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Abstract
Background: The prostate gland represents a multifaceted system in which prostate epithelia and stroma have 
distinct physiological roles. To understand the interaction between stroma and glandular epithelia, it is essential to 
delineate the gene expression profiles of these two tissue types in prostate cancer. Most studies have compared tumor 
and normal samples by performing global expression analysis using a mixture of cell populations. This report presents 
the first study of prostate tumor tissue that examines patterns of differential expression between specific cell types 
using laser capture microdissection (LCM).

Methods: LCM was used to isolate distinct cell-type populations and identify their gene expression differences using 
oligonucleotide microarrays. Ten differentially expressed genes were then analyzed in paired tumor and non-
neoplastic prostate tissues by quantitative real-time PCR. Expression patterns of the transcription factors, WT1 and 
EGR1, were further compared in established prostate cell lines. WT1 protein expression was also examined in prostate 
tissue microarrays using immunohistochemistry.

Results: The two-step method of laser capture and microarray analysis identified nearly 500 genes whose expression 
levels were significantly different in prostate epithelial versus stromal tissues. Several genes expressed in epithelial cells 
(WT1, GATA2, and FGFR-3) were more highly expressed in neoplastic than in non-neoplastic tissues; conversely several 
genes expressed in stromal cells (CCL5, CXCL13, IGF-1, FGF-2, and IGFBP3) were more highly expressed in non-neoplastic 
than in neoplastic tissues. Notably, EGR1 was also differentially expressed between epithelial and stromal tissues. 
Expression of WT1 and EGR1 in cell lines was consistent with these patterns of differential expression. Importantly, WT1 
protein expression was demonstrated in tumor tissues and was absent in normal and benign tissues.

Conclusions: The prostate represents a complex mix of cell types and there is a need to analyze distinct cell 
populations to better understand their potential interactions. In the present study, LCM and microarray analysis were 
used to identify novel gene expression patterns in prostate cell populations, including identification of WT1 expression 
in epithelial cells. The relevance of WT1 expression in prostate cancer was confirmed by analysis of tumor tissue and 
cell lines, suggesting a potential role for WT1 in prostate tumorigenesis.

Background
Prostate cancer is the most common cancer in men, with
over 186,000 people affected annually and a lifetime risk
of 1:6 [1]. Mechanisms of prostate cancer development
and progression vary and are not well understood. With
age, normal prostate epithelial structure often changes,
resulting in benign or malignant consequences. Benign

prostatic hyperplasia (BPH) is characterized by prostate
enlargement due to proliferation of epithelia; cells pre-
serve their normal characteristics and do not progress to
malignancy. Alternatively, prostate epithelia may accu-
mulate any number of genetic changes leading to carcino-
genesis. Prostatic adenocarcinoma is characterized by
invasion of the underlying stroma by malignant epithelial
cells (reviewed in [2].). Prostate carcinoma can be classi-
fied according to the features of malignant acini; stage T2
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tumors are confined within the prostate, while advanced
stage T3 tumors spread into the adjacent tissue.

The prostate gland is composed primarily of epithelial
and interstitial stromal cells. Communication between
these cell types is important not only for normal develop-
ment, but also for prostate tumorigenesis [3]. Prostate
epithelial cells are primarily luminal but include a mix-
ture of basal and neuroendocrine cell types [4,5]. The sur-
rounding adjacent stromal cells, which are a mixture of
fibroblasts, smooth muscle, endothelial, nerve, and
inflammatory cells [4,6,7], influence the growth and
development of prostate cancer epithelial cells and affect
androgen responsiveness [8]. Typically, studies have uti-
lized surgically dissected samples that included mixtures
of cell types [9,10]. As such...., microarray analyses com-
paring these "tumor" with "normal" samples are difficult
to interpret, since gene expression in tumor epithelial
cells was diluted by the inclusion of adjacent stromal cells
in the analysis, leading to ambiguous results. Thus, a true
assessment of differential gene expression in tumor tissue
requires cell-specific comparisons.

