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The gut microbiome-metabolome dataset collection: a curated
resource for integrative meta-analysis
Efrat Muller 1, Yadid M. Algavi2 and Elhanan Borenstein 1,2,3✉

Integrative analysis of microbiome and metabolome data obtained from human fecal samples is a promising avenue for better
understanding the interplay between bacteria and metabolites in the human gut, in both health and disease. However, acquiring,
processing, and unifying such datasets from multiple sources is a daunting and challenging task. Here we present a publicly
available, simple-to-use, curated dataset collection of paired fecal microbiome-metabolome data from multiple cohorts. This data
resource allows researchers to easily obtain multiple fully processed and integrated microbiome-metabolome datasets, facilitating
the discovery of universal microbe-metabolite links, benchmark various microbiome-metabolome integration tools, and compare
newly identified microbe-metabolite findings to other published datasets.
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The microbial community residing in the human gut is teeming
with metabolic activity and plays a critical role in host physiology
and health. The extensive and diverse repertoire of bacterial
metabolic functions complements the metabolic capacities of the
host, allowing it, for example, to break down otherwise
indigestible carbohydrates and to synthesize beneficial vitamins1.
Microbial metabolites have further been shown to promote gut
homeostasis and shape the development and function of the
host’s immune system, and may also contribute to gastrointestinal
and systemic diseases2.
The complete landscape of microbe-metabolite interactions

in the gut, however, is still largely unmapped. This gap stems
from the limited characterization of bacterial genes, limited
scalability of model organism-based (e.g. germ-free mice) or
culture-based investigations, the immense portion of yet
uncharacterized gut metabolites (the metabolic “dark matter”),
and the overall complexity of microbiome-metabolome inter-
actions3,4. Notably, even when restricted to well-characterized
taxa and metabolites, the complex gut ecosystem, where host
genetics, diet, and other exogenous factors all play a crucial
role, renders it difficult to establish robust and confident
microbe-metabolite associations5,6.
Multiple recent studies have accordingly resorted to joint

analyses of microbiome and metabolome data, aiming to
systematically evaluate microbe-metabolite links in the human
gut7–10. These studies have generated paired metagenomic and
metabolomic profiles from fecal samples of a cohort of interest,
and then applied a variety of statistical tools or advanced
computational methods to identify potential associations and
patterns in the data. Importantly, however, findings from a
single study often do not carry over to other studies or
cohorts11, and may fail to capture biologically meaningful
links6. The ability to validate identified microbiome-
metabolome associations across multiple cohorts or to pool
data from multiple studies to increase statistical power is
therefore key to distinguish signal from noise and to
demonstrate the generalizability of the obtained findings.

Unfortunately, however, obtaining, processing, and comparing
microbiome-metabolome datasets from multiple studies is typi-
cally a cumbersome, extremely challenging, and time-consuming
process. Initial challenges include downloading the data asso-
ciated with each study, which are often missing or incomplete,
and linking microbiome, metabolome, and metadata sample
identifiers in each study. While sharing raw and/or processed
metagenomics data is common and relatively standardized in
terms of formats and online open-access repositories, metabo-
lomics data is much less standardized and often not being shared
in microbiome studies. Once all the raw data have been obtained,
they need to be jointly re-processed, which often requires
additional expertise or the use of a variety of bioinformatic
methods. Making sure taxon and metabolite identifiers can be
mapped and compared across datasets is another critical
challenge, and may require careful and tedious curation efforts.
Schorn et al. have recently addressed some of these challenges by
releasing a community resource for linking raw genomic/
metagenomic data with metabolomic data12, yet, this resource
requires proficiency in processing raw data sources and is targeted
primarily at identifying and confirming novel links between
biosynthetic gene clusters and metabolites.
To address these challenges and to facilitate the reuse of

