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Abstract: In this study, the adsorption mechanisms of dodecylamine hydrochloride(DDAHC), sodium
dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate(SDBS), and their mixed anionic/cationic
collectors at ten different molar ratios on a muscovite (Mcv) surface in neutral aqueous solution
were assessed by molecular dynamics simulations (MDS). According to the snapshot, interaction
energy, radial distribution function (RDF), and density profile between the Mcv surface and collector
molecules, the individual DDAHC collector was an effective collector for the flotation of Mcv. The
molar ratio of anionic/cationic collectors was determined to be an essential factor in the flotation
recovery of Mcv. The DDAHC collector was involved in the adsorption of the mixed anionic/cationic
collectors on the Mcv (001) surface, whereas SDS and SDBS collectors were co-adsorbed with DDAHC.
The mixed cationic/anionic collector showed the best adsorption on the Mcv surface in a molar
ratio of 2. Additionally, SDBS, which has one more benzene ring than SDS, was more likely to form
spherical micelles with DDAHC, thus resulting in better adsorption on the Mcv surface. The results
of micro-flotation experiments indicated that the DDAHC collector could improve the flotation
recovery of Mcv in neutral aqueous solution, which was in agreement with MDS-derived findings.
In conclusion, DDAHC alone is the optimum collector for Mcv flotation under the neutral aqueous
conditions, while the mixture of DDAHC and SDBS collectors (molar ratio = 2:1) exhibits the similar
flotation performance.

Keywords: molecular dynamics simulation; mixed cationic and anionic collectors; muscovite; min-
eral flotation

1. Introduction

Muscovite (Mcv) is a phyllosilicate mineral characterized by tetrahedral–octahedral–
tetrahedral (TOT) layers with a great potential for applications in cosmetics, construction,
and metallurgy industries, due to its excellent dielectric properties and high thermal
stability [1–3]. However, Mcv is commonly associated with other gangue minerals (e.g.,
quartz and feldspar) in nature. Mcv is easy to cleave from the (001) surface, which is
electronegative because the potassium ions on the surface are easily dissolved in water [4,5].
Dodecylamine (DDA) is a cationic collector used for the flotation separation of Mcv from
gangue minerals. The adsorption behavior and flotation mechanism of DDA on Mcv
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have been extensively studied by molecular dynamics simulation (MDS) and experimental
tests [6–8].

However, the mixed collectors can produce a micelle-like spherical structure more
easily than the cationic or anionic surfactant collector alone due to the low micelle concen-
tration of mixed cationic/anionic surfactant [9], thus resulting in fewer collectors and better
flotation recovery of minerals. Many researchers have used mixed collectors for mineral
flotation, and their results showed that the mixed collector exhibited better flotation recov-
ery of minerals than a single collector under the same conditions [10,11]. Mixed collectors
are generally divided into cationic, anionic, nonionic and amphoteric types according to
their ionic type. Additionally, the synergism of mixed collectors increases with the degree
of charge difference [12]. Therefore, the mixed anionic/cationic collector is the best mixed
collector with the maximum flotation recovery of minerals. Yang et al. [13] studied the
flotation separation of magnetite and enstatite using the mixed anionic collector sodium
oleate (NaOL) and cationic collector cetyltrimethyl ammonium bromide (CTAB). The re-
sults showed that it was difficult to separate magnetite from enstatite with NaOL or CTAB
collector alone, and mixed CTAB/NaOL (molar ratio = 2:1) exhibited outstanding flotation
performance at pH 5.5–8.5. The mixed anionic/cationic collector was also employed for the
flotation separation of kaolinite [14], feldspar [15], bastnaesite [16], hematite [17], and other
minerals [18–21].

Since 1990, the mixed anionic/cationic collector has been used to separate Mcv from
other minerals during the flotation process [22]. In recent years, the mixed cationic/anionic
DDA/NaOL collector is one of the most widely used collectors in the flotation of Mcv
minerals. Jiang et al. [23] examined the adsorption behavior of anionic NaOL, cationic
DDA, and mixed DDA/NaOL collectors on the Mcv surface through dynamic contact angle
measurement, atomic force microscopy analysis and flotation tests. The results demonstrated
that the highest recovery (>90%) was yielded by the mixed DDA/NaOL at 2 × 10−4 mol/L
and a ratio of 1:3. Wang et al. [24] successfully separated Mcv from quartz using the mixed
DDA/NaOL collector. The results indicated that the mixed NaOL/DDA collector with 3:1
and 2:1 exhibited superior flotation separation of Mcv from quartz at pH 10 compared to
DDA and NaOL alone. Xu et al. [25] conducted the surface tension analysis, contact angle
measurement, adsorption analysis and flotation tests to assess the effects of solution pH,
concentration of collector and ratios of cationic/anionic collector on the adsorption behavior
and synergistic interaction of mixed DDA/NaOL collectors on the Mcv surface. The results
indicated that the recovery of Mcv could reach a maximum value (98.45%) by the mixed
DDA/NaOL with the mole ratio of 1:3 at pH 7.0. However, most of the above results were
obtained by traditional flotation experiments, and there remains a lack of microscopic under-
standing on the adsorption mechanism of mixed DDA/NaOL at the interface. Thus, MDS
has been conducted to examine the adsorption behavior of the mixed DDA/NaOL collector
on the Mcv surface. Wang et al. [26] evaluated the adsorption of the mixed dodecyl amine
hydrochloride (DDAHC)/NaOL collector on the Mcv surface by MDS. The results indicated
that DDAHC and NaOL molecules formed a micelle structure. The DDAHC collector was
absorbed on the Mcv surface via hydrogen bonding and electrostatic interactions, while the
NaOL collector was interleaved and co-adsorbed with the DDAHC collector. Xu et al. [27]
performed MDS to reveal the co-adsorption mechanism of the mixed DDAHC/NaOL col-
lector on Mcv. The results of MDS demonstrated that the adsorption rates of both DDAHC
and NaOL collectors were improved due to co-adsorption. The addition of NaOL decreased
the electrostatic head–head repulsion between ammonium ions and the Mcv surface, while
it enhanced the lateral tail–tail hydrophobic bonds. Therefore, MDS can be used as an
advanced tool to explore the adsorption behavior and microscopic flotation mechanism of
collector on minerals, which is generally consistent with the experimental results [28,29].

