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Abstract: With its increasing incidence, cancer has become one of the main causes of worldwide
mortality. In this work, we mainly propose a novel attention-based neural network model named
Gated Graph ATtention network (GGAT) for cancer prediction, where a gating mechanism (GM)
is introduced to work with the attention mechanism (AM), to break through the previous work’s
limitation of 1-hop neighbourhood reasoning. In this way, our GGAT is capable of fully mining the
potential correlation between related samples, helping for improving the cancer prediction accuracy.
Additionally, to simplify the datasets, we propose a hybrid feature selection algorithm to strictly
select gene features, which significantly reduces training time without affecting prediction accuracy.
To the best of our knowledge, our proposed GGAT achieves the state-of-the-art results in cancer
prediction task on LIHC, LUAD, KIRC compared to other traditional machine learning methods and
neural network models, and improves the accuracy by 1% to 2% on Cora dataset, compared to the
state-of-the-art graph neural network methods.

Keywords: attention mechanism; gating mechanism; graph convolutional network; TCGA; can-
cer prediction

1. Introduction

The incidence of cancer has increased year by year. According to the World Health
Organization (WHO)’s latest report Global Cancer Statistics 2018 [1], there were 18.1 mil-
lion new cancer cases (9.5 million men and 8.6 million women), and 9.6 million deaths
(5.4 million men and 4.2 million women) in the year of 2018, further aggravating the global
economic and medical burdens [2]. In addition, the WHO also pointed out that one third
of cancer cases are completely preventable [3]. Therefore, early accurate cancer prediction
and evaluation in high-risk groups (people aged 50–60, overeating, smoking, etc.) is very
important to reduce cancer-related pain and mortality. It is widely known that early detec-
tion can minimize the risk of cancer cell proliferation and ensure appropriate treatment at
the beginning of cancer, which can also greatly reduce the social medical costs and family
economic burden.

The earliest cancer prediction is based on gene sequencing technology, such as Sanger
sequencing technology and high-throughput sequencing technology, which is used for gene
detection in the molecular level. This technology uses some physical testing instruments
(like amplification instrument, sampling instrument, thermostatic equipment for chip
hybridization, scanner for reading chip results) for gene localization, to detect and discover
specific gene mutations related to diseases using DNA hybridization and other principles.
However, the cost of using the testing instruments is high, the operation is complicated,
and the degree of automation is low, which may not meet the needs of large-scale gene
sequencing [4].

The data driven methods (like machine learning methods and deep learning methods)
omits the complex machine operation steps, and carries out the gene related tasks through
the algorithms by training the models on the datasets, which is simple, efficient, accurate,
and automatic.
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Some traditional machine learning methods, such as Naive Bayes (NB), K-nearest
Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM), Random Forest
(RF), etc., have also achieved good results in cancer prediction [5–19]. But these methods
usually lack the correlation analysis between each sample, which fails to extract practical
features and may lead to large calculations (We notice that batching calculations is a
widely-used approach to reduce the amount of calculation. Many implementations utilise
random sampling to create batches, which narrow the samples down to a smaller range
in training. However, we have to admit that: (1) batching does not make much sense
unless the training samples are large in size; and (2) batching destroys the corelations, or
relations, between samples, which are vital to our method proposed in this article) [20],
that is, they treat all features as a whole without any selection, which is inefficient. It is
possible that these methods may achieve lower accuracy in predicting newly-discovered
disease than it has performed in traditional datasets, because the underlying information
is not mined thoroughly. In recent years, deep learning methods achieve higher notice
in cancer prediction based on the strong feature learning ability of the neural networks,
which may achieve high accuracy in cancer prediction as well as other fields [21–31].

Machine learning methods are in general employed to deal with two kinds of data:
Euclidean and non-Euclidean structured data. Recently, the study of deep learning meth-
ods on graph has made some achievements on non-Euclidean structured data. A Euclidean
dataset is sensibly modelled as being plotted in an n-dimensional linear space. For example,
image files are considered a typical sub-class of Euclidean data, where the x and y coordi-
nates refer to the location of each pixel and the z coordinate signifies its colour/intensity.
On the contrary, a non-Euclidean dataset is not constructed regularly and usually in graph-
structured shapes, which is not suitable to be represented in an n-dimensional linear space.
Social networks, for instance, are typically modelled by directed graphs, which are con-
sidered to be non-Euclidean examples. The non-Euclidean nature of such data implies
that there are no such familiar properties as global parameterisation, common system of
coordinates, vector space structure, or shift-invariance. Consequently, basic operations like
convolution that are taken for granted in the Euclidean case are even not well defined on
non-Euclidean domains [32].

While solutions on Euclidean data are always research topics throughout the his-
tory of machine learning, the study of deep learning methods on graph has made some
achievements on non-Euclidean structured data in recent years. Thomas N. Kipf et al.
proposed Graph Convolutional Network (GCN) [33], which is firstly used to train graph data
for many tasks. However, GCN considers all 1-hop neighbours of the central nodes equally
important, basing on the assumption that connected nodes have similar characteristics.
It is unreasonable because it cannot mine the accurate correlation between nodes (in a
graph-structured data, a node in graph indicates a sample) and the semantic informa-
tion under the graph. In order to solve this shortcoming of GCN, Petar Velickovic et al.
proposed Graph Attention Network (GAT) [34], which attaches different importance to the
1-hop neighbourhood of a central node. We discovered that GAT is capable to distinguish
the correlation between nodes well and better extract and propagate features, with the
assistance of its attention mechanism (AM). However, GAT only focuses on the 1-hop
neighbourhood (that is, the adjacent neighbours) of the central nodes, which drops a big
amout of node information in the distance. In the later experiments in our paper, we
construct graphs using cancer datasets, and then they are fed into the model for training
to obtain cancer prediction. We extended and improved the AMs of GAT by introducing
the gating mechanism (GM) similar to Gated Recursive Unit (GRU) proposed in [35], and
proposed the Gated Graph ATention network (GGAT) for cancer prediction. Theoretically, the
GGAT is capable to aggregate node information in a multi-hop neighbourhood (that is, the
neighbours within multi-step scale) of the central nodes.