The identification of distinct gene expression patterns
in tumor epithelia and adjacent stroma can help elucidate
cell communication pathways that are active in prostate
cancer. Previous studies using laser capture microdissec-
tion (LCM) have examined differential gene expression
between stromal samples, either prostate stroma relative
to bladder stroma [11] or reactive tumor stroma relative
to normal stroma [12]. Other studies have enriched
tumor epithelial cell populations using LCM, but have
made comparisons between different Gleason grades [13]
or between different treatments [14]. Additional studies
have utilized different tissue sources (such as formalin
fixed paraffin embedded tissue [15-17] or frozen biopsies
[18]) or tested different platforms (such as cDNA arrays
[19]). There was also one report comparing expression in
untreated prostate tumor stroma compared to tumor epi-
thelia [20]; however the 5 microdissected tissues samples
were pooled precluding statistical analysis. Thus,
although several studies have addressed differences in
gene expression between various epithelial or stromal
populations, currently very little is known about differ-
ences between stroma and epithelia.

Given the need to identify specific gene expression pat-
terns in both tumor epithelial and adjacent stromal cells,
we chose to isolate cells of these tissue types using laser-
capture microdissection (LCM). While this study ana-
lyzed differences in gene expression between microdis-
sected tumor epithelial cells and adjacent stromal cells
within the neoplastic prostate, a major focus of this study
was to identify genes whose expression was enriched in
stromal compared to epithelial cells. Another aim was to
determine whether some of the genes previously
described as "expressed in prostate cancer" were actually

expressed to a greater extent in stromal tissues than in
epithelial. Microdissection of specific cells within the
prostate tumor and subsequent microarray analysis more
accurately identified expression of major genes in pros-
tate cancer whose expression was limited to specific cell
populations. Growth factor signaling and transcription
factor regulatory genes were two gene categories identi-
fied by this microarray analysis. Additionally this
approach identified differential expression of the tran-
scription factor, WT1, in prostate cancer epithelial cells
and lead to subsequent characterization of its expression
in cell lines and in paired non-neoplastic and tumor fro-
zen biopsies.

Methods
Tissue Acquisition
All tissues were acquired and used with IRB approval
from Kent State University and the appropriate institu-
tions (see below). Frozen tissues in optimal cutting tem-
perature media (OCT) were obtained for RNA isolation
while formalin fixed paraffin embedded (FFPE) tissues
were obtained for immunohistochemistry. Two types of
OCT embedded tissues were obtained: 1) 5 micron sec-
tions for laser capture microscopy (LCM) and 2) OCT
blocks for quantitative real-time PCR (QRT-PCR).

The serial frozen tissue sections for LCM were pro-
vided by The Ohio State University Prostate Cancer tis-
sue Bank, part of the Human Tissue Resource Network
(HTRN) in the Department of Pathology (Columbus,
Ohio). The tumor samples were removed during radical
prostatectomy and frozen in OCT. Tumors were catego-
rized as intermediate grade (primarily Gleason grade 3).
Two of three samples had a combined Gleason score of 6
and one had a GS 7. One of the serial sections from each
tumor was stained with hematoxylin and eosin and the
tumor areas marked for identification. Stromal tissue of
all 3 samples appeared to contain a similar proportion of
inflammatory cells.

For QRTPCR analysis twenty paired prostate tissues
were provided by Dr. C. Magi-Galluzzi (Cleveland Clinic
Foundation, Cleveland, OH). Tissues were obtained by
radical prostatectomy, paired tumor and non-neoplastic
tissues were selected from each prostate and frozen in
OCT. All tumor samples were of T2 or T3 stage with
combined Gleason score of 7 and were observed to have
abundant epithelial tissue for RNA isolation.

Commercially available prostate tissue microarrays
(TMAs) were purchased from Creative Biolabs (Fort Jef-
ferson Station, NY). Tissue arrays consisted of cores of
formalin-fixed, paraffin embedded prostatectomy cores
in duplicate or triplicate from each prostate. Cores were
arrayed in a rectangular fashion and were 1.0-1.5 mm in
diameter and 5 μm in thickness. A total of 31 cases of car-
cinoma, 7 of benign hyperplasia, and 5 normal (non-neo-
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plastic) controls were examined. Normal samples were
obtained from cancer-free prostates from normal individ-
uals. All tissues were selected and evaluated by an inde-
pendent pathologist who determined Gleason grading
and differentiation status. Nearly half of the cores were
from high grade tumors with Gleason scores 8-10.