In practice, the flotation process under acidic or alkaline conditions is often employed
for the recovery of fine mica, particularly mica resource in tailings [30–33]. Both the acidic
and alkaline conditions require the addition of a large volume of acid or alkali to adjust
the pH values, which may lead to excessive material loss and environmental pollution.
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Therefore, it is of great importance to evaluate the recovery of Mcv from the tailings in the
neutral aqueous solution. However, limited studies have been performed on the adsorption
behavior and flotation mechanism underlying the interactions between different collectors
and Mcv surface in the neutral aqueous solution [34].

In this research, MDS was performed to explore the adsorption mechanisms of cationic
collector DDAHC, anionic collector sodium dodecyl sulfate (SDS), anionic collector sodium
dodecyl benzene sulfonate (SDBS), mixed DDAHC/SDS and DDAHC/SDBS collectors on
Mcv surface under neutral conditions. Toward a better understanding of the interactions
between the collectors and Mcv surface, the snapshot, interaction energy, radial distribution
function (RDF) and density profile of the collectors were determined. It was found that
the individual DDAHC collector was a superior collector for Mcv flotation in the neutral
aqueous solution. Further micro-flotation experiments were carried out, and the findings
were in good agreement with the MDS data. Our findings provide new insights into the
flotation mechanisms of Mcv, which facilitate the selection of an ideal DDAHC/SDS or
DDAHC/SDBS collector for the flotation recovery of Mcv fines.

2. Computational Details
2.1. Models

The crystal structures of the monoclinic C2/c 2M1 of Mcv (Figure 1) were acquired
from the American Mineralogist Crystal Structure Database [35], and they were employed
as the initial input structures for MDS experiments. The unit cell parameters for the
monoclinic C2/c 2M1 of Mcv are: α = 90◦, β = 95.78◦, γ = 90◦, a = 5.199 Å, b = 9.027 Å, and
c = 20.106 Å. The Mcv surface was constructed along the (001) plane of structure in the
middle of the interlayer space by the Cleaving Surface option in the Build tool of Materials
Studio (MS). The potassium ion on the (001) surface was not included in the present study,
as it could dissolve in water during actual flotation. Thus, it was deleted on the Mcv surface
and subsequently added in water/collector (WC) boxes.
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Figure 1. (a) The ball and stick model and (b) CPK model of the Mcv cell. The colors of yellow, pink,
red, and purple represent silicon, aluminum, oxygen, and potassium, respectively. The model of Mcv
was used as the initial input structure for our MDS, which is used in our previous work [34].

Firstly, the crystal structure of Mcv was optimized by the Geometry Optimization task
belonging to the CASTEP module in MS version 8.0 package. The basic parameters are an
energy cut-off of 340 eV, exchange–correlation potentials of general gradient approximation
(GGA) + Perdew–Burke–Emzerhof (PBE) functional and k-point grid of 3 × 2 × 1 mesh. In
addition, the spin-dependent geometrical optimization was conducted based on the con-
vergence criteria (displacement, energy and force) of 0.03 eV/Å, and 0.001 Å, respectively.
The crystal parameters of Mcv optimized by the polymer consistent force field (PCFF)–
phyllosilicate force field [26,36] are α = 90◦, β = 95.64◦, γ = 90◦, a = 5.234 Å, b = 9.087 Å, and
c = 20.440 Å, with <0.5% error as a comparison of the experimental result. The optimized
Mcv structure was used for subsequent modeling and MDS studies.

Secondly, the DDA cation, SDS, and SDBS anions (Figure 2) were modeled using the
Visualizer tool of MS and then optimized with DMol3 module in MS. The lengths of DDA
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cation, SDS anion, and SDBS anion are 16.849 Å, 18.879 Å, and 21.280 Å, respectively. The
atomic partial charge of DDA cation was calculated using the local density approximation–
Perdew–Wang (LDA-PWC) functional, while those of SDS and SDBS anions were calculated
using the PBE functional with a base set of DNP 3.5 in the GGA method. The charges of
DDA, SDS, and SDBS were set to +1, −1, and −1, respectively. The convergence energy
tolerance, maximum displacement, and self-consistent field (SCF) tolerance were set to
1.0 × 10−5 Ha, 0.005 Å, and 1 × 10−6 eV/atom, respectively, using the symmetric basis
with a spin-unrestricted.
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Figure 2. Structures and atom numbering of (a) DDA cation, (b) SDS anion, and (c) SDBS anion. In
(a), the colors gray, blue, and white represent carbon, nitrogen, and hydrogen atoms, respectively. In
(b), the colors red, green, yellow, and purple represent oxygen, hydrogen, sulfur, and carbon atoms,
respectively. In (c), the colors red, pink, yellow, and light blue represent oxygen, carbon, sulfur, and
hydrogen atoms, respectively. Corresponding carbon atom numbers are given according to the order
in which the carbon atoms are arranged, where C1, C6 and C12 represent the first, sixth and 12th
carbon atoms respectively.