One of the benefits of AMs is that they allow variable size input to be processed,
focusing on the most relevant part of the input to make decisions. The idea is to calculate
the hidden representation of each node in the graph by following a self-focusing strategy
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and caring for its neighbours [34]. It solves several problems in the previous methods of
modeling graphical structure data with neural networks, and has the following advantages:

• It is highly efficient. Being aware the fact that the algorithm is based on the two
matrices (feature matrix and adjacency matrix) of the graph, the operation of the
self-attention may be parallelised across all edges, and the computation of output
features can be parallelised across all nodes. There is no need for eigen decomposition
or dense matrix calculation.

• It allows input graphs with different structures, so that the model can learn auto-
matically without considering the graph structure.

• It uses node features for similarity calculations, rather than the structural properties
of nodes, in which no need for a prior understanding of the graphical structure.

In our work, we first obtained and processed three cancer datasets LIHC (liver cancer),
LUAD (lung adenocarcinoma) and KIRC (renal clear cell carcinoma) from The Cancer
Genome Atlas (TCGA) (The Cancer Genome Atlas (TCGA), a landmark cancer genomics
program, molecularly characterized over 20,000 primary cancer and matched normal
samples spanning 33 cancer types. This joint effort between the National Cancer Institute
and the National Human Genome Research Institute began in 2006, bringing together
researchers from diverse disciplines and multiple institutions.) for cancer prediction.
Then we used our proposed Hybrid Feature Selection algorithm (HFS) to select cancer
genes strictly, so as to adapt the characteristics of high latitude and small sample of gene
expression profile. Finally, we constructed three graphs using these three datasets, which
are fed into the GGAT model proposed by us for training to obtain the cancer prediction. In
order to better obtain the correlation between nodes and capture the semantic information
under the graph structure, we introduced two kinds of AMs in our GGAT model. One is
used to measure the importance between the central nodes and their 1-hop neighbourhood
(namely the layer-in AM), which is similar to the AMs proposed by GAT in [34], calculating
the similarity between two nodes; the other is used to measure the importance of nodes
in the multi-hop neighbourhood of the central nodes (namely the layer-out AM). Here,
the GM is introduced to realise the layer-out AM, which retains and forgets the nodes
information in the path selectively. Under the combination of the both AMs, our GGAT
model is able to aggregate the information of remote nodes, fully exploiting the potential
correlation and semantic information among samples. In addition, our GGAT model can
be easily applied to all cancer datasets from TCGA and most other graphs. The main
contributions of our work are as follows:

1. We propose a hybrid feature selection algorithm to select the gene features, so as to
reduce noise and ensure the effectiveness of genes datasets.

2. We propose a novel GGAT for cancer prediction, which can fully mine the semantic
information of graph structure (the relevance between samples). According to our
knowledge, we are the first to apply GM to graph attentional network.

3. Compared with some of the traditional algorithms and some latest neural network
models, our model gains the best accuracy on the experiment datasets. And through
the comparative analysis of various experiments, the validity and interpretability of
our model are verified.

2. Related Work
2.1. Machine Learning Methods for Cancer Prediction

Machine learning methods can effectively find relevant patterns in a large number
of patient data for cancer analysis and prediction, better considering and combining
various factors of cancer data. As is proposed by [36], machine learning methods have
been utilised to predict benign ovarian tumors (BOT) and ovarian cancer (OC). Minimum
Redundancy Maximum Relevance (MRMR) feature selection method was first used by
them to select eight salient features from 235 patients’ data (89 BOT and 146 OC); two of
them were identified as the top features by the two-level decision tree: human epididymis
protein 4 (HE4) and carcinoembryonic antigen (CEA). Although this is a simple model
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and only uses two biomarkers, it achieves better classification performance than ovarian
malignancy algorithm (ROMA) and logistic regression model. Furthermore, Ref. [37] used
machine learning methods to predict cervical cancer. Because of the imbalance of cervical
cancer data, it first used three kinds of balancing techniques (ROS, RUS, and SMOTE)
to make the data balanced before feeding the data into the model; then it compared the
prediction performance of three machine learning methods: k-nearest neighbor, support
vector machine, and random forest tree, the results have shown that the random forest
tree is the best one. In addition, Ref. [38] constructed a breast cancer prediction learning
algorithm based on principal component analysis (PCA) integrating multilayer perceptron
network (MLP) and support vector machine (SVM), where PCA is used to reduce the
dimension of data and extract the valuable part of data. Then, MLP is used to extract
the features contained in the data. In the process of training and learning, the model can
separate the representative attributes and numbers automatically, and then use the transfer
learning technology of SVM to take the feature data as the classifier.

There are also works showing that the machine learning methods also help doctors
provide more accurate prognosis and personalized treatment so as to reduce the cost of each
patient. As is proposed by [39], it used Multi-Layer Perceptron (MLP) to predict cancer,
with valuable information given as clinical notes included in patient records. It presented an
approach to obtain information from clinical notes, based on natural language processing
techniques and paragraph vectors algorithms, which is defined as information extraction.
By introducing additional information, Ref. [39] obtained better prediction results.

To conclude, the process of traditional machine learning algorithms for cancer pre-
diction is generally divided into two steps: features selection and traditional algorithms
selection. Although the features are filtered, these algorithms are generally difficult to
mine the semantic information under the graph, to obtain useful information under the
connections of logical nodes and to get better prediction results.

2.2. Deep Learning Methods for Cancer Prediction

Most machine learning methods cannot fully mine the potential correlation between
samples, with less pattern recognition and large amount of calculation. Noticeably, deep
learning methods have been developed rapidly, and are also employed in the field of
cancer prediction.

