

formatted files are stored within the document-based noSQL 
MongoDB (http://www.mongodb.org). Since metadata from 
publicly accessible genome data are often not uniformly writ-
ten, such a system allows each file to contain its own attri-
butes with MongoDB’s key value documents. As a result, 
updated information can easily be added to any given FASTA 
file, without needing to change the structure of our database. 
By default, each document contains keys titled “sequence,” 
“country,” “accession,” “date,” “gene,” and “note” which map 
to their corresponding values. A RESTful web service23 has 
been created using the Flask Python microframework (http://
flask.pocoo.org); this permits users to query stored documents 
via several parameters, including country of isolation, date, 
and accession number. Although the queries can be completed 
through standard HTTP GET and POST requests, a user 
interface has also been developed for accessing the data.

Extracting information from GenBank files. Scala 
parsers were developed to extract metadata from NCBI Gen-
Bank files. The parser utilizes each GenBank file’s CDS tags 
in order to retrieve information about each gene sequence. 
Then with the start and end nucleotide found in the tags, the 
gene sequence is taken from the genome within the Gen-
Bank file. Post-processing of the records was performed using 
Python scripts developed in-house; these scripts remove any 
duplicate records (an artifact of duplicate gene annotations 
within the GenBank file) as well as create FASTA-formatted 
sequence files. The PyMongo library (https://pypi.python.
org/pypi/pymongo/) was used to insert the data into the 
MongoDB. All scripts can be found online at https://github.
com/LoyolaChicagoCode/hiv-biojava-scala.

HIV data collection. HIV-1  genomes were down-
loaded as GenBank files from the NCBI nucleotide data-
base specifying the following: “Human immunodeficiency 
virus 1” (porgn:_txid11676) AND (8000:11000[Sequence 
Length]). This query collects all full-length and near full-
length genomic sequences. Data were collected from the 
NCBI on February 26, 2013, obtaining 4,724  individual 
sequence records. Records missing country of isolation and/
or collection date information, totaling 1,622 records, were 
manually curated via one of two sources. Records retrieved 
which are also available via Los Alamos National Labora-
tory (LANL)’s HIV database (http://www.hiv.lanl.gov/) 
were referenced to ascertain whether the isolation/date 
information was available. In the event that these data were 
also missing from LANL, publications referenced in the 
GenBank file were evaluated. The database was updated at 
a later date (September 25, 2015), further exemplifying the 
ease of use for the proposed method of data aggregation and 
exposure in the form of a RESTful web service. This update 
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Figure 4. Phylogenetic analysis of the HIV (A) gag, (B) pol, and (C) env 
coding regions from all genomic sequences isolated between 2000 and 
2005. Branches are colored according to the continent from which they 
were isolated.

process has been applied to an evolutionary study of HIV-1. 
Phylogenetic analysis of the HIV genes gag, pol, and env 
finds both spatial and temporal factors uniquely influence the 
evolution of the individual genes; a finding that is in congru-
ence with prior studies of the evolutionary history of the virus. 
More importantly, the case study highlights the abilities of the 
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expanded the sequence database to include an additional 
1,342  sequences (6,066 total). Data are stored through 
figshare (figshare.com) and can be retrieved via wget http://
files.figshare.com/2304758/hiv.tar.gz.

Phylogenetic analysis. Sequences retrieved from the HIV 
database were examined following one of two strategies. First, 
sequences were aligned via ClustalW, and neighbor-joining 
trees with partial deletion (site coverage cutoff, 75%) were com-
puted with the maximum composite likelihood model using 
the MEGA 5 software tool33; trees were visualized using the 
tool Phylowidget34 and produced using the Adobe Illustrator. 
The trees shown in Figures  3 and 4 were created using this 
strategy. In parallel, a second strategy was employed: sequences 
were aligned using MUSCLE and maximum likelihood trees 
using the Jukes–Cantor and generalized time-reversible models 
that were generated via FastTree35 within the Geneious tool 
(Biomatters Ltd.). In deriving these trees, support values were 
computed. Trees were visualized using Geneious; Supplemen-
tary Files 1 and 2 contain the phylogenies (derived using the 
Jukes–Cantor model and with support values shown) for the 
same set of sequences as shown in Figure 3A and B, respec-
tively. Newick format files can be found for all five trees (Figs. 3 
and 4) derived using this second strategy with the Jukes–Cantor 
model in Supplementary File 3.
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