Thirdly, the water/collector/Mcv (WCM) system was developed using the Build
Layer tool in MS based on the amorphous cell module. A supercell 5 × 3 × 1 mode of Mcv
(26.1677 × 27.2596 × 18.7031 Å) was chosen with three directions of periodic boundary
conditions. Simple cubic WC boxes with the same width and length on the Mcv (001) surface
with 1000 water molecules and collectors were described by amorphous cell modules at
1.0 g/cm3. Meanwhile, the WCM system was added with K+, Cl−, and Na+ to ensure
its electric neutrality. Table 1 lists the molar ratios of collectors and the three ions in
WCM systems. Moreover, a simple cubic water box containing 200 water molecules
(26.1677 × 27.2596 × 8.3875 Å) was constructed by an amorphous cell module at 1.0 g/cm3.
Lastly, a representative WCM simulation system (Figure 3) consisting of a supercell Mcv,
water box, vacuum slab, and WC boxes was constructed using the Build Layer tool. To
avoid possible interactions between the two slabs, a 30 Å vacuum slab was introduced
to the WCM systems. During the simulation, the water box was fixed to prevent the
adsorption of the collector on the bottom surface of Mcv. In addition, the Mcv surface was
also frozen to neglect the minor vibration of the minerals at ambient temperature, and the
water and collectors in WC boxes were in a relaxed state.
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Table 1. Molar ratios of DDAHC:SDS or DDAHC:SDBS and number of DDA+, SDS−, SDBS−, Cl−,
Na+ in the MDS. For all the systems, the number of K ions and water molecules is set to 30 and
1200, respectively. (D, S, and SD in the table stand for the abbreviations of DDAHC, SDS, and SDBS
collectors, respectively.)

Systems Molar Ratios (D:S or D:SD) DDA+ SDS− SDBS− Cl− Na+

D30 - 30 - - 30 -
S30 - - 30 - - 30

SD30 - - - 30 - 30
D8S23 1:3 8 23 - 8 23
D10S20 1:2 10 20 - 10 20
D16S15 1:1 16 15 - 16 15
D20S10 2:1 20 10 - 20 10
D23S8 3:1 23 8 - 23 8

D8SD23 1:3 8 - 23 8 23
D10SD20 1:2 10 - 20 10 20
D15SD15 1:1 15 - 15 15 15
D20SD10 2:1 20 - 10 20 10
D23SD8 3:1 23 - 8 23 8
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2.2. Simulation Method

MDS was executed using the Forcite module in MS version 8.0 package. Firstly, a
5000-step energy minimization with the smart minimizer method was used to reduce the
unreasonable contacts of WCM system. Secondly, the WCM system was conducted at
the canonical ensemble under PCFF–phyllosilicate force field using the Dynamic task of
the Forcite module. In addition, the temperature was maintained at 298 K using a Nose–
Hoover–Langevin thermostat. The long-range electrostatic interactions were treated with
the 1 × 10−4 kcal/mol accuracy of the Ewald summation method, and a 12.5 Å non-bond
cutoff distance was set for van der Waals interactions. The MDS was conducted for 2 ns
with a time step of 1 fs, and a trajectory of 2 ns was employed for data analysis. After 100
ps MDS, the relative deviations of temperature (not showed) and energy are less than 10%
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and 0.1%, respectively, suggesting that the systems have achieved an equilibrium state.
Figure 4 showed the energies of D30, S30, SD30, D16S15, and D15SD15 simulation systems.
The other systems were equilibrated after 100 ps as similar to the representative simulation
systems (Figure 4).
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3. Model Methodology
3.1. Snapshot of Structure

After MDS for 2 ns, a snapshot of the stable state of systems was obtained with the
lowest energy. The distributions of collector, water, and other ions in the system were
assessed by snapshot. In addition, the equilibrium state and adsorption behaviors of
collectors on the Mcv (001) surface were also evaluated.

3.2. Density Profile

The density profile was used to quantitatively evaluate the properties of a simulation
system as a periodic function of the positions along one axis. The changes in density profiles
were attributed to varying molar ratios of collectors in the WCM system. The top surface of
the Mcv was set as the zero point, and the z-axis was perpendicular to the c direction of the
Mcv supercell. The fixed water box is not included in the analysis.

3.3. Radial Distribution Function (RDF)

The RDF is employed to evaluate the arrangement of water molecules within the
collectors. In addition, the RDF values of water and collectors around the O atom on the
Mcv (001) surface were also estimated. The RDF (g(r)) for type B around A was estimated
based on Equation (1):

g(A−B)(r) =
1

ρB × 4πr2 × dNA−B
dr

(1)

where ρB denotes the density of type B, r represents the distance between B and A, and
dNA−B indicates the average number of type B from r to r + dr compared to the reference
type A. The fixed water box is not included in the analysis.
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3.4. Interaction Energy

The interaction energy was used to quantify the interactions between collectors with
Mcv, which can be expressed by Equation (2):

Einter =
Etotal − (Ecol + Emus)

n
(2)

where Etotal (kcal/mol) is total energy (Figure 5b); Ecol and Emus (kcal/mol) are the energies
of collectors (Figure 5c) and Mcv (Figure 5d), respectively; and n denotes the number of
collectors. For clarity, the calculation method is demonstrated in Figure 5.
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4. Micro-Flotation Experiments

The Mcv samples were supplied by Malipo County (Wenshan Prefecture, Yunnan
province, China). The samples were ground in a porcelain mill with an agate ball. The
obtained products were subjected to dry screening to achieve the particle size of 38–74 µm
for subsequent micro-flotation experiments. An X-ray Fluorescence (XRF) Spectrometer
was used to assess the chemical compositions of Mcv samples (Table 2).

Table 2. Chemical composition of pure muscovite sample (wt%).

Al2O3 K2O MgO SiO2 Fe2O3

31.496 10.843 1.264 46.013 6.802

The cationic DDA surfactant, anionic SDS and SDBS surfactants with an analytical
grade were obtained from Shanghai Macklin Biochemical and Chengdu Ouen Ruisi Chem-
ical Reagent, respectively, which were used as collectors. Equimolar levels of DDA and
hydrochloric acid were mixed to prepare dodecylamine hydrochloride (DDAHC). The
DDAHC/SDS and DDAHC/SDBS collectors were prepared by mixing DDAHC and SDS
or SDBS under the same concentration, respectively. To avoid precipitation, the mixture
was prepared freshly. Distilled water was employed in all tests.
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The micro-flotation experiments were performed using an XFG5-35 flotation machine
(60 mL cell, 1600 rpm spindle speed). To prepare a mineral suspension, 2.0 g Mcv was
added and then filled with distilled water to 50 mL. The surfactant reagent was added
into the cell and conditioned for 2 min. After flotation for 5 min, filtration and drying,
the flotation products and tailings were separately weighed. The flotation recovery was
then calculated. To determine the average recovery value, each flotation experiment was
repeated 3 times under the same conditions. The following equation was used to calculate
flotation recovery:

ϕ =
m1

m1 + m2
× 100% (3)

where ϕ (%) denotes the flotation recovery; m1 and m2 (g) represent the values of the
flotation products and tailings, respectively.