Deep learning methods are generally composed of multiple layers. They are widely
employed to process large-scaled natural data [20] based on their ability to identify data
from different categories. As is described in [40], it proposed a multi-modal neural network
integrating Graph Convolutional Networks (GCN) and Deep Neural Network (DNN) to
train multi-modal data (including gene expression profile, CNA, DNA methylation and
clinical data) for predicting colorectal cancer and its prognosis. In their work, GCN was
applied to multi-modal data to predict whether an individual has cancer or not, where
the weight of each gene can be scored to select the most effective gene features. These
gene features were then fed into DNN separately to intergrate multidimensional data and
then to predict the prognosis of human calorectal cancer. It can reduce the dimensions
of datasets and consider the heterogeneity of different types of data. The authors of [41]
studied the grading of colorectal cancer histology images. It proposed a representative
nuclei sampling strategy for transforming an image to a cell graphs can be fed into the
GCN, where the nuclei were treated as the nodes and the potential cellular interactions
as relations (edges) of the graph. To acquire accurate node features, it applied a nuclear
segmentation network and extract appearance features based on the segmented foreground
instances. As is shown in [42], GCN-based model has been utilised to combine several
heterogeneous omics data types with a graph representation of the data and learn abstract
features from both data types, including gene mutation rates, gene DNA methylation, gene
expression. The results showed that GCNs are highly suitable to handle multi-dimensional
omics data sets and gene-gene interaction networks for cancer prediction. In addition,
their model was combined with feature interpretation techniques such as Layer-wise
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Relevance Propagation method (LRP) to gain meaningful mechanistic insights into how
a gene contributes to a specific cancer type. In addition, Ref. [43] also fused of multiple
genomic data for cancer prediction, including genetic expression, copy number alteration,
DNA methylation and exon expression. It first proposed a similar network fusion algorithm
(SNF) to integrate multiple genomic data and clinical data to generate sample similarity
matrix. Min-redundancy and max-relevance algorithm (MRMR) were then used to select
features to generate sample feature matrix. Finally, the two matrixes were fed into GCN for
semi-supervised training to predict cancer. Moreover, Ref. [44] used graph convolutional
neural network (GCNN) to predict cancer types and identify cancer specific markers. It
proposed four GCNN models for four graphs, namely the co-expression network, the
co-expression + singleton network, the PPI network, and the PPI + singleton network. The
models proposed successfully classified cancer samples and normal samples, suggesting
the markers identified are likely cancer specific without dependency on tissues.

At present, deep learning methods have achieved good results in various fields. How-
ever, we discovered that these methods generally only focus on the 1-hop neighbourhood
of the central nodes. In addition, many deep learning methods suffer from the problem of
gradient vanishing, which means that the gradient of the front layer is smaller than that
of the back layer. What is worse, the gradient vanishing problem may cause training to
slow down or even stop, and the insufficient training will eventually lead to prediction
failure. To fix these flaws, we proposed GGAT model that focus on the multi-hop neigh-
bourhood by introducing the GM similar to GRU [35]. Moreover, by utilising the GM, our
model is capable to alleviate the problem of gradient disappearance, by always producing
disturbance to allow the training to continue.

3. Method
3.1. Data Collection and Preprocessing

We used three datasets LIHC (liver cancer), LUAD (lung adenocarcinoma), KIRC
(renal clear cell carcinoma) from TCGA and the combination of these three datasets (named
Cancer_all) for our experiments.

The values in these datasets are manually collected, which may result in invalid data
being recorded. For instance, while the hospital staffs were collecting medical data of cancer
patients, some attributes (such as blood type, white blood cell count, red blood cell count,
etc.) may be missing due to their omission or negligence, leading to passively supplement
the value of 0s in the datasets. Such patient data rows are considered man-made ‘garbage’
which are utterly useless and are completely not descriptive, leading to potential damage
of the further experimental results. In fact, these invalid values may have potential, but not
always inevitable, influence upon the results of further experiments. To reduce the damage
of experimental results to the minimum and ensure the effectiveness and authenticity of our
experiments, we employed ‘data cleaning’ techniques to be the process of preparing data
for analysis by removing or modifying data rows that are incorrect, incomplete, irrelevant,
duplicated, or improperly formatted. Specifically, we processed and normalised the data
by deleting the rows with the mean value of 0 in the samples, to make the datasets more
suitable to our work.

3.1.1. Feature Selection

To achieve a higher accuracy on cancer prediction tasks, the feature selection procedure
is then performed through our Hybrid Feature Selection (HFS) algorithm, which divides
the feature selection process into two steps:

(1) Primary feature selection stage. In this stage, we filtered irrelevant genes through
data difference analysis with fold-change and p-value. We utilised edgeR, a software for
gene difference analysis, as an assistant. There are two most important steps of edgeR: (1)
calculate the difference multiple list (DML); and (2) select the differentially expressed genes
by using the edgeR package functions.

The calculated DML includes-
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• logFC—Fold Change after log2 transformation. Fold Change, or FC, is the multiple of
expression difference between samples;

• logCPM—CPM after log2 transformation. CPM value is used to filter low expres-
sion genes;

• LR—likelihood ratio statistics;
• PValue—p-value of difference significance; and
• FDR—the p-value corrected by FDR.

After the DML calculation process, the differentially expressed genes can be selected
according to the calculated DML. The threshold for selection may be modified; in our
work, the genes with significant changes are defined as FC (Fold Change) ≥ 2.0 and PValue
(p-value) < 0.05.

We appoint the genes with significant changes as the genes selected by the primary
feature selection stage.

(2) Exact feature selection stage. In this stage, we used recursive feature elimination
(RFE) [45] algorithm to filter redundant genes by tenfold cross validation. The RFE algo-
rithm is also capable for generating a ranking of the genes, by repeatedly perform the two
steps: (1) build the model to select the best (or worst) features according to its configuration;
(2) put the selected features aside, and repeat the same process on the remaining features
until all the features are traversed. In the end, the order that the features being eliminated
in the repeating processes is output as the rank of features. We select the top N best features
according to the output rankings, where N is a parameter being trained during the process
of the RFE algorithm.

We performed the aforementioned 2 steps, and there are 14 features from KIRC,
21 features from LIHC, 16 features from LUAD and 75 features from Cancer_all selected
by the algorithm. Due to the small number of normal samples, we carried out sample
equalization operation by oversampling. The data collection and analysis were performed
using the Sangerbox tools, a free online platform for data analysis.

In general, the feature selection algorithms proposed in this section may work as
an assistant of any machine learning methods. Experiments in Section 4.3.1 have shown
that our feature selection algorithms resulted in significant performance in reducing the
training time of algorithms, without noticeably affecting their accuracy.

3.1.2. Graph Construction

In order to build the input graph of the model, we constructed the feature matrix and
adjacency matrix of each dataset right after the feature selection procedure. The feature
matrix is composed of 3 parts: the sample ID column, selected genes (features) columns,
and the label column (suffered from the disease or not). Each row in the feature matrix
indicates the experimental fact of an individual participant (a sample) of the dataset.