Tissue Culture
Non-neoplastic RWPE-1 cells were obtained from the
American Type Culture Collection (Manassas, VA) and
grown in K - SFM supplemented with 0.05 mg/mL bovine
pituitary extract and 5 ng/mL EGF. Hormone responsive
LNCaP tumor cells were grown in RPMI-1640 media
supplemented with 10% FCS and antibiotics. Hormone
insensitive LNCaP - C42, PC3, and DU145 tumor cells
were grown in DME - F12 media supplemented with 10%
FCS and antibiotics. All cells were maintained in 5% CO2
at 37°C.

Laser Capture Microdissection
For LCM, the frozen sections were stained and dehy-
drated using the HistoGene LCM Frozen section staining
kit as per manufacturer's recommendations. Cell capture
and lysis was completed within 2 hours to assure quality
RNA. The epithelial and interstitial stromal cells were
isolated from ten slides containing 5 micron frozen tissue
sections using an LCM microscope (Arcturus Bioscience,
Mt View, CA). Neoplastic areas of the slide observed to
have the most abundant cells of interest were identified
and marked to direct the laser capture. Stromal cells were
collected from areas adjacent to glandular epithelium and
included inflammatory cells. Overall, 1000 to 2000 epi-
thelial or stromal cells were captured per cap. To verify
the accuracy of capture, tissue sections and caps were
examined post-capture.

RNA Isolation and Quantification
Cells captured by LCM
Captured cells were lysed and RNA extracted as per man-
ufacturer's recommendations (Arcturus Bioscience, Mt
View, CA). Briefly, cells were incubated for 30 minutes at
42°C in Pico Pure extraction buffer. RNA purification col-
umns were washed and treated with DNase (Qiagen Sci-
ences, San Diego, CA). The RNA was eluted in Elution
Buffer, and RNA quantity and quality were checked using
the RNA Pico-Chip on the Bioanalyzer 2100 (Agilent Bio-
science, Mt View, CA). RNA was amplified using the
RiboAmp HS kit (Arcturus Bioscience, Mt View, CA).
Frozen Prostate Tissues
Frozen paired prostate tissues were removed from OCT
media and RNA isolated using the RNEasy Mini Kit per
the manufacturer's recommendations (Qiagen, San
Diego, CA). Briefly, tissues were homogenized by sonica-
tion. RNA was purified by several washes in the RNEasy

mini column and eluted with water. RNA quantity and
quality was measured with RNA MicroChips using the
Bioanalyzer 2100 per the manufacturer's recommenda-
tions (Agilent Bioscience, Mt View, CA).
Tissue Cultures
RWPE-1, LNCaP, LNCaP-C42, PC3, and DU145 cells
were grown to confluency under standard culture condi-
tions. Cells were rinsed twice in PBS and harvested per
the manufacturer's recommendations (Qiagen, San
Diego, CA). RNA quantity and quality was measured as
described above.

Labeling and Oligonucleotide Microarray Hybridization
Biotin-labeled cRNA was hybridized to Affymetrix
Human Genome U133A 2.0 chips (HG_U133A 2.0) for
16-hour at 45°C. The GeneChip® Operating Software
(GCOS) was used to run the Fluidics Station 400 and
hybridized arrays were stained with the Midi_euk2v3
labeling kit for detection. The arrays were scanned using
an Affymetrix® GeneChip® Scanner 3000. The signal
intensities were normalized by Affymetrix software to the
spike-controls located on the array chip. After chip nor-
malizations, relative intensities were used to determine
whether expression is absent (A), present (P), or marginal
(M). Expression patterns between arrays were compared
and raw signal strength was examined to verify that
hybridization was effective.

