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Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is the most common malignant 
tumor of the kidney and is characterized by poor prognosis. We sought to build an 
immune- related prognostic signature and investigate its relationship with immuno-
therapy response in ccRCC.
Methods: Immune-	related	genes	were	identified	by	ssGSEA	and	WGCNA.	The	prog-
nostic signature was conducted via univariate, least absolute shrinkage and selection 
operator,	and	multivariable	Cox	regression	analyses.	Kaplan-	Meier	analysis,	PCA,	t- 
SNE, and ROC were used to evaluate the risk model.
Results: A	total	of	119	immune-	related	genes	associated	with	prognosis	were	screened	
out.	Six	immune-	related	genes	(CSF1,	CD5L,	AIM2,	TIMP3,	IRF6,	and	HHLA2)	were	
applied to construct a prognostic signature for KIRC. Kaplan– Meier analysis showed 
that patients in high- risk group had a poorer survival outcome than in low- risk group. 
The	1-	,	3-		and	5-	year	AUC	of	the	prognostic	signature	was	0.754,	0.715,	and	0.739,	re-
spectively. Univariate and multivariate Cox regression models demonstrated that the 
risk	signature	was	an	independent	prognostic	factor	for	KIRC	survival.	GSEA	analysis	
suggested that the high- risk group was concentrated on immune- related pathways. 
The high- risk group with more regulatory T- cell infiltration showed a higher expres-
sion of immune negative regulation genes. The risk score had positively relationship 
with TIDE score and negatively with the response of immunotherapy. The IC50 values 
of axitinib, sunitinib, sorafenib, and temsirolimus were lower in the high- risk group.
Conclusion: Our study defined a robust signature that may be promising for predict-
ing clinical outcomes and immunotherapy and targeted therapy response in ccRCC 
patients.
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1  |  INTRODUC TION

Clear cell renal cell carcinoma (ccRCC) is the most common patholog-
ical	subtype	of	RCC,	accounting	for	approximately	70%–	80%	of	RCC	
cases and is mainly manifested by the loss of von Hippel- Lindau, the 
accumulation of lipids and glycogen and insensitivity to chemora-
diotherapy. Nephrectomy is still the main treatment for ccRCC with 
localized	disease.	However,	30%	of	patients	eventually	develop	into	
metastasis, which results in higher mortality and requires systemic 
treatment.1 In the past decade, the survival time of advanced ccRCC 
patients has been significantly improved due to the development of 
targeted and immunotherapy drugs.2

Immunotherapy, an important clinical program for cancer treat-
ment that activates the immune system to attack cancer cells, is 
considered a promising way to treat or even cure certain cancers. 
Due to the unique characteristics of ccRCC, immunotherapy target-
ing certain components of the immune system can be applied to the 
clinical treatment of advanced ccRCC patients.3 Immune checkpoint 
inhibitors (ICIs) targeting the programmed cell death 1 (PD- 1), pro-
grammed cell death 1 ligand 1 (PD- L1), and cytotoxic T lymphocyte 
antigen	4	(CTLA-	4)	immune	checkpoints	have	made	rapid	progress	
in ccRCC treatment. Several studies have indicated that therapeutic 
regimens such as nivolumab plus ipilimumab, pembrolizumab plus 
axitinib, and avelumab plus axitinib showed higher overall survival 
(OS) and objective response rates (ORRs), and they have been ap-
proved as first- line treatments.4– 10 With respect to efficacy, only 
a few people show sensitivities to immunotherapies.11 Therefore, 
how to select patient- specific immunotherapies and combination 
therapies to increase response rates and decrease adverse reactions 
has become an important problem that might eventually be solved 
by further molecular biomarker stratified research for individual 
patients.12– 15

The tumor microenvironment (TME) mainly consists of tumor 
cells and nontumor cells, such as cancer- associated fibroblasts 
(CAFs)	and	immune	cells,	which	are	correlated	with	in	clinical	progno-
sis and curative effects.16 Tumor- infiltrating immune cells in the TME 
participate in tumor progression and immune tolerance and immune 
escape which can profoundly affect the response to anticancer ther-
apies.17 Therefore, exploring the traits of immune cells in the KIRC 
TME can be helpful for immune and targeted therapy strategies.