published microbiome-metabolome data for convenient multi-
study meta-analysis exploration of microbe-metabolite pat-
terns, we present here a curated dataset collection of paired
and processed microbiome-metabolome data from human fecal
samples. This resource includes 14 different human gut
microbiome-metabolome studies, spanning multiple metage-
nomic methods, metabolomic methods, cohort demographics,
and study designs (Table 1). Researchers can use this resource
to easily obtain multiple, curated, and unified microbiome-
metabolome datasets in order to compare statistical associa-
tions between datasets, benchmark various microbiome-
metabolome integration tools, and compare findings from their
own dataset to similar datasets – all in much greater
convenience and efficiency than before.
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THE CURATED GUT MICROBIOME-METABOLOME DATA
RESOURCE AND POTENTIAL APPLICATIONS
The data resource includes curated and unified data tables from
14 different human gut (feces) microbiome-metabolome pub-
lished studies from recent years (Table 1, Supplementary Table
1)8–10,13–23. Figure 1a highlights the main data sources and key
processing steps. For each study we provide 4 processed tables: A
genus-level abundance table, a metabolite abundance table, a
metabolite identifiers mapping table, and a sample metadata
table including sample- and subject-characteristics (Fig. 1b). For
studies with shotgun metagenomics we also provided species-
level abundance tables. Importantly, microbiome profiles were
obtained through processing of raw metagenomics sequencing
data, while for metabolite profiles we obtained already processed
tables due to the substantial differences between metabolomics
instruments and approaches. Where possible, both taxa and
metabolite identifiers have been unified, allowing comparison
across studies (see Methods). The data for each study are provided
both as simple text files (.tsv) and as R-data files (.RData), and are
accessible via a public GitHub repository. We further provide
detailed documentation and a usage example in a dedicated Wiki
page and via script examples also available in the repository. New
datasets could be added to the resource by Git pull requests,
following the instructions provided in the Wiki section “Adding
new datasets”. Overall, 2900 samples from 1849 individuals are
currently included in the resource (Fig. 1c). Most of these studies
are case-control studies, i.e. they include two study groups, one
consisting of individuals with a specific medical condition, and
another group of healthy “control” individuals (Table 1).

The described resource, which includes hundreds of unique
metabolites and thousands of unique genera that appear in
multiple independent datasets (Fig. 1d, e), could be used for
different types of meta-analyses or cross-study comparisons
involving paired microbiome and metabolome data across health
and disease. We specifically identify 3 main categories of analysis
use cases, facilitated by this resource: First, this resource can be
used for meta-analysis efforts where associations of different types
are compared across some or all datasets, aiming to identify
robust and consistent signals. Such associations could be
identified via a wide range of statistical methods, univariate or
multivariate approaches, and using a wide range of features, e.g.
taxa at different ranks, microbiome diversity metrics, sample or
subject characteristics, metabolite features, etc. Two examples of
such meta-analysis efforts are further described below. Second,
this resource can be used to benchmark methods related to the
joint analysis of microbiome and metabolome data. For example,
machine learning methods for predicting metabolite levels based
on taxonomic features have been recently proposed but validated
on only a very small set of datasets24,25. Third, researchers
analyzing new microbiome-metabolome datasets can use this
resource to add support for findings on their own data, using
specific datasets from the resource that resemble their own cohort
(studies on the same disease, for example, or using an identical
metabolomics method).
Indeed, we recently demonstrated the utility of a similar dataset

collection in a large-scale meta-analysis of the relationship
between gut microbes and metabolites26. In this study we were
interested in pinpointing metabolites that are robustly and
universally predicted by the microbiota’s composition in a healthy

Table 1. Datasets included in the Curated Gut Microbiome-Metabolome Data Resource.

Dataset name Ref Cohort description No. samples
w/ paired data

Longitudinal
Y/N

No.

HMDB-annotated
compounds

No.

KEGG-annotated
compounds

YACHIDA_CRC_2019 8 Patients with colonoscopy findings from
normal to stage 4 CRC, and controls

347 No 407 431

FRANZOSA_IBD_2019 9 IBD patients and controls (PRISM cohort) 220 No 199 174

SINHA_CRC_2016 21 CRC patients and controls 131 No 352 189

HE_INFANTS_MFGM_2019 14 Infants on different diets during their 1st
year of life

277 Yes 118 111

iHMP_IBDMDB_2019 15 HMP2 (iHMP) cohort: Longitudinal
samples from IBD patients and controls

389 Yes 455 276

JACOBS_IBD_2016 16 IBD patients and their first degree
(healthy) relatives

90 No 36 27

POYET_BIO_ML_2019 20 Longitudinal samples from healthy BIO-
ML (stool bank) donors

164 Yes 255 223

ERAWIJANTARI_GC_2020 13 Patients with a history of gastrectomy for
GC, and controls

96 No 462 505

KIM_ADENOMAS 18 Patients with advanced colorectal
adenomas, CRC, and controls

240 No 358 262

MARS_IBS_2020 19 Longitudinal samples from patients with
IBS and controls

455 Yes 40 36

KANG_AUTISM_2018 17 Children with autism and neurotypical
children

44 No 58 57

KOSTIC_INFANTS_T1D_2015 10 Longitudinal samples from children at risk
for T1D (DIABIMMUNE cohort)