Data Analysis
Signal intensities for each gene were generated using the
Microarray Suite 5.0 algorithm by Affymetrix GCOS
software 1.1. In addition to the signal intensity, each gene
was determined to be present, marginal, or absent using
default software settings. Overlap in gene expression
between epithelial and stromal cell samples was assessed
by counting the number of probe sets with all three sam-
ples showing present calls. For analysis of differential
expression between epithelial and stromal cell samples, a
filter requiring a present call in at least 3 of the 6 arrays
was applied. This reduced the total number of probe sets
to be analyzed from 22,215 to 8,739. Signal intensities for
the three epithelial and three stromal arrays were further
analyzed using Cyber-T software http://cybert.microar-
ray.ics.uci.edu/ using the default settings. This software
generates p-values for each gene as a test of differences
between groups using a Bayesian paired t-test [21]. A list
of candidate differentially expressed genes was generated
using genes with a posterior probability of differential
expression [22] of 0.99 or higher, which corresponded
roughly to a Bayes p-value of 0.001 or less.

Functional Gene Ontology (GO) annotation of genes of
interest was performed using DAVID http://
david.abcc.ncifcrf.gov/[23,24] and Affymetrix databases.
Gene functional classification and functional annotation

http://cybert.microarray.ics.uci.edu/
http://cybert.microarray.ics.uci.edu/
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
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clustering were performed to identify functional gene
groups and ontology terms that are significantly overrep-
resented among genes of interest.

Quantitative Real-Time PCR
RNA samples were reverse transcribed using QuantiTect®

Reverse Transcription kit and DNase treatment was per-
formed according to manufacturer's protocol (Qiagen
Sciences, San Diego, CA). For LCM captured cells, pre-
amplification of cDNA was done using TaqMan® PreAmp
Master Mix kit. Real-time PCR was performed using the
TaqMan Universal Master Mix and optimized TaqMan
probe sets (Table 1). Endogenous internal controls were
run with every sample plate for comparisons and each
sample was assayed in triplicate. Samples were amplified
using the ABI 7000 thermocycler and Ct values were
measured by the ABI Prism 7000 sequence detection sys-
tem (Applied Biosystems, Foster City, CA). Amplification
conditions were 95°C for 10 minutes, and 40 cycles of
95°C for 15 seconds and 60°C for 1 minute. The compara-
tive Ct method (2-ddCt) [25] was used to analyze gene
expression differences between cell types for LCM cap-
tured cells and between tumor and non-neoplastic tissues
for paired frozen prostate samples. For analysis of cell
lines, gene expression in tumorigenic cell lines was com-
pared to the non-tumorigenic cell line RWPE-1. Tests of
significance were done using Dunnett's two-sided multi-
ple comparison test.

Immunohistochemistry (IHC) and Scoring of TMAs
Immunohistochemical staining of the prostate TMAs
was performed using standard IHC techniques. Briefly,
slides were deparaffinized using a sequential method of
rehydration followed by antigen retrieval in citrate solu-

tion with heating. Endogenous peroxidase activity was
blocked with a 3% hydrogen peroxide solution. Slides
were probed with a rabbit polyclonal anti-WT1 antibody
(Epitomics, Burlingame, CA). Staining was visualized
using a biotinylated goat anti-rabbit IgG secondary anti-
body, streptavidin horseradish peroxidase solution, and
DAB (Vector Laboratories, Burlingame, CA). Slides were
counterstained with hematoxylin, mounted and exam-
ined by brightfield microscopy. Staining was visualized
using an Olympus IX70 microscrope at 100× total magni-
fication. Images were taken with a Diagnostic Instru-
ments camera and analyzed using SPOT Advanced
software. Immunoreactivity assessment was based on
intensity of staining in epithelial cells relative to any non-
specific stromal reactivity. Slides were scored blindly by
two different individuals. Relative staining intensity was
scored using a 3 point scaling system, where 0 represents
the absence of staining in any epithelial cells, 1 represents
weak to moderate staining, and 2 represents strong stain-
ing in at least 25% of epithelial cells.

Results
Microarray analysis of laser captured cells
There were significant differences in gene expression
between the epithelial and stromal cell samples. A Venn
diagram was created to determine the proportion of
genes expressed in common between both tissue types
(Figure 1). For this figure, we utilized very stringent crite-
ria - to be considered present, the transcript had to
receive a "Present" call on all three samples from that tis-
sue type. 6946 of the 22215 probes on the array were
present in all three sample pairs for at least one of the two
cell groups and half of them (3452 genes) were signifi-
cantly expressed in both epithelial and stromal tissue.