An adjacency matrix is the connection representation of a graph, which can be in-
dicated by A ∈ RN×N where N is the number of nodes of a graph. In this work, we
constructed the graph where a certain node indicates a certain participant. The value in
the ith row and the jth column of matrix A, i.e., aij, equals to 1 if the node (participant) i
is connected to j , or aij = 0 if otherwise. In this work, we choose the Euclidean distance
(Any method for similarity measurement can be used as measure of connectivity, such as
Euclidean Distance, Manhattan Distance, Chebyshev Distance, Minkowski Distance, Maha-
lanobis Distance, Cosine, Hamming distance, Jaccard similarity coefficient, etc. We chose a
method which achieved the best experimental results.) as a measure of the connectivity of
nodes—we assume a two nodes is connected if their Euclidean distance value is less than a
certain threshold value. The threshold value is a hyperparameter in this work, which we
set as the average value of Euclidean distance between all nodes. Moreover, it can also be
treated as a tuning parameter in the model for training to obtain a more reasonable and
effective threshold through machine learning methods, which is left for our future work.
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3.2. Gated Graph Attention Network (GGAT)

In Section 3.1.2, we construct graphs to represent the networks of samples (partici-
pants) in certain cancer investigations. In order to mine the underlying semantic informa-
tion of this graph-structured data, we propose GGAT. Similar to what is done in [34], GGAT
learns to lie different importance of nodes in every node’s neighbourhood. In addition, we
introduce a GM to capture the importance of the remote nodes relative to the central node,
along with the AM.

In the Graph Theory, a graph may be denoted by G = (E, A), where E represents
the set of entities (nodes) and A is the adjacency matrix (as defined in Section 3.1.2).
Specifically, The input of our model is a set of node features, that is, the feature matrix
e = {~e1,~e2, . . . ,~eN},~ei ∈ RF where N is the number of nodes, F is the number of features
of every node and ~ei is the feature vector of the entity i. The model produces a set of
transformed node features vectors e′ =

{
~e′1,~e′2, . . . ,~e′N

}
,~e′i ∈ RF′ where ~e′i is the output

embedding of the entity i.

3.2.1. 2 Kinds of AMs in GGAT

We introduce 2 kinds of AMs in GGAT in their calculation order:
(1) Layer-in Attention. This AM is based on that proposed in [34]. We call it the

‘layer-in attention’, because it learns to lie different importance of nodes in every node’s
direct neighbourhood during the aggregation process which happens in every single layer
of the model.

As to the layer-in AM of the (l + 1)-th GGAT layer (l ≥ 0), the Raw Attention Value of
two connected nodes i and j is defined as:

b(l+1)
ij = a

(
W~h(l)i , W~h(l)j

)
(1)

where~h(l)i and~h(l)j represent the input embeddings of nodes i and j respectively. Specifically,
the input embedding of each node is initialised by the initial features of the node if the layer
is the first layer of the whole model, viz. ~h(0)i = ~ei. W ∈ RF×F′ is a parametrized linear
transformation matrix that maps the F-dimension input feature vectors to F′-dimension
high-level vectors. a(·, ·) is the attentional mapping that maps two RF vectors into a scalar,
parametrized by a shared weight vector~a ∈ R2F′ . It acts as an ‘attentional enhancer’ in the
layer-in attention, that is, it determines the extent to which node i aggregates from node j
in a certain layer of the model.

In order to make comparison on the significance of different nodes, the Raw Attention
Value of two connected nodes i and j (b(l+1)

ij ) is then are normalised by Equation (2), to
obtain the Normalised Attention Value (αij):

α
(l+1)
ij = softmaxj

(
b(l+1)

ij

)
=

exp
(

b(l+1)
ij

)
∑k∈Ni

exp
(

b(l+1)
ik

) (2)

where Ni represents the set of node i’s direct neighbours, or nodes that have connection
with node i (including node i itself).

Then, we make use of the Normalised Attention Values (α(l+1)
ij s) to calculate the linear

combination of their corresponding neighbours’ features as the final output features of
each node. Specifically, for a certain node i, its Attention-ed Embedding is calculated by
Equation (3):

~m(l+1)
i = σ

(
∑

j∈Ni

α
(l+1)
ij W~h(l)j

)
(3)
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where σ(·) is a non-linearity function mapping each dimension of the aggregated node
representations to be in the range (0, 1); we use softmax as σ(·) in our work. W ∈ RF×F′ is
a shared weight matrix in linear transformation.

Additionally, we employ multi-head attention for stabling the learning process of
self-attention, similarly to [34,46]. Specifically, the transforms in Equations (1)–(3) are
calculated K times independently, and the resulting vectors are concatenated eventually.
Finally, the Multi-Head Attention-ed Embedding of a certain node i is described as:

~m(l+1)
i =

∥∥∥K

k=1
σ

(
∑

j∈Ni

α
k,(l+1)
ij Wk~h(l)i

)
(4)

where
∥∥∥ represents the concatenation operation of vectors, α

k,(l+1)
ij is the Normalized Atten-

tion Value of node i to j calculated by the k-th AM [Equation (2)], Wk is the corresponding
AM’s weight matrix of the input linear transformation. Being aware that concatenation
is no longer sensible in the output part, as described in [34], averaging is employed to
calculate the Multi-Head Attention-ed Embedding if the multi-head attention layer is the
endmost attention layer of a GGAT model [Equation (5)].

~m(l+1)
i = σ

(
1
K

K

∑
k=1

∑
j∈Ni

α
k,(l+1)
ij Wk~h(l)i

)
(5)

Despite the fact that the aforementioned techniques could successfully aggregate
information from adjacent neighbours selectively, we discovered that the layer-in attention
drops all structural information, and merely considers the 1-hop neighbourhood (i.e.,
adjacent neighbours) of each node, which means the information that sealed in remote
nodes is ignored. In an attempt to allow the nodes to aggregate information from wider
scopes, we extend the model with the subsequent layer-out attention technique.

(2) Layer-out Attention. We introduce a GM, similar to Gated Recurrent Unit (GRU)
proposed in [35], to capture and filter the importance of the remote nodes related to the
central node. This method allows the model to capture information from remote nodes
selectively, which plays an important part between layers. We named it the ‘layer-out
attention’ based on this distinguishing characteristic.

In semantic mining tasks of graph-structured data, for any node in the graph, the
information from remote neighbours is always important—they make an indispensible
contribution in classifying the central node. If the importance of these remote nodes can be
taken into account at the same time, the semantic information of the whole graph structure
may be digged out. Thus, for the purpose of extending the ‘field of vision’ of nodes in
layer-in attention, we try stacking multiple layer-in attention layers, and introduce our
layer-out attention layers in between.