5. Results and Discussion
5.1. Adsorption Behavior of Single Collector on Mcv (001) Surface
5.1.1. DDAHC Collector

The Mcv (001) surface is negatively charged owing to the isomorphous substitution of
Al3+ for Si4+. Thus, DDAHC can be absorbed on the surface via electrostatic interactions.
As shown in Figure 6, the polar head group (-NH3) of DDAHC is adsorbed onto the bottom
and top surfaces of Mcv, and the alkyl chains (ACs) of DDAHC were intertwined with
each other and formed a hydrophobic membrane, thus generating a hydrophobic state that
was the same as the MDS results by Wang et al. [26,37,38]. Some DDAHC molecules are
removed from the Mcv surface, suggesting that the adsorption of the DDAHC collector
reaches a saturation degree. The three H atoms of -NH3 were bonded to the O atom of the
Mcv surface, leading to four or five hydrogen bonds (Figure 6b). Additionally, the -NH3 of
DDAHC and K+ in water were both located on the cavities of [Si5Al1O6] and [Si4Al2O5]
(Figure 6b,c), but the -NH3 was located near the Mcv surface, demonstrating that DDAHC
is likely to be adsorbed on the electronegative Mcv (001) surface compared with K ions.

Materials 2022, 14, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 6. Snapshots of the MDS of 30 DDAHC molecules forming on the Mcv (001) surface, showing 
(a) the equilibrium structure of the D30 system, (b) overview of the hydrogen bonds (dashed line) 
between the head group of DDAHC and Mcv surface, and (c) overview of the K ions located above 
the cavities of the Mcv surface. For clarity, only the water molecules are shown in the line model. 
The different colors represent different atoms, which are the same as in Figures 1 and 2. The break 
lines indicate regions of the vacuum slab. 

As displayed in Figure 7, two peaks were observed at 0.546 and 1.059 Å, which cor-
responded to the N atom of the DDAHC head group (-NH3), suggesting that a DDAHC 
collector is adsorbed onto the surfaces of Mcv. The total density of the adsorptive N atom 
(-NH3) in the D30 system was 0.699 (0.381 + 0.318) g/cm3. Based on the density profiles of 
C6 and C12, the AC values of the DDAHC collector were intertwined with each other and 
formed aggregate structures at a great distance from the Mcv surface. These results are in 
agreement with the MDS data presented in Figure 6. The RDF values of the D30 system 
are demonstrated in Figure 8. The water and DDAHC collector are located near the O 
atom of the Mcv surface. As displayed in Figure 8a, the first peak positions of RDF indi-
cated that the distances from the H atom of water, O atom of water, N atom of DDAHC, 
C6 atom of DDAHC, and C12 atom of DDAHC to the O atom of the Mcv surface were in 
the following order: H atom of water < N atom of DDAHC < O atom of water < C6 atom 
of DDAHC = C12 atom of DDAHC. The positively charged H atoms of the DDAHC head 
group (-NH3) and water could be strongly attracted by the electronegative Mcv surface, 
thus leading to DDAHC adsorption. The distances from the peak positions of N and C12 
atoms in DDAHC to those of O and H atoms in water were subsequently compared (Fig-
ure 8b). It was found that the hydrophyllic head group (-NH3) of DDAHC was closer to 
water than the hydrophobic AC of DDAHC. 
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(a) the equilibrium structure of the D30 system, (b) overview of the hydrogen bonds (dashed line)
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the cavities of the Mcv surface. For clarity, only the water molecules are shown in the line model. The
different colors represent different atoms, which are the same as in Figures 1 and 2. The break lines
indicate regions of the vacuum slab.
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As displayed in Figure 7, two peaks were observed at 0.546 and 1.059 Å, which
corresponded to the N atom of the DDAHC head group (-NH3), suggesting that a DDAHC
collector is adsorbed onto the surfaces of Mcv. The total density of the adsorptive N atom
(-NH3) in the D30 system was 0.699 (0.381 + 0.318) g/cm3. Based on the density profiles
of C6 and C12, the AC values of the DDAHC collector were intertwined with each other
and formed aggregate structures at a great distance from the Mcv surface. These results
are in agreement with the MDS data presented in Figure 6. The RDF values of the D30
system are demonstrated in Figure 8. The water and DDAHC collector are located near
the O atom of the Mcv surface. As displayed in Figure 8a, the first peak positions of RDF
indicated that the distances from the H atom of water, O atom of water, N atom of DDAHC,
C6 atom of DDAHC, and C12 atom of DDAHC to the O atom of the Mcv surface were in
the following order: H atom of water < N atom of DDAHC < O atom of water < C6 atom
of DDAHC = C12 atom of DDAHC. The positively charged H atoms of the DDAHC head
group (-NH3) and water could be strongly attracted by the electronegative Mcv surface,
thus leading to DDAHC adsorption. The distances from the peak positions of N and
C12 atoms in DDAHC to those of O and H atoms in water were subsequently compared
(Figure 8b). It was found that the hydrophyllic head group (-NH3) of DDAHC was closer
to water than the hydrophobic AC of DDAHC.
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5.1.2. SDS Collector