Table 1: Quantitative real-time PCR primer sets obtained for expression analyses (Applied Biosystems).

Functional Class Gene(s) ABI Assay IDa

Housekeeping gene 18S Hs99999901_s1

GAPDH Hs99999905_m1

Zinc finger transcription factors WT1 Hs002400913_m1

EGR1 Hs00152928_m1

GATA2 Hs00231119_m1

Growth factor signaling IGF-1 Hs00153126_m1

IGF1-R Hs00181385_m1

IGFBP3 Hs00181211_m1

FGF-2 Hs00266645_m1

FGF-R3 Hs00179829_m1

Chemokines CCL5 Hs00174575_m1

CXCL13 Hs00757930_m1

a. ABI (Applied Biosystems) assay ID numbers
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Reducing the stringency by allowing there to be only two
present calls instead of three produces higher numbers of
present probes but the trends in the data are similar.
About half of the expressed transcripts were in common
between two tissues types, presumably required for func-
tions shared between these cell types. The other half rep-
resents genes likely required for cell-specific functions
that were the subject of further analysis. The cellular het-
erogeneity of stromal tissue was consistent with the
observation that ~42% of expressed transcripts (2911
genes) were elevated in stromal tissues. Conversely, only
~8% of transcripts (583 genes) were elevated in prostate
cancer epithelial cells and thus comprised unique gene
expression patterns. Both prostate specific genes (e.g.,
PSA/Kallikrein 3 and Kallikrein 2) and epithelial marker
genes (e.g., keratin 18 and desmoplakin) were expressed
in tumor epithelial cells. Similarly, stromal marker genes,
such as desmin and vinculin, were expressed in the cells
collected from adjacent stromal tissue (see additional files
1 and 2). Expression of these genes verifies the specificity
of the epithelia and stroma collected.

Differential expression level comparisons of epithelial
and stromal genes identified nearly 500 genes whose
expression was significantly different between epithelial
and stromal cells (Bayesian t-test, p < 0.001, posterior
probability of differential expression > 0.99). Shown in
Tables 2 and 3 are the genes with the highest probability
of differential expression. Additional files 1 and 2 list 302
genes that were found to be significantly overexpressed in
stromal tissue as compared to epithelial tissue, and 194
genes that were significantly overexpressed in epithelial
tissue as compared to stromal tissue, respectively. To

learn more about the types of gene expression differences
between the two tissue types, the 496 differentially
expressed genes (listed in additional files 1 and 2) were
placed into functional categories using Gene Ontology
(GO) Annotations.

Gene functional classification clustering analysis was
performed with DAVID using two subsets of genes that
were upregulated (a) in epithelial cells (n = 194) or (b) in
stromal tissue (n = 302). Shown in Table 4 is a summary
of these classifications (Entire list of GO_BP terms is
found in additional file 3). Three gene clusters with
enrichment scores greater than 1 were identified among
epithelial genes (encompassing 11% of all genes), namely,
membrane-associated glycoproteins (including pro-
teases) and two groups of ion transport related genes
(including metal ion and ATP dependent transporters).
Notably, eleven gene clusters with enrichment scores
greater than 1 were identified among stromal genes,
encompassing about 28% of all stromal genes. The top
three clusters included about 21 unique genes (24% of 86
grouped genes) and were comprised of collagen genes
and muscle and organ development genes. Other clusters
were composed of structural and intracellular matrix pro-
teins (total of 12 genes, or 14%), immune and inflamma-
tion related genes (including MHC class II and
complement components) (total of 23 genes, 27%), zinc
finger transcription factors (10 genes, 12%), metal ion
transporters and regulators (17 genes, 20%). The greater
number of clusters identified by GO analysis of genes
more highly expressed in stromal cells further demon-
strates the broader diversity of gene expression patterns
of the stromal tissue, due to the heterogeneous cell types
that encompass the stromal compartment, supporting
our earlier Venn analysis (Figure 1). We also found that
both cell types shared some functional gene categories,
such as ion transport and regulation related genes.