In layer-out AM, information coming from remote nodes may either pass through
or be blocked by the gates. The gates of the layer-out AM, in particular, consists of three
individual gates, viz. the Update Gate, Reset Gate and Forget Gate. Initially, the input
embedding (~h(l)i ) and the (Multi-Head) Attention-ed Embedding (~m(l+1)

i ) of each specified
node are fed into the Update Gate and Reset Gate simultaneously, to calculate two Gated
Node Representations:

~z(l+1)
i = σ

(
Wz~m(l+1)

i + Uz~h(l)i

)
(6)

~r(l+1)
i = σ

(
Wr~m(l+1)

i + Ur~h(l)i

)
(7)

where~z(l+1)
i and~r(l+1)

i are node i’s Gated Node Representations of the Update Gate and
the Reset Gate respectively, Wz, Wr, Uz and Ur are weight parameter matrices to be
trained. The update gate is aimed at controlling information forgetting, and the reset gate
is employed in controlling information updating.
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The Gated Node Representations comming out from the Reset Gate of node i are then
applied to Equation (8) to obtain a New Information Vector:

~n(l+1)
i = tanh

(
Wn~m

(l+1)
i + Un

(
~r(l+1)

i �~h(l)i

))
(8)

where the operator� denotes the Hadamard Product of two vectors of the same dimension,
and Wn and Un are weight parameter matrices to be trained.

Finally, the input embedding, along with the New Information Vector of node i, are
fed into the Forget Gate (Equation (9)) to obtain the Gated Embedding of the node

~h(l+1)
i =

(
1−~z(l+1)

i

)
�~h(l)i +~z(l+1)

i �~n(l+1)
i (9)

where
(

1−~z(l+1)
i

)
� and ~z(l+1)

i � are working as selectors to choose information to be

forgotten and remembered respectively. ~h(l+1)
i is the Gated Output Embedding of node i,

which is the output feature vector of the (l + 1)-th GGAT layer with respect to node i.

3.2.2. Demonstration of the GGAT’s Operation

By stacking multiple layer-in AM and layer-out AM, the whole GGAT model is
capable of capturing multi-hop (remote) information of any nodes. We discovered that
our GGAT model achieved the best performance when stacking three GGAT layers, that
is, an initial GGAT layer without layer-out attention (gates), and two GGAT layers with
layer-out attention (gates). According to our model structure, we consider the information
aggregation process in a 3-hop neighbourhood throughout this study as is shown in
Figure 1.

In the initial layer (Figure 1a), only the layer-in attention is calculated because there is
no gates. It calculates the summation of the importance of all 1-hop neighbours (adjacent
nodes) of the central nodes. The input of the first layer is the feature vectors (d-dimension)
of the nodes (i.e., the columns of the feature matrix). After the forwarding propagation of
the initial GGAT layer, the output feature vector (k-dimension) of the node (~h(1)i ), calculated
by the layer-in AM, is obtained. This representation is then fed into the log-softmax
classifier to generate the classification vector (k-dimension), which is the output vector of
the first layer.

In the second layer (Figure 1b), the layer-in attention and the layer-out attention are
all calculated. The input of the second layer is~h(1)i (k-dimension) from the first layer. After
the forwarding propatation of the second GGAT layer, a new output feature vector of the
node (k-dimension), calculated by both the layer-in AM and the layer-out AM (shaped like
a filter in Figure 1), is obtained. The output feature vector (k-dimension) is then be fed into
the final log-softmax of this GGAT layer to generate the output vector (k-dimension) of this
layer, which is the output vector of the second layer, or the input of the third layer.

The operations in the third layer (Figure 1c) is the identical as the aforementioned
second layer. Here we take the knowledge graph in Figure 1 as an example to explain
our model.
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Figure 1. The GGAT Architecture (Shown in Single Head Attention). (a–c) are ordered according to the layer number,
i.e., (a–c) demostrate the information holding status within the first, second and third layer of the Gated Graph ATtention
network (GGAT) model, respectively. The labels nearing the coloured nodes indicate the sources of their accumulated
information in the current step. For instance, by the end of the second layer’s accumulation process (b), the green node

possesses information from~h(1)4 and~h(2)3 which was gathered from the blue node in the second (current) layer. Likewise, as

is shown in (c), the red node owns information from~h(1)3 ,~h(2)2 and~h(3)1 which was gathered from the orange node in the
third layer.

The node, coloured red and marked 0, is the central node. For clarity of presentation,
a special path that passes through a 1-hop neighbour, a 2-hop neighbour and a 3-heighbour
of the central node is considered, i.e., the depicted path that passes through the nodes
marked 0, 1, 2 and 3. The orange node, marked 1, is the 1-hop neighbour of the red node.
The green node, marked 2, is the 2-hop neighbour of the red node. The blue node, marked
3, is the 3-hop neighbour of the red node.

As an extension to the Figure 1, an example of information contained in each node in
the three-layer model propagation is shown in Table 1.

Table 1. An Example: Information for each node in per layer.

Layer/Node 0 1 2 3

First Layer 0, 1 1, 2 2, 3 3, ♥
Second Layer 0, 1, (1, 2) 1, 2, (2, 3) 2, 3, (3) 3, ♥, (♥)
Third Layer 0, 1, (1, 2), (1, 2, (2, 3)) 1, 2, (2, 3), (2, 3, (3)) 2, 3, (3), (3, ♥, (♥)) 3, ♥, (♥)

Notes: The digits in the header indicate the Node Number; the values in each row represent the information
within nodes when the corresponding layer outputs. For instance, the Node 0 contains information 0, 1, (1, 2) in
the second layer, i.e., the output vector of 0 in the second layer consists of the un-gated information from Node 0
and 1, and 1-time-gated information from Node 1 and 2; the parentness indicates a transform by the gates. For
example, (1, 2) indicates the gated version of information from 1, 2, and ((3, 4)) indicates the information from 3, 4
that is filtered by the gates twice; ♥ represents the information of the nodes not listed.

• In the first layer, each node aggregates its own and 1-hop neighbours’ information
using layer-in attention. At this point, the Node 0 aggregates its own information 0
and its neighbour Node 1’s information 1, so it contains information 0, 1; the Node 1
aggregates its own information 1 and its 1-hop neighbour Node 2’s information 2, so
it contains information 1, 2; Node 2 and Node 3 are similar to Node 1.