As demonstrated in Figure 9, the adsorption state of the SDS collector on the Mcv
surface was distinct from that of DDAHC, indicating that the SDS collector is not obviously
adsorbed on the Mcv surface. Most of the SDS molecules formed an aggregate structure
and were located far from the Mcv surface (Figure 10). However, both Na+ and K+ ions
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were absorbed on the six-membered cavity of the Mcv surface. The distances from the Na+

or K+ ion to the Mcv surface lay within the range of 1.316–1.924 Å, but the Na ions were
nearer to the Mcv surface than K ions. As displayed in Figure 10, the nearest C12 atom
peak of SDS was at 21.873 Å from the Mcv surface. Based on the density profiles of C7 and
C12 of SDS, the carbon atoms of the SDS collector were intertwined with each other and
formed aggregate structures at a great distance from the Mcv surface. These results are
in line with the MDS data revealed in Figure 9. As a result, the SDS collector is not to be
adsorbed on the Mcv surface, leading to its poor flotation performance.
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Figure 9. Snapshots of the MDS of 30 SDS molecules forming on the muscovite (001) surface, showing
(a) the equilibrium structure of the S30 system, (b) over and (c) side view of the K and Na ions located
above the cavities of the Mcv surface. For clarity, only the water molecules are shown in the line
model. The different colors represent different atoms, which are the same as in Figures 1 and 2. In
addition, the colors light green and light yellow represent chloride and sodium, respectively. The
break lines indicate regions of the vacuum slab.
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The RDF values of the S30 system are presented in Figure 11. As demonstrated in
Figure 11a, the first peak positions of RDF indicated that the distances from the H atom of
water, O atom of water, S atom of SDS, C7 atom of SDS, and C12 atom of SDS to the O atom
of the Mcv surface were in the following order: H atom of water < O atom of water < C7
atom of SDS = C12 atom of SDS < O atom of SDS < S atom of SDS. The positively charged
H atom of water was attracted to the Mcv (001) surface, while the negatively charged SDS
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head group (-SO3) was repelled from the Mcv surface, leading to no SDS adsorption. The
distances from the peak positions of S and C12 atoms in SDS to those of O and H atoms
in water were compared (Figure 11b). It was observed that the hydrophyllic head group
(-SO3) of SDS was closer to water than the hydrophobic AC of SDS.
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5.1.3. SDBS Collector

As displayed in Figure 12, the adsorption state of the SDBS collector on the Mcv
surface was different compared with DDAHC and SDS, implying that the SDBS collector is
not obviously adsorbed on the Mcv surface. Most of the SDBS molecules formed aggregate
structures and were located far from the Mcv surface (Figure 13), similarly toSDS molecules.
However, similarly to the S30 system, both Na+ and K+ ions of the SD30 system were
absorbed on the six-membered cavity of the Mcv surface. The distances from Na+ and K+

ions to the Mcv surface lay within the range of 1.362–2.015 Å, but Na ions were nearer to
the Mcv surface than K ions. As demonstrated in Figure 13, the nearest C12 atom peak of
SDBS was at 21.848 Å from the Mcv surface. Based on the density profiles of C5 and C12 of
SDBS, the carbon atoms of the SDBS collector were intertwined with each other and formed
aggregate structures at a great distance from the Mcv surface. These results are consistent
with the MDS data shown in Figure 12. As a consequence, no SDBS collector is expected to
be adsorbed on the Mcv surface, leading to its poor flotation performance.

The RDF values of the SD30 system are presented in Figure 14. The water was located
near the O atom of the Mcv surface. As shown in Figure 14a, the first peak positions of RDF
indicated that the distances from the H atom of water, O atom of water, S atom of SDBS, C5
atom of SDBS, and C12 atom of SDBS to the O atom of Mcv surface were in the following
order: H atom of water < O atom of water < C12 atom of SDBS < C5 atom of SDBS < S atom
of SDBS. It can be seen that the SDBS collectors are farther from the mineral surface than
water molecules, indicating that SDBS collectors are almost separated from the muscovite
surface [39]. The distances from the peak positions of S and C12 atoms in SDBS to those of
O and H atoms in water were compared (Figure 14b). It was noted that the hydrophilic
head group (-SO3) of SDBS was closer to water than the hydrophobic AC of SDBS, which is
consistent with its physical properties.

In summary, the MDS of the adsorption mechanism of Mcv with a single collector
showed that the H atoms of the head group (-NH3) of DDAHC could form hydrogen bonds
with the O atoms of Mcv (001) surface, thus resulting in DDAHC adsorption on Mcv. For
the other two anionic collectors, they are located far from the Mcv surface, leading to no
adsorption on the Mcv surface. The cationic collector DDAHC had an obvious adsorption
behavior on Mcv, indicating that it exhibited good flotation performance toward Mcv. The
other two anionic collectors showed poor flotation performance of Mcv because of no
obvious adsorption behavior.
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Figure 12. Snapshots of the MDS of 30 SDBS molecules forming on the muscovite (001) surface,
showing (a) the equilibrium structure of the SD30 system, (b) overview and (c) side view of the K
and Na ions located above the cavities of the muscovite surface. For clarity, only the water molecules
are shown in the line model. The different colors represent different atoms, which are the same as in
Figures 1 and 2. In addition, the colors light green and light yellow represent chloride and sodium,
respectively. The break lines indicate regions of the vacuum slab.
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5.2. Adsorption Behavior of Mixed Collectors on Mcv (001) Surface
5.2.1. DDAHC/SDS Collectors