In this study, our purpose was to uncover the potential immune- 
related predictive signatures involved in ccRCC progression, progno-
sis, and targeted and immune- related drug decisions by evaluating 
data from the Gene Expression Omnibus (GEO) and The Cancer 
Genome	Atlas	 (TCGA)	databases.	We	divided	 ccRCC	patients	 into	
high-  and low- immune clusters based on the immune cells results 
by	 single	 sample	 gene	 set	 enrichment	 analysis	 (ssGSEA).	 Then,	
weighted	gene	co-	expression	network	analysis	(WGCNA)	was	used	
to identify the model that was most relevant to immunity, and a six- 
gene signature was established. The signature had a strong ability to 
forecast patient prognosis and response to targeted and ICI therapy 
in ccRCC.

2  |  MATERIAL S AND METHODS

2.1  |  KIRC data preparation

The Series Matrix Files of GSE29609, including 39 ccRCC sam-
ples, were downloaded from GEO. The fragments per kilobase 
million (FPKM) values and clinical information of 539 kidney renal 
clear	 cell	 carcinoma	 (KIRC)	 and	72	normal	 samples	 obtained	 from	
the Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/) 
were transformed into transcripts per kilobase million (TPM) values, 
which were similar to the values from GEO.18 The batch effects in 
the	TCGA	and	GEO	datasets	were	corrected	by	the	“ComBat”	algo-
rithm of the sva package.19

2.2  |  Immune clustering based on ssGSEA

The	repeated	samples	in	TCGA	were	averaged	and	merged.	Finally,	
530	KIRC	samples	in	TCGA-	KIRC	and	39	KIRC	samples	in	GEO	were	
combined	and	further	used	for	ssGSEA,	which	was	applied	to	ana-
lyze the different infiltration levels of 29 kinds of immune cells and 
immune- related functions in line with the levels of specific gene ex-
pression.20 Then, an unsupervised hierarchical clustering algorithm 
was performed to divide these samples into high and low- immune 
clusters	based	on	the	ssGSEA	results.

2.3  |  Tumor microenvironment analysis based 
on ESTIMATE

ESTIMATE	was	 used	 to	 compute	 the	 scores	 of	 immune	 cells	 and	
stromal cells in the TME based on the expression levels of specific 
genes to verify the accuracy of the immune grouping using the R 
package	“ESTIMATE.”21

2.4  |  GSVA for functional annotation

GSVA	(gene	set	variation	analysis)	enrichment	using	the	R	package	
“GSVA”	was	applied	to	research	the	pathway	differences	between	
two	clusters	employing	“c2.cp.kegg.v7.4.symbols”	from	the	MSigDB	
database.22

2.5  |  Identification of the immune- related genes 
(IRGs)

Differentially expressed genes between the two immune clus-
ters	 were	 selected	 using	 the	 package	 “limma”	 according	 to	 |log	
Foldchange| > 0.5 and adjusted p < 0.05. Then, IRGs closely associ-
ated with the immune feature were selected from the defined dif-
ferentially	expressed	genes	by	WGCNA.23

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29609
https://portal.gdc.cancer.gov/
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2.6  |  GO and KEGG function enrichment analysis

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis were performed on the IRGs 
by	R	package	“clusterProfiler.”24	After	setting	the	criteria	of	adjusted	
p < 0.05, GO terms and KEGG pathways were visualized.

2.7  |  Establishment of the risk signature for KIRC

Univariate Cox regression analysis was used to identify prognostic 
IRGs. Next, the differentially expressed IRGs between tumor and 
normal	 samples	 in	 TCGA-	KIRC	 were	 screened	 out	 according	 to	
|logFC| > 0 and p < 0.05. Venn analysis was used to investigate the 
intersected IRGs based on the above screening conditions. Then, the 
slightly contributory IRGs were deleted by least absolute shrinkage 
and	selection	operator	(LASSO)	analysis.	Finally,	multivariate	Cox	re-
gression analysis was applied to build an optimal prognostic signature 
according to the following risk formula: risk score = 

∑n

i=1
expi ∗ coefi. 

The terms expi and coefi represent the expression and coefficient of 
the gene, respectively. The KIRC patients were assigned to high-  and 
low- risk groups based on the median risk score. The separating ca-
pacity of the risk model was further verified by principal component 
analysis	 (PCA)	 and	 t- distribution stochastic neighbor embedding 
(t- SNE). Kaplan– Meier (K- M) and time- dependent receiver operat-
ing characteristic (ROC) curves were utilized to evaluate the ability 
to	predict	prognosis	with	the	risk	model	by	the	“survival”	and	“tim-
eROC”	R	packages.	Furthermore,	other	prognostic	signatures	from	
Gao,25 Wu,26 Zhao1,27 Zhao228 were evaluated by ROC and C- index.