• In the second layer, each node aggregates via layer-in attention and layer-out attention
simultaneously. At this point, in addition to the information 0, 1 collected in the
first layer, Node 0 continues to aggregate the information of its neighbour Node 1
filtered by the gates, i.e., (1, 2) (The parentness indicates a transform by the gates. For
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example, (1, 2) indicates the gated version of information from 1, 2; ((3, 4)) indicates
the information from 3, 4 that is filtered by the gates twice), so Node 0 contains
information 0, 1, (1, 2) at this time. In addition to the information collected in the first
layer 1, 2, Node 1 continues to aggregate the information of its neighbour Node 2
filtered by the gates, that is, (2, 3), so Node 1 contains information 1, 2, (2, 3) currently;
Node 2 and Node 3 are similar to Node 1.

• The operation of the third layer is the identical to that of the second layer.

It can be seen that in the second layer, the information from the second-order domain
(i.e., the 2-hop neighbourhood) can be aggregated by any nodes. In the information aggre-
gation process of the third layer, likewise, each node is capable of aggregating information
from its third-order domain.

3.2.3. Other Facts about GGAT

The GGAT is equipped with the back propagation technique to do parameter fine-
tuning, just as other machine learning methods do. The loss of classification result of each
node in the network is calculated via nll-loss (Negative Logistic Loss) function, and the
gradients are calculated based on the summation of the losses. As a result, the parameters
are fine-tunned with respect to the calculated gradients, in a gradient-descent manner. The
fine-tunning operations are done by the Adam optimiser automatically in each training
epoch of the GGAT.

To conclude, the GGAT model is capable of aggregating the important information
in the multi-hop neighbourhood from the central nodes selectively, thus the correlation
between nodes may be considered to the full. To conclude, by introducing the AMs and
GMs, our model obtains the ability to:

1. measure the dependence of long-distance nodes;
2. take into account the different importance of each node in multi-hop neighbourhood;
3. aggregate as much semantic information as possible; and
4. fully mine the correlation between samples.

We argue that all these abilities can intuitively improve the cancer prediction accuracy
with the assistance from deep learning techniques.

4. Experiment
4.1. Experiment Design and Setup

All experiments are performed in a unified server environment (We performed all
experiments on a Dell PowerEdge T640 workstation, running Ubuntu 16.04, with 2 Intel
Xeon Silver 4210 1 GHz CPUs and 2 Nvidia GeForce GTX 1080 Ti GPUs; all codes are imple-
mented by the PyTorch framework). As for model configuration, the overall learning rate
was set to 0.005, the number of hidden units was set to 8, and the number of attention heads
was set to 8. We discovered that these configurations give the best experimental results.

Several groups of experiments were carried out as follows.

• Evaluation on the Hybrid Feature Selection Algorithm. We performed the predic-
tion task over different versions of feature numbers, of KIRC, LIHC, LUAD [including
the Optimal Feature Number (OFN), 50, 100, 200, 500, 1000, 2000, and Initial Feature
Number(IFN) versions] and Cancer_all (including OFN and IFN versions) to verify
the effectiveness of our proposed hybrid feature selection algorithm (Section 3.1.1).

• Evaluation on the GGAT’s Performance. We compared the accuracy (%) and training
time (seconds) among GGAT and other models. In order to verify the effectiveness
and performance of our GGAT model, we also utilised the combined cancer dataset
(Cancer_all) to investigate the accuracy and training time of the multi-category classi-
fication task (3 categories) under large data scale.

• Evaluation on the GGAT’s Validity and Interpretability. Among these models for
comparison, the traditional machine learning methods include K-Nearest Neighbor,
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Support Vector Machine and Decision Tree, and neural network models include GCN
and GAT.

All experiments were carried out ten times and the final results were averaged.

4.2. Introduction of Datasets

The cancer prediction task in our work is considered a node classification task, because
we built cancer datasets into a graph to predict whether a node (a sample of participant)
has cancer or not. We used LIHC (liver cancer), LUAD (lung adenocarcinoma), KIRC (renal
clear cell carcinoma) datasets from TCGA and their combination dataset Cancer_all for our
experiments.

For KIRC, LIHC and LUAD datasets, they are randomly shuffled before being split
into training, validation and testing sets. After the shuffle, each of them is then divided
into the three sub-sets, proportionally—the top 40% entries of the shuffled dataset become
training sets, the latter 20% entries become testing sets, and the rest 20% are appointed
as validation sets. We believe that through shuffle, the proportion of cancer samples and
normal samples are approximately the identical in the three sets.

The feature dimension information of these datasets before and after our hybrid
feature selection algorithm is shown in Table 2. It is clear that for Cancer_all dataset,
there are no normal samples—in fact, this combined dataset is used to do multi-class
classification as to catalogue all samples into three cancer catagories (KIRC, LIHC and
LUAD). The division of this dataset is likewise—the top 40% entries of the shuffled dataset
become training sets, the latter 20% entries become testing sets, and the rest are appointed
as validation sets.

Table 2. Feature Dimension of Datasets.

Dataset After Preprocessing After Primary Selection
(Original Feature Number)

After Exact Selection
(Optimal Feature Number)

KIRC 610 × 35,208 610 × 13,354 610 × 14
LIHC 421 × 29,609 421 × 6063 421 × 21
LUAD 592 × 35,734 592 × 9629 592 × 16

Cancer_all 1442 × 114 1442 × 114 1442 × 75

Notes: The shape of each dataset is row × col, where row is the number of examples and col is the feature dimension. KIRC, LIHC
and LUAD are used to cancer prediction (two-classifications). Cancer_all is the dataset combined with KIRC, LIHC and LUAD and left
114 features for cancer prediction (three-classifications).

In addition, being aware the fact that Cora is a widely used benchmark dataset for
node classification task, we to perform a supplementary experiment on Cora to verify the
effectiveness of our proposed model GGAT.

All dataset used in our experiments and their details are shown in Table 3, and the
information of the constructed graphs from these datasets are shown in Table 4 (The source
of the three datasets (KIRC, LUAD and LIHC) are separated; each dataset is the resulting
data from a single research. The possibility of the situation where samples from one
participant be in multiple datasets is extremely low).

Table 3. Datasets Information.