103 Yes 138 130

WANDRO_PRETERMS_2018 22 Preterm infants during their first 6 months
of life. Some developed LOS/NEC

75 Yes 198 199

WANG_ESRD_2020 23 Adults with ESRD and controls 287 No 148 87

CRC Colorectal cancer, IBD Inflammatory bowel disease, MFGM Milk fat globule membrane, BIO-ML Broad Institute-OpenBiome Microbiome Library, GC Gastric
cancer, IBS Irritable bowel syndrome, T1D Type 1 diabetes, LOS Late-onset sepsis, NEC Necrotizing enterocolitis, ESRD End-stage renal disease.
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population across multiple studies. Using a combination of
random forest regressor models (for predicting metabolites) and
random-effects models (for quantifying robustness), we were able
to identify 97 metabolites that were robustly well-predicted by the
microbiota’s composition. We additionally found that multiple
microbiome-metabolite relationships are study-specific, implying
that links based on a single study should be interpreted with
caution and highlighting the importance of validating findings on
additional data sources.
Here, as an additional use-case example, we present another

meta-analysis of the microbiome-metabolome relationship,
searching for specific genus-metabolite associations that are
significant and consistent across multiple datasets (see Methods).
For this analysis we included only the 11 non-infant cohorts from
our resource, and analyzed a total of 29,708 unique genus-
metabolite pairs that appeared in at least 3 different datasets.
These pairs included 109 different GTDB genera and 314
metabolites. We used linear models to estimate the association
between a specific genus’s abundance and a specific metabolite’s
level, while controlling for disease state (i.e. study group). Overall,
132,391 linear models were fitted, of which, 18,075 (13.6%)
resulted in a significant genus-metabolite association (i.e. regres-
sion coefficient FDR ≤0.05). Comparing the associations’ direction
and significance across datasets, we found multiple genus-
metabolite pairs associated in some (and often, all) datasets, but
interestingly also pairs with conflicting associations in different
datasets (Fig. 2a). Notably, genus-metabolite correlations can
clearly stem from a direct involvement of the genus in the
production, consumption, or degradation of the metabolite, but
also from indirect associations related, for example, to interactions
between different gut bacteria, or co-abundant metabolites
present in specific diets. We similarly emphasize that the analyzed
metabolites can be either endogenous to the host, obtained

through diet, microbially produced/transformed, or otherwise
acquired from the environment. Finding associations across
multiple datasets, as facilitated by our resource, potentially
increases the likelihood that such associations are microbially
driven and represent ubiquitous microbial metabolism, rather
than specific host or diet-related associations.
Moreover, to determine which genus-metabolite pairs are

consistently associated in a more statistically rigorous manner,
we conducted a random-effects meta-analysis using semi-partial
correlations derived from the linear regression results (as
suggested by Aloe and Becker, 201227). We identified 1101
consistent associations, including in total 104 genera and 195
metabolites (Fig. 2b, Supplementary Table 4; see Methods).
Metabolite-associated genera were mostly from the Firmicutes_A
phylum but included other phyla as well. Microbe-associated
metabolites spanned multiple metabolite classes, with the
“organic nitrogen compounds” super-class being enriched for
microbially-associated metabolites (odds ratio 3.47 [1.3, ∞], FDR
0.08), and the “organic acids and derivatives” super-class being
specifically enriched for Bacteroidota-associated metabolites
(odds ratio 3.21 [2, ∞], FDR 0.0004; see Methods).
We additionally examined the bipartite network of consistently

associated genera and metabolites, presented in Fig. 2b. A full list
of network edges, alongside meta-analysis results, are provided in
Supplementary Table 4. We identified several genera with a
particularly high number of metabolite associations, including ER4
and Dysosmobacter (both of which were previously identified as
Oscillibacter genus), Alistipes, and the recently re-classified
Alistipes_A genus (Fig. 2b-I). Even though most of these genera
have a relatively low abundance in the human gut (0.36%, 0.66%,
3.3% and 0.1%, respectively, averaged over all samples and
datasets in the analysis), they are connected to the highest
number of metabolites in the network (51, 44, 43 and 50,