Overall, we observed that many of the differentially
expressed genes identified in the "Significantly Higher"
lists (additional files 1 and 2) fall into two categories that
are important for cell signaling: transcription factors and
growth control. Of the transcription factors identified, we
examined three within the zinc finger family, namely
Wilms' Tumor 1 (WT1), GATA2, and early growth recep-
tor protein 1 (EGR1). Of the growth control genes identi-
fied, we examined those known to be important in
prostate tumorigenesis such as the chemokines CCL5
and CXCL13 and members of the insulin-like growth fac-
tor (IGF) and fibroblast growth factor (FGF) signaling
pathways including IGF-1, IGF-IR, IGFBP3, FGF-2, and
FGFR-3 [25-27]. Based on the microarray analysis, ele-
vated expression of the zinc finger transcription factors
(WT1, EGR1, and GATA2) and growth factor receptors
(IGF-1R and FGF-R3) was observed in the epithelia,
while expression of the chemokines (CCL5 and CXCL13)

Figure 1 Venn diagram of Significantly Expressed Genes. To be 
considered present, the transcript had to receive a "Present" call on all 
three samples. 6946 of the 22215 probes on the array were identified 
as "present" in all 3 sample pairs (15,269 were absent or marginal) and 
~50% of the identified genes (3452) were expressed in both epithelial 
and stromal tissue. Forty-two percent of the identified genes (2911) 
were more highly expressed in stromal cells (red) and only 8% (583 
genes) were more highly expressed in epithelial cells (blue). The abun-
dance of gene expression in stromal tissue is consistent with its cellular 
heterogeneity.



Gregg et al. BMC Cancer 2010, 10:165
http://www.biomedcentral.com/1471-2407/10/165

Page 6 of 14

Table 2: Genes Expressed significantly higher in epithelial cell samples

Probe ID Gene Symbol Description Bayes p-value Fold Change

205347_s_at TMSNB thymosin, beta 2.32E-08 43.9

214404_x_at SPDEF prostate epithelium-specific Ets transcription factor (SAM 
pointed domain-ets factor)

4.21E-08 132.1

214087_s_at MYBPC1 myosin-binding protein C, slow-type 1.23E-07 75.5

202489_s_at FXYD3 FXYD domain containing ion transport regulator 3 1.78E-07 36.6

218211_s_at MLPH melanophilin 1.85E-07 27.3

209706_at NKX3-1 NK3 transcription factor related, locus 1 2.72E-07 28.1

204379_s_at FGFR3 fibroblast growth factor receptor 3 7.91E-07 259.5

217771_at GOLPH2 golgi phosphoprotein 2 8.28E-07 36.3

201196_s_at AMD1 adenosylmethionine decarboxylase 1 9.01E-07 15.6

201839_s_at TACSTD1 tumor-associated calcium signal transducer 1 1.06E-06 16.0

39248_at AQP3 aquaporin 3 1.1E-06 19.6

205862_at GREB1 GREB1 protein 1.11E-06 51.5

200632_s_at NDRG1 N-myc downstream regulated gene 1 1.19E-06 14.3

218313_s_at GALNT7 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 7

1.43E-06 16.9

204583_x_at KLK3 kallikrein 3, (prostate specific antigen) 1.73E-06 83.5

216920_s_at TRGV9 T-cell receptor (V-J-C) precursor 2.07E-06 17.8

203196_at ABCC4 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 2.14E-06 26.1

209854_s_at KLK2 kallikrein 2, prostatic 2.2E-06 95.7

209855_s_at KLK2 kallikrein 2, prostatic 2.33E-06 74.0

201596_x_at KRT18 keratin 18 2.41E-06 29.1

207430_s_at MSMB microseminoprotein, beta- 2.61E-06 64.8

204582_s_at KLK3 kallikrein 3, (prostate specific antigen) 3.09E-06 79.4

200606_at DSP desmoplakin 3.18E-06 22.2

202241_at TRIB1 phosphoprotein regulated by mitogenic pathways 3.5E-06 21.0

213920_at CUTL2 cut-like 2 (Drosophila) 3.75E-06 18.6

211144_x_at TRGV9 T-cell receptor (V-J-C) precursor 3.79E-06 19.5

201563_at SORD sorbitol dehydrogenase 4.92E-06 14.6

217776_at RDH11 retinol dehydrogenase 11 5.18E-06 11.4

221577_x_at GDF15 growth differentiation factor 15 6.02E-06 31.7

219806_s_at FN5 FN5 protein 6.47E-06 15.4

219049_at ChGn chondroitin beta1,4 N-acetylgalactosaminyltransferase 6.48E-06 13.9