Dataset Shape Cancer Samples Normal Samples Classes

KIRC 610 × 500 538 72 2
LIHC 421 × 500 371 50 2
LUAD 592 × 500 533 59 2

Cancer_all 1442 × 75 1442 0 3
Cora 2708 × 1433 0 2708 7

Notes: We take 500 feature dimensions as an example for KIRC, LIHC and LUAD, and 75 feature dimensions for
cancer_all.
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Table 4. Graph Information.

Dataset Nodes Edges Training Set Validation Set Test Set

KIRC 610 105,428 40% 40% 20%
LIHC 421 55,155 40% 40% 20%
LUAD 592 107,975 40% 40% 20%

Cancer_all 1442 638,719 40% 40% 20%
Cora 2708 5429 140 entities 300 entities 1000 entities

4.3. Experimental Results
4.3.1. Effectiveness of the Hybrid Feature Selection Algorithm

In order to verify the effectiveness of proposed hybrid feature selection algorithm, ex-
periments were carried out on datasets with different feature dimensions. The experimental
results are shown in Figure 2 (accuracy (%)) and Figure 3 (training time (seconds)).

(1) Accuracy Comparison

(a) (b)

(c) (d)

Figure 2. Accuracy (%) of Datasets in Different Features. The digit after the dataset name represents the number of features,
the first digit is the optimal feature number selected by our hybrid feature selection algorithm, the last digit is the original
feature number before exact selection.

As is shown in Figure 2, the datasets after feature selection have achieved better
accuracy in most models’s training results, which is considered the direct proof of the
effectiveness of our hybrid feature selection algorithm. In addition, we discovered that

1. Our hybrid feature selection algorithm has no effect on SVM. We suppose that the way
we construct the graph makes the datasets unfriendly to SVM. It has been pointed out
in preceding section that we chose the average Euclidean distance to measure whether
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there is a link between two nodes, whereas the graph constructed by the average
value may not be suitable for every model. In the future research, this threshold can
be used as a parameter to train and optimize, so as to achieve the value of the specific
model, which makes our feature selection algorithm more universal.

2. GCN does not clearly show the advantage of our feature selection algorithm in
LIHC. Firstly, we found that the LIHC dataset resulted in more unstable experimental
accuracy in multiple models, compared to other datasets: the error rate of which is
relatively high (within the acceptable range). Furthermore, there may be the same
problems as described in the above point.

3. GAT and GGAT do not highlight the advantages of our feature selection algorithm
as well. We hold the belief that feature selection is for better information extraction.
However, as a matter of fact, both GAT and GGAT utilise the AM, which is equivalent
to feature selection in an indirect manner, that is, the AM in the both models plays
the same role as feature selection. In addition, our model introduces GM, which may
help to carry out better attention through rigorous information selection and filtering.

(2) Training Time Comparison

(a) (b)

(c) (d)

Figure 3. Training Time (s) of Datasets.

As is shown in Figure 3, our feature selection algorithm is capable to reduce the
training time of models, especially for the traditional machine learning algorithms. It can
be seen that the feature selection of the datasets in the early stage greatly improved the
performances of the general machine learning algorithms. For the neural network models,
there is no significant difference in training time under different feature dimensions—we
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suppose it is the neural network models’ weight matrices that play significant rows as
feature selection when performing linear transforms. In addition, given the introduction
of gates, it can be seen that the training time of GGAT was relatively high. However, we
argue that it still achieved the best efficiency in the acceptable training time range.

Generally speaking, notwithstanding that our feature selection algorithms did not
demonstrably improve the efficiency of all models, they could shorten the training time
without reducing the performance of the models.

4.3.2. Effectiveness of GGAT

We compare the performances of each model on datasets mentioned above with
different feature dimensions. The results are as shown in Tables 5–14, where the best
result values are shown in bold. Specifically, for sensitivity and specificity comparisons
(Tables 6 and 8), the result values with the highest summation of the both values among
those listed models are defined as the best ones.

Table 5. Accuracy of Models Under Optimal Feature Dimensions.

Model/Datasets KIRC(14) LIHC(21) LUAD(16) Cancer_all(75) Cora

DT 97.22 94.60 97.29 97.31 -
KNN 98.79 89.51 97.86 91.86 -
SVM 88.20 88.12 90.03 99.00 -
GCN 95.84 82.07 98.99 91.45 83.40
GAT 99.52 54.48 98.95 84.08 84.30

GGAT 98.56 85.52 97.37 97.23 85.40

Table 6. Sensitivity vs. Specificity (TPR vs. TNR, %) of three Graph Convolution Models Under
Optimal Feature Dimensions.

Model/Datasets KIRC(14) LIHC(21) LUAD(16)

GCN 97.05/94.23 83.32/86.70 98.79/98.54
GAT 99.07/100.0 15.38/100.0 98.23/100.0

GGAT 100.0/99.06 73.08/100.0 100.0/96.46

Table 7. Accuracy (%) of Models Under Original Feature Dimensions.

Model/Datasets KIRC(13354) LIHC(6063) LUAD(9629) Cancer_all(114)

DT 95.00 92.40 96.78 96.81
KNN 98.95 93.09 97.33 93.34
SVM 88.20 88.12 90.03 99.00
GCN 82.73 90.62 92.16 90.38
GAT 100.00 91.03 97.37 67.13

GGAT 99.52 95.44 97.89 95.50

Table 8. Sensitivity vs. Specificity (TPR vs. TNR, %) of three Graph Convolution Models Under
Original Feature Dimensions.

Model/Datasets KIRC(13354) LIHC(6063) LUAD(9629)

GCN 92.02/74.26 91.00/90.28 82.72/90.14
GAT 100.0/100.0 86.57/94.87 98.70/96.46

GGAT 99.06/100.0 98.51/93.59 98.70/97.35
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Table 9. Accuracy (%) of Models Under 50 Feature Dimensions.

Model/Datasets KIRC(50) LIHC(50) LUAD(50)

DT 96.11 95.00 96.95
KNN 98.79 86.70 97.69
SVM 88.20 88.12 90.03
GCN 92.44 85.31 97.21
GAT 98.56 84.14 97.37

GGAT 98.09 85.52 97.89

Table 10. Accuracy (%) of Models Under 100 Feature Dimensions.

Model/Datasets KIRC(100) LIHC(100) LUAD(100)

DT 96.25 94.60 96.78
KNN 98.97 89.70 97.86
SVM 88.20 88.12 90.03
GCN 93.73 85.11 96.42
GAT 98.09 89.66 97.89

GGAT 96.65 87.59 97.89

Table 11. Accuracy (%) of Models Under 200 Feature Dimensions.