Fig. 1 Data resource processing, organization, and statistics. a A highlight of data resources and main processing steps of the “curated
microbiome-metabolome data resource” (see Methods); b A database scheme of the final data products per dataset. Each box describes a
specific table and its content and primary key (PK) field. The “species” table is only available for studies with shotgun metagenomic data;
c Data resource summary statistics; d Genera prevalence across datasets. Each bar represents the number of unique genera that appear in at
least the specified number of datasets; e Metabolite prevalence across datasets, interpretation equivalent to (d).
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respectively). This observation may be explained by at least two
potential hypotheses: (i) that these bacteria are highly metabo-
lically active in the gut, and/or (ii) that they possess central
ecological roles in the gut microbial ecosystem. The former

hypothesis is supported, for example, by a recent study on the
newly isolated human commensal Dysosmobacter welbionis, where
administration of this species to mice was found to strongly
influence host metabolism and counteract diet-induced obesity

Fig. 2 A meta-analysis of genus-metabolite association reveals a dense network of consistent associations. a Associations between genera
and metabolites were tested using linear models, in each dataset independently and controlling for study groups. The dot plot illustrates
association results for the top 70 associated metabolites and the top 40 associated genera. Each dot represents a genus-metabolite pair, dot
size represents the number of datasets in which the pair was analyzed, and dot colors represent the percent of datasets in which a significant
association (positive or negative) was found (see also Methods). A question mark indicates conflicting results between 2 or more datasets, i.e.
at least one significant negative association and at least one significant positive association. Metabolites (grid columns) are grouped by their
metabolite classes, abbreviated as follows: Ben. Benzenoids, OS Other steroids, Cbxm. Carboximidic acids, COOH Carboxylic acids and
derivatives, AA Amino acids, OO Other organic acids, ONC Organonitrogen compounds, CHO Carbohydrates and carbohydrate conjugates,
OHC Organoheterocyclic compounds, PPA Phenylpropanoic acids. Genera (grid rows) are grouped by their order taxonomic rank, abbreviated
as follows: Actin. Actinomycetales (Actinobacteriota phylum), Bacte. Bacteroidales (Bacteroidota phylum), Lachn. Lachnospirales (Firmicutes_A
phylum), Oscil. Oscillospirales (Firmicutes_A phylum), Chris. Christensenellales (Firmicutes_A phylum), Veill. Veillonellales (Firmicutes_C
phylum), Enter. Enterobacterales (Proteobacteria phylum), b A bipartite network of consistent genus-metabolite associations, identified by a
meta-analysis of 11 different microbiome-metabolome datasets from the “curated microbiome-metabolome data resource”. Green nodes
represent genera, with node sizes proportional to genus’ average relative abundance, and orange nodes represent metabolites. Edges
between genus nodes and metabolite nodes represent a consistent positive (blue) or negative (red) association. Details about the network
nodes and edges are available in Supplementary Table 4.
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development, with only negligible impact on the overall micro-
biota composition28. Alistipes commensal species are also well-
studied for their diverse metabolic functions in the gut29. Another
recent study, however, supported the latter hypothesis when
reporting that based on a gut microbiome analysis of a large
Dutch cohort, several Alistipes, Alistipes_A, and unclassified
Oscillibacter species were all identified as “keystone species”,
predicted to have an important impact on the entire microbiome
structure and function30. Lastly, we note that analogously to
highly-associated genera, there are also a few metabolites that are
associated with a high number of genera (over 30). This is perhaps
not surprising as some metabolites are imported/exported by
dozens of different species31, and may in turn be further
associated with additional genera by indirect associations.
Another noteworthy highlight from this network is the

consistent positive associations between butyrate, a short-chain-
fatty-acid with beneficial effects on intestinal homeostasis, and
several genera, including Faecalibacterium, Butyrivibrio (formerly
classified as TF01–11 genus), Roseburia, Eubacterium_I, Agatho-
bacter, and Lachnospira (Fig. 2b-II; Supplementary Table 4). While
the former 5 genera are all known butyrate-producers in the
gut32–34, Lachnospira does not produce butyrate directly but has
an indirect positive effect on other butyrate-producing taxa, upon
pectin fermentation35. Interestingly, Flavonifractor is consistently
negatively associated with butyrate in our network, albeit known
to be a butyrate-producer36. This negative association may reflect
an ecological interaction rather than a metabolic one, as
Flavonifractor tends to have increased abundance in various host
conditions that are also characterized by reduced abundances of
major butyrate producers, including disease states, postantibiotic
treatments, and during infancy30,36.
Future work on consistent genus-metabolite associations (out of