Figure 15 shows the equilibrium configuration of mixed DDAHC/SDS collectors at dif-
ferent molar ratios on the Mcv (001) surface in the aqueous solution. The mixed DDAHC/SDS
collectors on the Mcv surface had a distinct aggregate morphology compared with the
DDAHC or SDS collector alone. Regardless of the molar ratios, the head group (-NH3) of
DDAHC could be adsorbed on the Mcv (001) surfaces. The peaks of N atoms in the DDAHC
head groups were located at the distances of 0.552–1.062 Å from the Mcv (001) surfaces
(Figure 16), suggesting that the DDAHC collector is greatly adsorbed on the Mcv surface. The
density peaks of N atoms in the D8S23, D10S20, D16S15, D20S10, and D23S8 systems were
compared. It was found that the DDAHC molecules of the D20S10 system interacted more
strongly with the Mcv surface compared to other systems: D20S10 (0.510 g/cm3) > D23S8
(0.382 g/cm3) > D10S20 (0.322 g/cm3) > D16S15 (0.274 g/cm3) > D8S23 (0.130 g/cm3). The
highest total density of adsorptive N atoms of the DDAHC head group (-NH3) in the D20S10
system was 0.510 g/cm3, which is still smaller than that of the D30 system (0.699 g/cm3). On
the basis of the research of Bai Yang et al. [29], the mixed DDAH/SDS collector has much
lower zeta potential than DDAH or SDS alone because the positive charge of DDA cations
were neutralized by the SDS anions, indicating that the mixed DDAH/SDS has a synergistic
effect on the adsorption of minerals. However, due to the absence of H+ or OH− ions under
neutral conditions, the synergistic effect of mixed collectors would be weakened, resulting
in poor adsorption on muscovite than DDAHC alone. Therefore, the density of adsorptive
N atoms of DDAHC alone on muscovite is higher than the mixed collectors. Comparing
the density distribution of DDAHC and SDS, the DDAHC molecules are much closer to the
surface of Mcv than SDS molecules, indicating that DDAHC has better adsorption capacity
than SDS. For all the mixed DDAHC/SDS collector systems, the nearest S atom peak of
the SDS head group (-SO3) was located at 10.054 Å from the Mcv surface, implying that
SDS is not adsorbed on the Mcv surface. However, the SDS collector was hinged with the
DDA collector, thus improving SDS co-adsorption on the Mcv surface. With the increase
in DDAHC, the amount of DDAHC adsorbed on the Mcv surface was also increased. The
D20S10 system had the best adsorption of DDAHC than other systems. Therefore, it is
speculated that DDAHC plays a major role in regulating the interactions between the mixed
DDAHC/SDS collector and Mcv surface.
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Figure 15. MDS snapshot of mixed DDAHC/SDS collectors forming on the muscovite (001) surface.
The molar ratio of DDAHC to SDS is 1:3 (a), 1:2 (b), 1:1 (c), 2:1 (d), and 3:1 (e). For clarity, only the
water molecules are shown in the line model. The different colors represent different atoms, which
are the same as in Figures 1 and 2. In addition, the colors light green and light yellow represent
chloride and sodium, respectively. The break lines indicate regions of the vacuum slab.
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The representative RDF values of the mixed DDAHC/SDS systems are shown in
Figures 17 and 18. As displayed in Figure 17, the first peak positions of RDF demonstrated
that the distances from the H atom of water, N atom of DDA, O atom of water and S
atom of SDS to the O atom of Mcv surface were in the following order: H atom of water
< N atom of DDA < O atom of water < S atom of SDS. The positively charged H atoms
of the DDAHC head group (-NH3) and water could be attracted by the electronegative
Mcv surface, leading to DDAHC adsorption. In addition, the H atoms of water also can
form hydrogen bonding interaction to the O atoms of the Mcv surface and head groups of
DDAHC [8,24,28], resulting in the formation of a water film between the adsorbed DDAHC
collector and the Mcv surface. The distances from the peak positions of S and C12 atoms
in SDS to those of N and C12 atoms in DDAHC were compared (Figure 18). The results
showed that the S atom of SDS was positively charged and was nearer to the negatively
charged N atom of DDAHC than the C12 atom, while the C12 atom of SDS was nearer to
that of DDAHC than the N atom. Additionally, the head group (-NH3) of DDAHC was
inclined to intertwine with the head group (-SO3) of SDS rather than that of AC.

5.2.2. DDAHC/SDBS Collectors

Figure 19 shows the equilibrium configuration of mixed DDAHC/SDBS collectors
at varying molar ratios on the Mcv (001) surface in the aqueous solution. The mixed
DDAHC/SDBS collectors on the Mcv surface had a distinct aggregate morphology com-
pared with the DDAHC or SDBS collector alone. Regardless of the molar ratios, the head
group (-NH3) of DDAHC could be adsorbed on the Mcv surfaces. The peak positions
of N atoms in the DDAHC head group were at the distances of 0.657–1.160 Å from the
Mcv surfaces (Figure 20), implying that the DDAHC collector is greatly adsorbed on the
Mcv surface. The density peaks of N atoms in the D8SD23, D10SD20, D15SD15, D20SD10
and D23SD8 systems were compared. It was observed that the DDAHC molecule of the
D20SD10 system interacted more strongly with the Mcv surface compared to the other
systems: D20SD10 (0.517 g/cm3) > D23SD8 (0.258 g/cm3) > D15SD15 (0.254 g/cm3) >
D8SD23 (0.130 g/cm3) > D10SD20 (0.129 g/cm3). The highest total density of adsorptive N
atoms of the DDAHC head group (-NH3) in the D20SD10 system was 0.517 g/cm3, which
is still smaller than that of the D30 system (0.699 g/cm3). Learning from the research of