2.8  |  Relationship between the risk model and 
clinical characteristics

A	total	of	248	patients	were	enrolled	with	complete	clinical	data	and	a	
follow- up time of more than 30 days for further analysis. Univariate and 
multivariate Cox regression analyses were applied to confirm whether 
the risk score was an independent predictive variable in KIRC patients 
by comparing with clinical characteristics such as age, gender, stage, T 
stage, N stage, and M stage. The chi- square and Wilcoxon signed- rank 
tests were applied for the analysis of the relationship between the risk 
score and clinical characteristics. The K– M curve was used to detect the 
survival differences between two risk groups based on the subgroups 
stratified by age, gender, grade, stage, T stage, N stage, and M stage.

2.9  |  GSEA enrichment analysis

GSEA	(gene	set	enrichment	analysis)	was	used	to	analyze	the	GO	and	
KEGG	pathways	between	the	high-		and	low-	risk	groups	in	the	TCGA-	
KIRC	 database	 according	 to	 the	 gene	 sets	 “c5.go.v7.4.symbols.gmt”	
and	 “c2.cp.kegg.v7.4.symbols.gmt”	 by	 the	 R	 “clusterprofiler”	 pack-
age.29	An	adjusted	p value <0.05 represented a significant difference.

2.10  |  Immune cell infiltration in tumor 
microenvironment

The characteristics of immune cell infiltration in the KIRC microen-
vironment between the high-  and low- risk groups were analyzed by 
different	software	programs,	such	as	XCELL,	TIMER,	QUANTISEQ,	
MCPCOUNTER,	EPIC,	CIBERSORT-	ABS,	and	CIBERSORT.	The	cor-
relation between immune cells and risk score was shown in a lollipop 
diagram by Spearman correlation analysis. The Wilcoxon signed- 
rank test was used to analyze the different numbers of immune cells 
between the two risk groups.

2.11  |  Responses to immunotherapy and targeted 
drug therapy

The TIDE (Tumor Immune Dysfunction and Exclusion) method 
(http://tide.dfci.harva rd.edu/) was applied to forecast the response 
of KIRC patients to the immunotherapy.30	The	RNA	data	and	clinical	
information of renal cell carcinoma obtained from the IMvigor210 
dataset (http://resea	rch-	pub.gene.com/IMvig	or210	CoreB	iologies) 
by	 the	 “IMvigor”	 package	 were	 used	 to	 predict	 the	 responses	 of	
the two risk groups to the PD- L1 inhibitor atezolizumab.31 Targeted 
drugs such as axitinib, sunitinib, sorafenib, and temsirolimus are rec-
ommended	to	treat	ccRCC	according	to	AJCC	guidelines.	To	evalu-
ate the risk model in predicting the sensitivity to targeted drugs, 
TCGA-	KIRC	samples	were	applied	for	analysis	of	the	IC50	between	
two	risk	groups	by	the	“pRRophetic”	package.32

2.12  |  Statistical analysis

R software version 4.1.2 was applied for statistical analysis. The 
differences between two groups were compared by the Wilcoxon 
signed- rank test and analyzed by the Kruskal– Wallis test. The 
frequency differences were determined by the chi- square test. 
Student's t- test was performed to compare the expression levels in 
different groups when appropriate. The difference in survival was 
evaluated	by	the	log-	rank	test.	A	two-	sided	p value <0.05 was con-
sidered statistically significant.

3  |  RESULTS

3.1  |  Establishment and validation of the immune 
cluster in ccRCC

Data	 of	 530	 and	 39	 ccRCC	 samples	 obtained	 from	 TCGA	 and	
GSE29609 were evaluated for the immune cell infiltration by 
ssGSEA.	 Furthermore,	 the	 ccRCC	 samples	 were	 assigned	 to	 two	
clusters based on the results of 29 immune- related cells or func-
tions by an unsupervised hierarchical clustering algorithm. Cluster 
1 (n =	 297)	was	 defined	 as	 the	 low-	immune	 cluster	 (L_Immunity)	