the scope of the current study) could include genomic analyses to
infer which associations likely stem from known production/
consumption capabilities, which association signals are low due to
significant species-level variation that masks genus-level findings,
which associations “break” in disease states, and whether genera
associated with multiple metabolites are also key ecological
players in microbial interaction networks.
We note that this resource has several obvious limitations. One

major limitation is the substantial difference between various
metabolomics platforms and the impact of the used platform on
the set of chemical classes that can be detected. Short-chain fatty
acids, for example, which are known to be important microbial
metabolites in the gut, are mostly detectable by gas
chromatography-mass spectrometry and may be therefore miss-
ing in datasets using other metabolomics methods37. With that in
mind, it is important to note that the number of datasets in which
a metabolite appears should not be used as an indication of its
prevalence. Similarly, differences between methods may result in
different scales of metabolite values, and hence a direct
comparison of metabolite values between studies should be
avoided. Lastly, metabolite identification in untargeted metabo-
lomic platforms may vary in its confidence level, which could in
turn imply lower confidence of downstream analyses. To allow
users of this resource to better address these issues, we provide
detailed information about metabolomics methods and identifica-
tion confidence levels for each dataset in Supplementary Table 3,
and specifically mark metabolites with putative identifications (see
Methods)38. On the microbiome side, differences between 16 S
amplicon sequencing and shotgun sequencing, as well as
differences in sequencing depth and library preparations, may
all effect the resolution and accuracy of the obtained microbiome
profiles. We encourage users of this resource to carefully account
for these limitations using appropriate analysis approaches (some
of which were described above), and to apply caution when
interpreting analysis results. Additional recommendations for how
to best utilize the resource are available in the Wiki page. Overall,

“The Curated Gut Microbiome-Metabolome Data Resource” can
facilitate a wide and diverse range of integrated microbiome-
metabolome analyses, promote the discovery of robust microbe-
metabolite links, and allow researchers to easily place newly
identified microbe-metabolite findings in the context of other
published datasets.

METHODS
Data acquisition
We first conducted a literature search to identify human gut
microbiome studies where both microbiome and metabolome
profiles were obtained from fecal samples. We focused on studies
that included at least 40 samples in each study group (or total, in
non-case-control studies), for which both metadata, microbiome,
and metabolome profiles were available.
Data from each study were either downloaded from public

repositories (e.g., SRA, Qiita, Metabolomics Workbench), obtained
from studies’ supplementary information, or shared directly by the
corresponding authors. For microbiome data we obtained raw
fastq files, from either 16 S rRNA gene sequencing or whole
genome shotgun sequencing (WGSS), or used processed tables if
raw data was unavailable (Supplementary Table 1). For metabo-
lome data, both “targeted” and “untargeted” metabolomic
approaches were considered. Untargeted metabolomics are
methods for comprehensively analyzing all measurable analytes
in a sample, most of which are typically unknown molecules, while
targeted metabolomics are methods that measure a predefined
set of chemically characterized and annotated metabolites.
Untargeted datasets were only included if at least a substantial
portion of metabolites were identified by name, KEGG ID39, or
HMDB ID40. Importantly, we obtained only metabolome data
already processed and quality-controlled by the authors of the
original publications, typically provided as text files or excel tables,
and with metabolite identifications made as part of the original
publications as well (Supplementary Table 3).
Additional details about the original data obtained per study

can be found in Supplementary Table 1. All studies whose data
were included in this collection were complied with the relevant
ethical regulations and reported the specific details in the original
publications8–10,13–23.

Processing and unification
Microbiome taxonomic profiles were obtained by either re-
processing raw 16 S rRNA gene sequencing data using QIIME2
(version 2019-1)41 and DADA242, or re-processing raw WGSS using
fastp43 for quality control, bowtie244 for host read filtering, and
kraken2-braken45,46 for taxonomy assignments. For both data
types and processing pipelines, we used the Genome Taxonomy
Database47 (GTDB) as the reference database for taxonomy
assignments, as it is specifically designed to provide consistent
and comprehensive taxonomy for bacterial genomes. To further
assure comparable taxonomic profiles, we also collapsed taxon-
omy abundance tables into the genus level (species-level tables
are available as well for WGSS datasets). Finally, values were
converted to relative abundances, i.e. taxa abundances sum to 1
for each sample.
For metabolomics data, we left the original metabolite features