Materials 2022, 15, 3816 15 of 22

Vidyadhar et al. [10] and Tian et al. [21], different charge collectors can reduce the repul-
sion force of adsorption layer and promote the formation of semi-micelle adsorption. We
believe that under the action of the head group of SDBS in acidic or alkaline conditions,
the electrostatic repulsion between DDA cations is obviously weakened. Moreover, the
adsorption performance of the mixed cationic/anionic collectors on the muscovite surface
is theoretically improved, thus increasing the flotation recovery of muscovite. It is obvious
that this phenomenon is not suitable for neutral conditions, because the pH value of solu-
tion will lead to changes in electrostatic and hydrogen bonding interactions, resulting in
different flotation results, which is consistent with the flotation experiments as shown in
Section 5.4. For all the mixed DDAHC/SDBS collector systems, the nearest S atom peak of
the SDBS head group (-SO3) was located at 7.865 Å from the Mcv (001) surface, suggesting
that SDBS is not adsorbed on the Mcv surface. Consistent with the situation of a mixed
DDAHC/SDS collector, DDAHC was still the main adsorption on the Mcv surface, while
SDBS and DDAHC hinged together to achieve co-adsorption. The cationic DDAHC and
anionic SDBS collectors hinged with each other into spherical or elliptic micelles, which
was better than mixed DDAHC/SDS collectors. SDBS has one more benzene ring than
SDS, which can form a micelle hinged with DDAHC relatively well. With the increase in
DDAHC content, it is evident that the amount of collector floating on the water surface
decreases, indicating that there are more anionic collectors that hinge with DDAHC.
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The representative RDF values of the mixed DDAHC/SDBS systems are shown in
Figures 21 and 22. As shown in Figure 21, the first peak positions of RDF indicated that the
distances from the H atom of water, O atom of water, N atom of DDA, and S atom of SDBS
to the O atom of Mcv surface were in the following order: H atom of water < N atom of
DDA < O atom of water < S atom of SDBS. The positively charged H atoms of the DDAHC
head group (-NH3) and water could be attracted by the electronegative Mcv surface, leading
to DDAHC absorption. There is a water film between the adsorbed DDAHC and muscovite
surface regardless of SDS or SDBS anionic collector, which indicated that the DDAHC plays
a major role in the adsorption of Mcv under mixed cationic/anionic collectors [26,34]. The
distances from the peak positions of S and C12 atoms in SDBS to those of N and C12 atoms
in DDAHC were compared (Figure 22). The results demonstrated that the S atom of SDBS
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was positively charged and was nearer to the negatively charged N atom of DDAHC than
the C12 atom, while the C12 atom of SDBS was closer to the C12 atom of DDAHC than the
N atom. Thus, the head group (-NH3) of DDAHC is inclined to intertwine with the head
group (-SO3) of SDBS more than AC, similarly to the mixed DDAHC/SDS collectors.
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Figure 19. MDS snapshot of mixed DDAHC/SDBS collectors forming on the Mcv (001) surface. The
molar ratio of DDAHC to SDS is 1:3 (a), 1:2 (b), 1:1 (c), 2:1 (d), and 3:1 (e). For clarity, only the water
molecules are shown in the line model. The different colors represent different atoms, which are the
same as in Figures 1 and 2. In addition, the colors light green and light yellow represent chloride and
sodium, respectively. The break lines indicate regions of the vacuum slab.
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of DDAHC to SDBS is (a) 1:3, (b) 1:2, (c) 1:1, (d) 2:1, and (e) 3:1.
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Figure 21. RDF g(r) between the mixed DDAHC/SDBS collector and Mcv (001) surface. The molar
ratio of DDAHC to SDBS is (a) 1:3, (b) 1:2, (c) 1:1, (d) 2:1, and (e) 3:1.

5.3. Interaction Energy

The interaction energy of the collectors on Mcv in all systems is listed in Table 3. The
negative and positive values of the interaction energy Einter indicate an effective and no
adsorption between the collectors and Mcv surface, respectively. (SDS), anionic collector.
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Table 3. Interaction energy between the collectors and muscovite surface (kcal/mol). DDAHC, SDS
and SDBS S are abbreviations for dodecyl amine hydrochloride, sodium dodecyl sulfate and sodium
dodecyl benzene sulfonate, respectively. D, S, and SD in the table stand for the abbreviations of
DDAHC, SDS, and SDBS collectors, respectively.

Collectors System Etotal Emus Ecol Einter

Single
collector

D30 −460,712.9139 −442,048.0052 6881.007 −851.53
S30 −469,886.5041 −473,503.4898 2132.7143 49.47

SD30 −468,925.1094 −473,767.5963 3875.312 32.24

Mixed
collectors
DDAHC +

SDS

D8S23 −459,997.1125 −456,393.1465 2752.9275 −205.65
D10S20 −469,017.6415 −463,698.4841 2380.5639 −256.657
D16S15 −458,419.7227 −450,551.3448 3032.0479 −351.63
D20S10 −459,932.9465 −447,300.8663 5073.0874 −590.17
D23S8 −454,045.5905 −445,243.15 3620.148 −400.73

Mixed
collectors
DDAHC +

SDBS

D8SD23 −463,780.6320 −457,085.4462 2149.4245 −285.31
D10SD20 −460,565.1272 −450,882.7433 2139.3061 −394.06
D15SD15 −451,808.8386 −440,744.5416 3442.0143 −483.54
D20SD10 −455,002.4834 −440,724.5883 5677.6587 −665.19
D23SD8 −457,303.2624 −445,861.5949 4729.0245 −521.64

The positive interaction energy between the SDBS or SDS and Mcv demonstrated that
the SDS or SDBS had no absorbability on Mcv, while the negative interaction energy of the
mixed collector systems indicated that the mixed collectors had effective adsorption on Mcv.
The interaction energy of DDAHC in the D30 system was −851.51 kcal/mol, which was
highest among all the systems. The interaction energy of the mixed DDAHC/SDS collector
systems was lower than that of DDAHC but higher than that of SDS, following the sequence:
D20S10 < D23S8 < D16S15 < D10S20 < D8S23. Moreover, the mixed DDAHC/SDBS
systems had more negative values than SDBS but fewer than DDAHC, following the
sequence: D20SD10 < D23SD8 < D15SD15 < D10SD20 < D8SD23. The interaction energy of
mixed DDAHC/SDBS systems is more negative than that of mixed DDAHC/SDS systems,
indicating that the mixed DDAHC/SDBS systems have better flotation performance on
Mcv than the mixed DDAHC/SDS collector. Above all, in the mixed collector system,
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the interaction energy of the cationic/anionic collector in a molar ratio of 2 is the most
negative, indicating that it had the best flotation performance toward Mcv. Furthermore, the
interaction energies of mixed DDAHC/SDS and DDAHC/SDBS collectors in a molar ratio
of 2 were −590.17 and −665.19 kcal/mol, respectively. According to the literature survey,
the interaction energy of different mineral–collector systems is obviously different, which
is listed in Table 4. With the exception of SDS and SDBS collectors, the interaction energy in
our work ranged from −205.65 to −851.53 kcal/mol, indicating that the interaction energy
between muscovite and collectors is relatively large. Combined with the snapshot results,
the SDBS collector was more likely to form spherical micelles with DDAHC due to the
addition of a benzene ring structure and had more negative interaction energy on Mcv.
However, compared with the mixed collector, the DDAHC alone was much more effective
toward Mcv in neutral aqueous solution.