http://tide.dfci.harvard.edu/
http://research-pub.gene.com/IMvigor210CoreBiologies
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29609
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due to the characteristic of low- immune cells (Figure 1A). Cluster 
2 (n =	 272)	 was	 defined	 as	 a	 high	 immune	 cluster	 (H_Immunity)	
due to the characteristic of high immune cells (Figure 1A). Then, 
the	ESTIMATE	 algorithm	was	 used	 to	 verify	 the	 application	 value	
of	the	immune	clusters.	As	shown	in	Figure 1A, the stromal score, 
immune	 score,	 and	 ESTIMATE	 score	 in	 H_Immunity	 were	 higher	
than	those	in	L_Immunity,	while	tumor	purity	had	the	opposite	re-
sults. Furthermore, the similar trends were seen in the violin plots 
(p < 0.05) (Figure 1B). In addition, the prognosis of patients was not 
significantly	 different	 between	 the	 H_Immunity	 and	 L_Immunity	
groups (Figure 1C).	Finally,	GSVA	enrichment	analysis	indicated	that	
immune- related pathways such as antigen processing and presen-
tation, primary immunodeficiency, cytokine- cytokine receptor 
interaction, intestinal immune network for IgC production, T- cell 
receptor signaling pathway, natural killer cell- mediated cytotoxic-
ity, and chemokine signaling pathway were significantly enriched in 
the	H_Immunity	cluster	 (Figure 1D).	All	the	above	results	revealed	
that the immune clusters were significantly associated with ccRCC 
immunity.

3.2  |  Identification of immune- related genes

The	 differentially	 expressed	 genes	 between	 H_Immunity	 and	 L_
Immunity were identified according to |logFC| > 0.5 and adjusted 
p <	0.05.	A	total	of	540	different	genes	were	screened	out,	of	which	
478	were	upregulated,	 and	62	were	downregulated	 (Figure 2A,B). 
To identify the main module most relevant to the immune trait, 
WGCNA	was	 used	 to	 further	 analyze	 these	 different	 genes.	 Four	
modules were screened according to a soft thresholding value of 
4 (scale- free R2 =	0.87,	mean	connectivity	= 2.26) (Figure 2C).	As	
shown in the heatmap of the module- trait, the brown module with 
99	genes	and	the	turquoise	model	with	175	genes	were	closely	re-
lated to the immune trait (Figure 2D; R2 =	0.73	and	p = 3e−97 in the 
brown module, R2 =	−0.47	and	p =	7e−33 in the turquoise model). 
Ultimately,	274	genes	were	regarded	as	IRGs.	The	results	of	GO	and	
KEGG analyses indicated that these IRGs were closely related to T- 
cell activation, regulation of lymphocyte activation, positive regula-
tion of leukocyte activation, regulation of T- cell activation, and other 
effects (Figure 2E,F).

F I G U R E  1 Construction	and	validation	of	immune	clusters	in	ccRCC.	(A)	Differences	in	29	immune-	related	cells	and	types,	tumor	purity,	
ESTIMATE	score,	immune	score,	and	stromal	score	between	Cluster	1	(L_Immunity)	and	Cluster	2	(H_Immunity).	(B)	Violin	plots	showing	the	
differences	in	stromal	score,	immune	score,	ESTIMATE	score,	and	tumor	purity	between	H_Immunity	and	L_Immunity.	(C)	Survival	analysis	
between	H_Immunity	and	L_Immunity.	(D)	GSVA	enrichment	analysis	revealed	the	different	activated	biological	pathways.	***p < 0.001
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3.3  |  Establishment and validation of a risk model

To test whether the IRGs had a potential relationship with the prog-
nosis of ccRCC, univariate Cox regression analysis was carried out and 
142	genes	 screened	out	 from	274	 IRGs	were	 closely	 related	 to	OS	
in	TCGA-	KIRC.	Meanwhile,	242	significantly	differentially	expressed	
IRGs	between	539	ccRCC	(T)	and	72	normal	kidney	specimens	(N)	from	

TCGA-	KIRC	were	 identified	 according	 to	 |logFC|	> 0 and p < 0.05. 
Then, 119 intersecting genes were extracted (Figure 3A). Eleven genes 
screened	by	LASSO	Cox	regression	analysis	were	further	applied	for	
multivariate Cox regression analysis (Figure 3B,C). Finally, a risk model 
was constructed based on six genes to assess its value in predicting 
the	 prognosis	 of	 ccRCC	 patients.	 According	 to	 the	 univariate	 and	
multivariate Cox regression analyses, all six genes in the risk model 