unchanged, but added a mapping file from the original feature
names to common metabolite identifiers, namely KEGG ID’s and
HMDB ID’s, where possible (Fig. 1b). These were either available in
the originally published datasets, or obtained using MetaboAna-
lyst’s compound ID conversion utility48. Table 1 lists the number of
HMDB/KEGG annotated metabolites per dataset. Importantly,
metabolite annotations in untargeted metabolomics may vary in
their level of confidence49. We therefore mentioned metabolite
annotation methods per dataset, as reported by the authors of the
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original publications, in Supplementary Table 3, and additionally
marked specific metabolites as “High.Confidence.Annotation=-
FALSE” (“mtb.map” tables, Fig. 1b) in cases where users should
treat the provided annotation with caution (see Wiki for further
details). We finally assured consistent sample names across
microbiome profiles, metabolome profiles and sample metadata.
Additional processing details can be found in our Wiki page
(https://github.com/borenstein-lab/microbiome-metabolome-cura
ted-data/wiki/The-Curated-Gut-Microbiome-Metabolome-Data-Re
source) and in Supplementary Tables 1–3.

Data structure and file types
Overall, we provide 4 processed tables for each study: A genus-
level relative abundance table, a metabolite abundance table, a
sample metadata table and a metabolite identifiers mapping
table. In the former three tables, each row represents a sample
(sample names are given in the first column) and each column
represents a feature (either genus abundance, metabolite
levels, or any sample- or subject-characteristic provided in the
available metadata). The metabolite identifiers mapping table
describes mappings from original metabolite identifiers (as in
originally published data) to KEGG or HMDB identifiers. Species-
level abundance tables are provided as well for studies that
used WGSS. Figure 1b illustrates the final data scheme
per study.
Tables were saved as both tab-delimited text files (.tsv) and as

R-data files (.RData), and are downloadable via a public GitHub
repository (https://github.com/borenstein-lab/microbiome-
metabolome-curated-data).

Genus-metabolite associations meta-analysis
For this analysis, we included only the 11 non-infant cohorts from
our resource, and allowed more than one sample per individual if
present. After removing rare genera (defined here as <25% non-
zero values or average abundance <0.1%, averaged over all
datasets in the analysis), and taking only HMDB-annotated
metabolites, we extracted a list of genus-metabolite pairs that
appeared in at least 3 datasets. For each such pair we fitted a
linear model using the following formulation:

Metabolite � ðInterceptÞ þ Genusþ Study Group

We applied a log-transformation (with pseudo count 1) to
metabolomic data and an arcsine square root transformation to
genera relative abundances before fitting the regressors, as often
applied to such data before linear modelling19. The StudyGroup
covariate was omitted in studies with no defined study groups. Per
linear model, we report the adjusted R square, the coefficient of
the Genus variable, it’s associated p-value, and for the subsequent
meta-analysis we also report the semi-partial genus-metabolite
correlation27. FDR was used to control for multiple hypothesis
testing per dataset.
To synthesize results across studies we used random-effects

models (REM) per genus-metabolite pairs using the semi-partial
correlation as the effect size. The ‘metacor’ function from R ‘meta’
package was used for fitting REM’s, with the HAKN correction
enabled and with otherwise default settings50. Pairs were finally
defined as consistently associated if the REM’s FDR-corrected p
value was below 0.1, and the direction of association was
determined by the sign of the REM’s pooled effect size.
Supplementary Table 4 includes additional statistics recorded
per REM.
We analyzed whether some metabolite super-classes, as

labelled in HMDB, are enriched with microbe-associated metabo-
lites using a Fisher’s exact test. We applied this enrichment test
once for all microbe-associated metabolites and once for each
phylum separately, and FDR-corrected all Fisher tests p values.

Finally, we used CytoScape to visualize the network of consistent
associations, with the “GLay community clustering” plugin for
network layout51,52.

DATA AVAILABILITY
The dataset collection is available at https://github.com/borenstein-lab/microbiome-
metabolome-curated-data. Documentation is available at the repository’s Wiki site at:
https://github.com/borenstein-lab/microbiome-metabolome-curated-data/wiki/The-
Curated-Gut-Microbiome-Metabolome-Data-Resource. To obtain the original data as
provided by the original publications, see details in Supplementary Table 1.

CODE AVAILABILITY
Main data processing scripts, and the R notebook containing the meta-analysis
described herein, are available at https://github.com/borenstein-lab/microbiome-
metabolome-curated-data.
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