Table 4. The interaction energy values between different collector–mineral systems. (The interaction
energy in the literature is calculated according to Equation (2).)

Number Minerals Plane Collectors ∆E (kcal/mol)

[8] muscovite 001 DDA+ −123.400

[14] kaolinite 001
10 DDAHC −277.6000

10 DDAHC + 5 OA −183.5333
[20] kyanite 100 1 Octadecylamine (OA) −305.5186

1 SHS −493.2314
[20] andalusite 110 1 OA −253.1644

1 SHS −1361.4364
[20] sillimanite 010 1 OA −263.0784

[27] muscovite 001
NaOL 10.3754
DDA −27.7817

DDA-NaOL −79.2860
[28] muscovite 001 15 DDA −1049.10

[40]
siderite 101

10 NaOL
−2350.9587

hematite 001 −42.2757
quartz 101 −6259.5622

[41]
spodumene 110

Oleate
−235.80

anorthite 001 −141.90
muscovite 001 127.00

[42] low-rank coal - 9 dodecyltrimethylammonium bromide (DTAB) −634.8016

[43] calcite - 50 Dodecane (C12) −215.6400
50 C12 + 6 sodium hexadecyl sulfonate (SHS) −180.0714

[44]
magnesite 101 20 cetyl phosphate adsorption (PCP) −2301.0468

calcite 104 20 PCP −162.4522

[45]
magnesite 104 20 PCP −97.18
dolomite 104 20 PCP −22.84

5.4. Flotation Recovery of Mcv with Cationic, Anionic and Mixed Collectors

Micro-flotation experiments were conducted to verify the MDS results. Figure 23
shows the flotation recovery of Mcv with DDAHC, SDS, SDBS, mixed DDAHC/SDS and
DDAHC/SDBS collectors. Under neutral conditions, the flotation performance of the
mixed DDAHC/SDS or DDAHC/SDBS collectors at molar ratios of 1:1, 2:1, and 3:1 was
greater than that of SDS or SDBS but lower than that of DDAHC alone. The flotation
recovery of Mcv with mixed DDAHC/SDS or DDAHC/SDBS collectors at molar ratios of
2:1 and 3:1 was increased compared to those at 1:1, 1:2, and 1:3. The flotation recovery rates
of Mcv with mixed DDAHC/SDS collectors at 2 × 10−2 mol/L and molar ratios of 1:3, 1:2,
1:1, 2:1, and 3:1 were 9.65 ± 1.12, 14.63 ± 1.74, 35.45 ± 2.03, 64.29 ± 3.08, and 60.8 ± 2.51%,
respectively. Moreover, the flotation recovery rates of Mcv with mixed DDAHC/SDBS
collectors at 9 × 10−3 mol/L and molar ratios of 1:3, 1:2, 1:1, 2:1, and 3:1 were 7.09 ± 2.72,
23.43 ± 1.87, 28.42 ± 1.72, 81.66 ± 2.45, and 75.19 ± 2.16%, respectively. In addition, at the
same concentration of collector, the flotation recovery of the mixed DDAH/SDBS collector
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is much higher than that of the mixed DDAH/SDS collector, which is consistent with
the results of interaction energy. However, under neutral conditions at 7 × 10−3 mol/L,
DDAHC alone (D30) exhibited a maximum flotation recovery of 81.79 ± 2.67% on Mcv.
Hence, the MDS results of D20S10, D20SD10, and D30 on Mcv are in good agreement with
the micro-floatation experimental data at 7 × 10−3 mol/L. According to the flotation results,
under neutral conditions, the flotation recovery of muscovite using the DDAHC collector
alone is similar to that of the mixed collector DDA/SDBS in a molar ratio of 2:1. However,
the single collector is more convenient than the mixed collector in practical application; it
can be concluded that DDAHC is the optimum collector for the flotation of muscovite in
neutral aqueous solution.
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6. Conclusions

In the present work, the effects of DDAHC, SDS, SDBS, and their mixture with ten
molar ratios on the adsorption behavior of the Mcv surface under neutral conditions were
investigated by the MDS studies. The cationic collector DDAHC could be adsorbed on
the Mcv surface, owing to the hydrogen bond and electrostatic interactions between the
collectors and the Mcv surface. However, the anionic collectors SDS and SDBS could not
be adsorbed on the Mcv surface. The mixed DDAHC/SDS and DDAHC/SDBS collectors
with the molar ratios of 1:1, 1:2, and 1:3 exhibited a poor adsorption on Mcv, while those
with the molar ratios of 2:1 and 3:1 demonstrated an effective adsorption on Mcv. DDAHC
plays an important role in regulating the interactions between the mixed collectors and
Mcv surface. The anionic and cationic collectors hinged with each other, resulting in the
co-adsorption of SDS or SDBS on the Mcv surface. The results of MDS and micro-flotation
experiments in the presence of DDAHC, SDS, SDBS, DDAHC/SDS, and DDAHC/SDBS
collectors on the Mcv surface demonstrated that DDAHC alone (7 × 10−3 mol/L) had the
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best flotation performance (81.79%) toward Mcv under neutral aqueous conditions. Addi-
tionally, the mixed DDAHC/SDBS collector (81.66%) exhibited better flotation recovery
than DDAHC/SDS (64.29%) on Mcv, which was probably due to the fact that SDBS has
one more benzene ring.
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