F I G U R E  2 Identification	of	immune-	related	genes.	(A)	Volcano	plot	showing	that	478	upregulated	genes	(red)	and	62	downregulated	
genes	(blue)	between	L_Immunity	and	H_Immunity.	(B)	Heatmap	showing	the	expression	levels	of	the	top	20	upregulated	and	
downregulated genes. (C) The scale- free fit index (left) and the mean connectivity (right). (D) Heatmap of the relationships between the state 
of immune and model eigengenes. (E) The results of gene ontology analysis. (F) The top 15 most significant KEGG pathways
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were found to be closely related to OS (Figure 3D,E). The risk score 
was estimated based on the coefficient and expression value of six 
genes: Risk score =	(0.403	*	expression	of	CSF1)	+	(−0.291	*	expres-
sion of CD5L) +	(0.235	*	expression	of	AIM2)	+	(−0.341	*	expression	
of TIMP3) +	(−0.188	*	expression	of	IRF6)	+	(−0.206	*	expression	of	
HHLA2).	The	samples	were	separated	into	low-		and	high-	risk	groups	
according	to	the	median	risk	score.	Then,	PCA	and	t- SNE analysis were 
performed, and the results showed that the six- gene signature had 
good performance in clustering (Figure 3F,G).

The distribution of the risk score and survival status of the six 
genes between the risk groups are shown in Figure 4A,B. Clearly, the 
high- risk group contained more death samples. The OS of patients 
in the high- risk group was significantly lower than that of patients 
in the low- risk group (p < 0.001) (Figure 4C). In addition, the areas 

under	curve	 (AUC)	values	 for	evaluating	 the	predictive	accuracy	of	
the	risk	signature	were	0.754,	0.715,	and	0.739	at	1,	3,	and	5	years,	re-
spectively (Figure 4D). Finally, other predictive models from different 
studies were used to prove whether our risk model had an advantage. 
The results indicated that our constructed risk model had the highest 
AUC	and	C-	index	(Figure 4E,F). In conclusion, the above results sug-
gested that the six- gene signature had good prediction ability.

3.4  |  Relationships between the risk model and 
clinical characteristics

To investigate whether the risk model was an independent prognostic 
factor, the risk score, together with other clinical characteristics, such as 

F I G U R E  3 Construction	of	the	immune-	related	gene	prognostic	signature.	(A)	Venn	diagram	for	intersect	IRGs	genes.	(B)	LASSO	penalty	
coefficients. (C) The optimal values of the penalty parameter. Univariate (D) and multivariate (E) Cox regression analyses of the 6 genes in 
the	risk	model.	(F)	PCA	analysis	for	the	risk	model.	(G)	t-	SNE	analysis	for	the	risk	model
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age, gender, grade, stage, T, N, and M were included to conduct univari-
ate and multivariate Cox regression analyses. The results showed that the 
risk score was an independent factor that could be utilized to predict the 
prognosis of ccRCC patients (Figure 5A,B). The clinical heatmap showed 
that grade, stage, T, and M were closely associated with the risk by the 
chi- square test (Figure 5C). The scatter diagrams also demonstrated that 
grade, stage, T, and M had higher risk scores by the Wilcoxon signed- 
rank test (Figure 5D– G). Then, the OS stratified by the clinical subgroups 

between the two risk groups implied that there were significant differ-
ences among the clinical subgroups except stage I- II and N1 (Figure 6).

3.5  |  GSEA analysis

To illustrate the underlying mechanism of the survival difference 
between	 the	 two	 risk	 groups,	 GSEA	 was	 applied.	 The	 results	 of	

F I G U R E  4 Prognostic	prediction	of	the	risk	model.	Distribution	of	risk	score	(A)	and	survival	status	(B).	(C)	Patients	in	the	high-	risk	
group	experienced	shorter	overall	survival	by	the	log-	rank	test.	(D)	The	AUC	values	of	the	1-	,	3-	,	and	5-	year	ROC	curves	of	the	risk	model.	
Comparison of the risk model with other prognostic models by ROC (E) and C- index (F)
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GO analysis showed that there was high enrichment of pathways 
in	 the	 high-	risk	 group,	 such	 as	 “activation	 of	 immune	 response,”	
“immune	 response	 regulating	 signaling	 pathway,”	 “leukocyte	 mi-
gration,”	 “regulation	 of	 lymphocyte	 activation,”	 and	 “T-	cell	 activa-
tion”	 (Figure 7A,B). Moreover, the KEGG results showed that the 
“chemokine	 signaling	 pathway,”	 “cytokine-	cytokine	 receptor	 inter-
action,”	 “p53	 signaling	pathway,”	 “primary	 immunodeficiency,”	 and	
“Toll-	like	receptor	signaling	pathway”	pathways	were	enriched	in	the	
high- risk group (Figure 7C,D).