202023_at EFNA1 ephrin-A1 6.71E-06 11.1

210297_s_at MSMB microseminoprotein, beta- 7.34E-06 45.2

209813_x_at TRGV9 T-cell receptor (V-J-C) precursor 9.94E-06 20.6

201690_s_at TPD52 tumor protein D52 1.06E-05 9.5

a Probe Set ID is the identification number from the Affymetrix chip.
b. Posterior probability of differential expression > 0.99).
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Table 3: Genes Expressed significantly higher in stromal cell samples

Probe ID Gene Symbol Description Bayes p-value Fold Change

205242_at CXCL13 chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant) 2.3E-07 200.7

202274_at ACTG2 actin, gamma 2, smooth muscle, enteric 9.8E-07 11.9

203903_s_at HEPH hephaestin 1.4E-06 12.9

205132_at ACTC actin, alpha, cardiac muscle 1.7E-06 26.1

204655_at CCL5 chemokine (C-C motif) ligand 5 2E-06 24.8

203413_at NELL2 NEL-like 2 (chicken) 2.1E-06 20.1

1405_i_at CCL5 chemokine (C-C motif) ligand 5 2.3E-06 21.8

222043_at CLU clusterin 2.4E-06 19.5

217764_s_at RAB31 RAB31, member RAS oncogene family 3.5E-06 13.7

202565_s_at SVIL supervillin 3.8E-06 11.6

212865_s_at COL14A1 collagen, type XIV, alpha 1 (undulin) 4.3E-06 18.0

206030_at ASPA aspartoacylase (aminoacylase 2, Canavan disease) 5E-06 53.5

204400_at EFS embryonal Fyn-associated substrate 5.2E-06 8.7

204939_s_at PLN phospholamban 5.2E-06 14.7

205382_s_at DF D component of complement (adipsin) 5.7E-06 10.3

209480_at HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 5.9E-06 22.8

201058_s_at MYL9 myosin, light polypeptide 9, regulatory 6.5E-06 14.3

202555_s_at MYLK myosin, light polypeptide kinase 6.6E-06 23.6

213994_s_at SPON1 spondin 1, extracellular matrix protein 6.9E-06 16.5

209541_at IGF1 insulin-like growth factor 1 7.4E-06 20.9

212764_at TCF8 transcription factor 8 7.4E-06 8.6

201105_at LGALS1 lectin, galactoside-binding, soluble, 1 (galectin 1) 8.1E-06 9.1

205743_at STAC src homology three (SH3) and cysteine rich domain 9.5E-06 16.5

200897_s_at KIAA0992 palladin 1.1E-05 7.0

201438_at COL6A3 collagen, type VI, alpha 3 1.2E-05 7.1

205549_at PCP4 Purkinje cell protein 4 1.2E-05 6.7

209210_s_at PLEKHC1 pleckstrin homology domain containing, family C (with 
FERM domain) member 1

1.2E-05 9.5

221667_s_at HSPB8 heat shock 27 kDa protein 8 1.3E-05 17.0

205475_at SCRG1 scrapie responsive protein 1 1.3E-05 14.8

201540_at FHL1 four and a half LIM domains 1 1.4E-05 11.0

214044_at RYR2 ryanodine receptor 2 (cardiac) 1.4E-05 22.0

218087_s_at SORBS1 sorbin and SH3 domain containing 1 1.4E-05 7.1

204083_s_at TPM2 tropomyosin 2 (beta) 1.5E-05 11.3

218332_at BEX1 brain expressed, X-linked 1 1.6E-05 11.9

204464_s_at EDNRA endothelin receptor type A 1.7E-05 7.2

204069_at MEIS1 Meis1, myeloid ecotropic viral integration site 1 homolog 
(mouse)

1.7E-05 11.8

a Probe Set ID is the identification number from the Affymetrix chip.
b. Posterior probability of differential expression > 0.99).
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Table 4: Functional classification clustering analysis: genes differentially expressed in prostate cancer epithelial and 
stromal cells