Model/Datasets KIRC(200) LIHC(200) LUAD(200)

DT 97.08 94.00 95.26
KNN 99.14 93.35 97.86
SVM 88.20 88.12 90.03
GCN 93.59 93.52 96.58
GAT 98.09 93.79 97.37

GGAT 98.56 95.17 98.42

Table 12. Accuracy (%) of Models Under 500 Feature Dimensions.

Model/Datasets KIRC(500) LIHC(500) LUAD(500)

DT 95.28 95.40 97.12
KNN 98.95 93.10 97.33
SVM 88.20 88.12 90.03
GCN 92.77 92.34 95.00
GAT 100.00 94.48 98.42

GGAT 99.52 95.86 98.42

Table 13. Accuracy (%) of Models Under 1000 Feature Dimensions.

Model/Datasets KIRC(1000) LIHC(1000) LUAD(1000)

DT 95.83 92.00 97.46
KNN 99.12 93.10 97.33
SVM 88.20 88.12 90.03
GCN 90.48 90.55 93.21
GAT 100.00 93.79 97.89

GGAT 99.04 95.86 98.42



Sensors 2021, 21, 1938 17 of 21

Table 14. Accuracy (%) of Models Under 2000 Feature Dimensions.

Model/Datasets KIRC(2000) LIHC(2000) LUAD(2000)

DT 95.83 95.40 98.31
KNN 99.12 93.10 97.33
SVM 88.20 88.12 90.03
GCN 86.51 90.07 93.05
GAT 100.00 93.79 97.89

GGAT 99.52 95.86 98.42

By analysing the results in Tables 5–14, we draw the following conclusions:

1. In general, to the best of our knowledge, our proposed model GGAT achieves the
best overall results on most of the datasets, which verifies the effectiveness of our
model. Specifically, the comparisons on sensitivity and specificity show that our
model achieves the stablest effects on predicting three cancer types, among the listed
graph convolution models.

2. The previous data processing method and the characteristics of the datasets itself
indeed improved the effectiveness of a number of certain algorithms, e.g., SVM on
Cancer_all and GAT on KIRC.

3. The more features, the higher effectiveness we found of GAT and GGAT. As is
mentioned above, both the GAT and GGAT introduce AM which play the same role
as feature selection. Therefore, more information may be selected and aggregated by
the AM if more features are given, thus better results may be obtained. In particular,
our model introduces gates, which assists to select and filter information that is more
important and effective, and to make the node classification more accurate.

4. On the contrary, the more features, the lower efficiency of the traditional algorithm.
A conclusion can be drawn that the feature selection algorithm may greatly help the
traditional classification algorithms to learn and calculate more effectively, and most
importantly, reduce the training time.

To conclude, our aim is to provide a simple and accurate approach to reduce the
doctors’ works. It shall be pointed out that our method provides helps to doctors when
they are making diagnosis, instead of making diagnosis for doctors. The experiments in
this section shows that the prediction accuracy is sufficiently high, despite the fact that no
research on pathology and histology is performed.

4.3.3. Evaluation on the Interpretability of GGAT

We studied the experiments and further investigated the validity and interpretability
of our proposed GGAT model. We point out 2 major claims on the basis of the validity and
interpretability study.

(1) The gates can help solve the problem of gradient disappearance.
In the process of experiments, we noticed that the accuracy of GAT was extremely

low in Cancer_all and LIHC(21), while the GGAT displayed a normal performance (as
depicted in Figure 4a,b). By analysing the Acc_val (Accuracy of validation Set) of both
GAT and GGAT in training on Cancer_all. It can be seen that the accuracy value of the GAT
on Cancer_all dataset almost stop changing after 200 epochs (Figure 4a), whereas the same
accuracy value of GGAT continued fluctuating in the inspection epoch range (Figure 4b).
This phenomenon indicates that our proposed GGAT is capable to break through the
bottleneck of a training process.

According to the claims in [35], the reset gate in GRU is capable of helping their model
get rid of gradient disappearing problems. We believe that in our model, it is the reset gate
that always produces tiny disturbance during training, resulting in chances to make the
training process to continue.
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(a) (b)

(c) (d)

Figure 4. Acc_val of GAT (left) and GGAT (right) When Training on Cancer_all and LIHC(21).

(2) The AMs of GAT and GGAT can act as feature selection
As mentioned in Section 4.3.1, GAT and GGAT achieved better experimental results

without feature selection. We own this success to the introduction of AM, which plays
the same role as feature selection. The AM distinguishes the importance of all nodes to
effectively extract and aggregating information.

5. Conclusions and Future Work

In this work, we proposed a novel three-layer GGAT, and used it for cancer prediction
tasks. Tradition methods shows that certain methods are suitable for certain types of cancer.
However, our proposed GGAT model aims at doing the predicting things better—we tried
to increase the accuracy on all types of cancer, moderating the difference of the predicting
accuracy among different cancer types. From what can be seen in the experiments, the
GGAT is capable of aggregating the information in the 3-hop neighbourhood of every
node with different importance. By introducing the GM, the information coming from
remote nodes may be selectively filtered. In this way, GGAT can comprehensively mine
the semantic information under the graph structure and the association between nodes,
and provide a more powerful guarantee for cancer prediction. Through the experimental
analysis and comparison on various datasets, GGAT had improved the performance by
1–2%, in the acceptable training time range. Moreover, the validity and interpretability of
GGAT were verified. In addition, we also proposed and verified the effectiveness of our
hybrid feature selection algorithm. Experiments show that our feature selection algorithms
resulted in significant performance in reducing the training time of certain algorithms,
without noticeably affecting their accuracy.

There are several potential improvements and extensions to our work that could be
addressed as future work. We noticed that our ideas of improving the neural network
model are based on the graph structure itself, and the semantic information of nodes
themselves and additional information outside the graph are temporarily ignored. In the
future research, we will focus on the prior knowledge of graph and node attributes, so as
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to increase the difference between nodes and make the task of nodes on the graph more
accurate. In addition, due to the serious imbalance of the positive and negative samples in
our datasets, we will also study on the ways to balance data. We are planning to utilise
the Generative Adversarial Networks (GAN) and/or other generative models to generate
adversarial samples.
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