3.6  |  Relationship between tumor- infiltrating 
immune cells and the risk model

To test whether this established model could predict the tumor im-
mune	 microenvironment,	 the	 results	 of	 the	 ESTIMATE	 algorithm	
showed	that	the	stromal	score,	immune	score,	and	ESTIMATE	score	
in the high- risk group were higher than those in the low- risk group, 
while tumor purity had the opposite results (Figure 8A–	D). Then, dif-
ferent methods were used to investigate the infiltration of immune 
cells in KIRC. The risk scores had a positive correlation with NK T 
cells, regulatory T cells (Tregs) and T follicular helper cells but a nega-
tive correlation with neutrophils (Figure 8E). The Wilcoxon signed- 
rank test showed that the high- risk group was characterized by the 
significant upregulation of NK T cells, regulatory T cells (Tregs) and T 
follicular helper cells, while the neutrophils had the opposite expres-
sion (Figure 8F– I). In accordance with the Treg infiltration, FOXP3 
(marker for Tregs) was more highly expressed in the high- risk group 

than in the low- risk group (Figure 8G). These data indicated that the 
patients in the high- risk group presented an immunosuppressive 
phenotype.

To confirm the immunosuppressive phenotype, common im-
mune checkpoints and chemokines were further evaluated. The 
correlation analysis found that the risk scores had positive rela-
tionships	with	PD-	1,	CTLA-	4,	LAG-	3,	and	TIGIT,	and	negative	rela-
tionships	with	PD-	L1	and	HAVCR2	(Figure 8K). The histogram also 
indicated	that	the	expression	levels	of	PD-	1,	CTLA-	4,	LAG-	3,	and	
TIGIT in the high- risk group were significantly higher than those 
in the low- risk group (Figure 8L). However, PD- L1 in the high- risk 
group had the opposite expression trend. Chemokines (TGF- β, 
IL- 4, and IL- 10) involved in the immunosuppressive process were 
also significantly upregulated in the high- risk group except TGF- β2 
(Figure 8M).33– 35

3.7  |  The risk model was a predictive biomarker for 
clinical response to ICIs and targeted therapy

Immune and targeted drugs have become important regimens for 
the treatment of advanced kidney cancer. To investigate the pre-
dictive effect of the risk model for ICIs, the TIDE method was 
applied to validate the response to ICIs based on the risk model. 
Patients in high- risk group had higher TIDE scores than those in 
the low- risk group (p < 0.001, Figure 9A). Moreover, there was a 
significantly positive correlation with the TIDE score (r = 0.298, 
p < 0.001, Figure 9B). Furthermore, 56 kidney cancer patients 

F I G U R E  5 Assessment	of	the	independent	prognostic	value.	Univariate	(A)	and	multivariate	(B)	Cox	regression	analyses	of	the	risk	score	
and clinical characteristics. (C) Distribution landscape of clinical characteristics and the expression profiles of 6 genes between the high-  and 
low-	risk	groups.	Discrepancies	in	risk	scores	by	grade	(D),	stage	(E),	T	stage	(F),	and	M	stage	(G).	***p <	0.001,	**p < 0.01
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with response information in the IMvigor210 cohort were en-
rolled to verify the value of the risk model in predicting the re-
sponse to the PD- L1 inhibitor atezolizumab. The risk scores in 
patients with a complete response (CR) were significantly lower 
than those in patients with progressive disease (PD) and sta-
ble disease (SD) responses (p < 0.05, Figure 9C). Patients in the 
low- risk group had significant clinical benefits and observably 
prolonged survival compared with those in the high- risk group 
(p = 0.024, Figure 9D). In addition to ICIs therapy, the relationship 
between the risk model and the sensitivity to targeted drugs for 
ccRCC were further analyzed. The half inhibitory concentrations 
(IC50s) of antitumor drugs such as axitinib (p = 0.026, Figure 9E), 
sunitinib (p < 0.001, Figure 9F), sorafenib (p = 0.028, Figure 9G), 
and temsirolimus (p < 0.001, Figure 9H) were lower in the high- 
risk group. These results demonstrated that the risk model could 
predict the clinical response to ICIs and targeted drug treatment 
in ccRCC patients.

4  |  DISCUSSION

CcRCC has been considered an immunotherapy- responsive 
tumor.36	More	recently,	ICIs	targeting	PD-	1/PD-	L1	or	CTLA-	4	have	
shown good clinical results among some ccRCC patients.37 There 
is no effective biomarker to predict the response to ICIs in ccRCC. 
Therefore, it is urgent to identify a reliable biomarker to help doc-
tors select patients who can benefit from ICI therapy. The tumor 
microenvironment greatly contributes to disease biology and the 
response to antitumor drugs.38,39 The immune- inhibitor cells in 
the TME, such as regulatory T cells and myeloid- derived suppres-
sor cells, have an important role in antitumor therapy and immune 
escape and have become therapeutic targets for improving the ef-
ficacy of immunotherapy.37,40 Thus, we focused on the infiltration 
of	 immune	cells	 in	 the	TME	to	construct	an	mRNA-	signature	 for	
predicting the prognosis and efficacy of ICIs and targeted drugs 
in ccRCC patients.

F I G U R E  6 Survival	analysis	stratified	by	the	clinical	subgroups
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In	this	study,	TCGA-	KIRC	and	GSE29609	mRNA	expression	data	
were merged after correcting the batch effects. Then, these samples 
were divided into two clusters according to 29 immune cell types 
and immune function by an unsupervised hierarchical clustering al-
gorithm.	The	ESTIMATE	algorithm	and	GSVA	confirmed	the	feasibil-
ity of immune clustering. We further screened out immune- related 
genes	by	WGCNA	and	built	an	immune-	related	prognostic	signature	
in ccRCC. ROC analysis indicated that the model was superior to 
common clinical characteristics and other predictive models in the 
prognostic	prediction	of	ccRCC.	Based	on	the	above	results,	we	con-
sider that this signature has good capability for prognosis prediction 
in ccRCC. Subsequently, the underlying molecular mechanism of 
the	risk	model	was	researched.	GO	analysis	by	GSEA	showed	that	
there was high enrichment of pathways in the high- risk group such 
as	 “activation	 of	 immune	 response,”	 “immune	 response	 regulating	
signaling	pathway,”	“leukocyte	migration,”	“regulation	of	lymphocyte	
activation,”	and	“T-	cell	activation.”	Moreover,	KEGG	results	showed	
that	 “chemokine	 signaling	 pathway”,	 “cytokine-	cytokine	 receptor	
interaction”,	 “p53	signaling	pathway”,	 “primary	 immunodeficiency”,	
and	 “Toll-	like	 receptor	 signaling	 pathway”	 were	 enriched	 in	 the	

high- risk group. Therefore, immune- related genes may participate 
in the progression and sensitivity to drugs of ccRCC by the above 
immune- related pathways.

According	 to	 published	 studies,	 all	 six	 genes	 in	 the	 prognos-
tic signature are related to immunity. CSF- 1 (colony- stimulating 
factor- 1) is disproportionate in different cancers including breast, 
cervical, endometrial, and kidney cancers.41 CSF1- secreting ma-
lignant T cells can bind to CSF1R to induce the development and 
survival	of	TAMs,	promoting	tumor	survival	and	suppressing	host	
antitumor immunity.42,43 CD5L (CD5 molecule- like) is a secreted 
glycoprotein that participates in cancer, promotes proliferation 
and inhibits cisplatin- induced apoptosis in liver cancer.44– 46	AIM2	
(absent in melanoma 2) is a cytosolic innate immune receptor that 
has significant roles in natural immunity and inflammation by de-
fending against exogenous and endogenous pathogens.47 Tissue 
inhibitor of metalloproteinase- 3 (TIMP3), an inhibitor of the ma-
trix metalloproteinases (MMPs), plays a key role in regulating 
inflammation after injury and anticancer activity by silencing var-
ious metalloproteinases.48 TIMP- 3 can also induce macrophages 
to differentiate into proinflammatory (M1) cells.49 Moreover, the 

F I G U R E  7 Gene	set	enrichment	analyses	between	the	high-		and	low-	risk	groups.	GO	enrichment	analyses	in	the	high-	risk	group	(A)	and	
the	low-	risk	group	(B).	KEGG	pathway	analyses	in	the	high-	risk	group	(C)	and	the	low-	risk	group	(D)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29609


    |  11 of 14ZHOU et al.

loss of TIMP- 3 leads to spontaneous expansion of liver CD4+ T 
and NKT cells.50 IRF6 (interferon regulatory factor 6) plays key 
roles in cell differentiation, regulation of immune cell development 
and immune responses in tumors.51,52 HERV- H LTR- associating 2 
(HHLA2),	a	member	of	the	B7	family	of	immunoregulatory	ligands,	
can mediate costimulation by interacting with transmembrane and 
immunoglobulin domain containing 2 (TMIGD2).53 The expression 

of	HHLA2	and	PD-	L1	is	associated	with	the	number	of	CD8(+) and 
CD4(+) infiltrating lymphocytes (TILs) and the poor prognosis of 
ccRCC patients.54	Blockade	of	both	PD-	1	and	HHLA2	in	patients	
with ccRCC may be a more effective way to reverse tumor immune 
evasion. These results illustrate that these immune- related genes 
exert their function in tumor immunology and may be new immu-
notherapy targets in future studies.

F I G U R E  8 Relationship	between	the	risk	model	and	immunity.	Differences	in	ESTIMATE	score	(A),	immune	score	(B),	stromal	score	
(C) and tumor purity (D) between the high-  and low- risk groups. (E) Evaluation of the immunoinfiltrating cells by different algorithms. The 
number of NK T cells (F), Tregs (G) and T- follicular helper cells (H) were higher in the high- risk group. (I) The number of neutrophil cells were 
lower in the high- risk group. (J) FOXP3 expression in the high-  and low- risk groups. (K) Correlation between the risk score and common 
immune checkpoints. (L) Expression levels of the common immune checkpoints between the high-  and low- risk groups. (M) Expression of the 
chemokines	between	the	high-		and	low-	risk	groups.	***p <	0.001,	**p < 0.01
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Furthermore, we used different algorithms to reveal the relation-
ship between the risk model and immune cells in the TME. The patients 
in the high- risk group manifested an immunosuppressive phenotype 
due to a higher cell abundance of infiltrating regulatory T cells (Tregs), 
which are immunosuppressive cells characterized by the expression of 
FOXP3.55 Tregs can suppress immune activation by secreting immune- 
suppressive cytokines (IL- 10, IL- 35, and TGF- β) or expressing coinhib-
itory	molecules	such	as	CTLA-	4,	PD-	1,	LAG-	3,	and	TIGIT.56– 58 In our 
study, Tregs had high expression in the high- risk group. Meanwhile, 
cytokines (IL- 4, IL- 10, IL- 13, TGF- β1, and TGF- β3) and checkpoints 
(CTLA-	4,	 PD-	1,	 LAG-	3,	 and	TIGIT)	 involved	 in	 immune	 suppression	
were highly expressed in the high- risk group, which was attributed to 
the infiltration of Tregs. These results imply that our risk signature has 
the potential to predict infiltrating immune cells in ccRCC, which might 
be beneficial for the immunotherapy. We further studied the relation-
ship between the risk model and the response to immunotherapy by 
the TIDE algorithm, which has been used to predict the therapeutic 
response to ICIs.30 Notably, the TIDE score in the high- risk group was 
higher than that in the low- risk group, which indicated an undesir-
able response to immunotherapy due to more T- cell dysfunction or 
more exclusion of T- cell infiltration. Furthermore, the analysis based 
on the IMvigor210 cohort also demonstrates that patients with low- 
risk	scores	have	a	better	response	to	ICIs.	Additionally,	the	inhibitory	
concentration (IC50) values of axitinib, sunitinib, sorafenib, and tem-
sirolimus were lower in the high- risk group than in the low- risk group, 
which signified that the patients in the high- risk group were more 
sensitive to these drugs. Collectively, the risk model could contribute 
to the prediction of ccRCC patients’ response to immunotherapy and 
targeted drugs.

Some limitations are presented in the study. First, there are no 
external data to validate the predictive ability of the risk model. 
Second, clinical and laboratory studies are needed to confirm the 
value of the risk model in clinical applications.

In summary, we constructed a risk signature based on the six 
immune- related genes that could act as an independent prognostic 
factor and had a reliable predictive value in the immunotherapy re-
sponse and targeted drug sensitivity of ccRCC patients.
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