Gene functional 
classificationa

Number of genes (%)b Gene symbols Enrichment scores range

I. Gene clusters upregulated in epithelial cells (40 clustered genes)c

Group 1.
Membrane-associated 
glycoproteins
(including proteases)

26 (65%) ALCAM, AQP3, C1ORF115, C20ORF3, CLDN8, 
DPP4, FAM134A, FXYD3, GOLM1, GPR56, HPN, 
KLK2, KLK3, PTPRF, SLC19A1, SLC39A6, SLC7A1, 
SPINT2, SYNGR2, TACSTD1, TACSTD2, TM4SF1, 
TMED3, TMED9, TSPAN8, YIPF1

2.57

Groups 2-3.
Ion transporters (including 
metal ion and ATP dependent 
transporters)

14 (35%) ABCC4, AQP3, ATP2C1, ATP2C2, ATP6V0E2, 
ATP8A1, CACNA1D, FXYD3, KCNN2, KCNN4, 
KCNS3, SLC39A6, SLC4A4, TRPV6

1.34 - 2.01

II. Gene clusters upregulated in stromal cells (86 clustered genes)c

Groups 1-3.
Organ development and 
structural proteins
(including muscle genes)

21 (24%) COL14A1, COL16A1, COL17A1, COL1A2, COL3A1, 
COL4A1, COL4A2, COL4A3, COL4A6, COL6A3, SLK
ACTC1, ANGPT1, BMP5, CHRDL1, COL4A2, DES, 
FAM48A, MYH11, MYH6, SCRG1, SERPINF1, TPM1, 
TPM2

5.87 - 7.17

Groups 4-5.
Structural and extracellular 
matrix proteins

12 (14%) CALM3 (3 loci, Entrez Gene IDs 801, 805, 808), 
CETN2, EFEMP1, EFEMP2, FBLN1, MATN2, NELL2, 
NID2, PLS3, S100A4

4.14 - 4.87

Group 6-7, 10.
immune and inflammation 
related proteins

22 (26%) BTN3A2, BTN3A3, C1S, C3, C7, CCR5, CDH10, CFD, 
CLU, CX3CR1, CXCR4, EDNRA, FZD7, HLA-DPA1, 
HLA-DQA2, HLA-DQB2, IL6ST, JAM3, LPHN1, 
MCAM, SERPING1, SGCG

1.9 - 3.47

Group 8.
zinc finger transcription factors

10 (12%) CSRP1, CSRP2, DZIP1, FHL1, LDB3, LMO3, MBNL1, 
MBNL2, PEG3, ZFP36L1

2.49

Groups 9, 11.
metal ion transporters and 
regulators

17 (20%) ARVC2, ATP1A2, C10ORF56, CHN1, FHM2, FXYD6, 
ITPR1, KCNAB1, KCNMA1, KIR6.1, MBLL, PDZRN4, 
SERCA2, SLC24A3, SP140L, STAC, TRPC4

1.56 - 2.06

a. Classification of 496 genes performed by DAVID Gene Ontology analysis, terms based primarily on GO_BP, GO_MF,GO_CC terms
b. %of total clustered genes in parenthesis
c. 11% of upregulated epithelial and 28% of upregulated stromal genes were clustered into 3 and 11 functional clusters, respectively

and growth factor ligands (IGF-1, FGF-2, and IGFBP3)
was found in the stroma.

In order to more precisely quantify the expression of
genes in the LCM-derived samples used in the oligonu-
cleotide microarray, we analyzed the selected genes
described above using quantitative real-time PCR and the
2-ddCt method [28]. Due to limitations in the quantity of
RNA obtained from the laser captured samples, expres-
sion of only seven of the ten genes examined was con-
firmed in at least two of the three samples, namely WT1,
GATA2, CCL5, CXCL13, IGF-1, IGF-1R and FGF-2. Of
those genes analyzed, fold difference values were at least
1.2-fold or greater relative to the paired cell type, i.e. epi-
thelia relative to stroma, or vice versa (data not shown).

Interestingly, elevated EGR1 expression was not con-
firmed by real-time analysis of epithelial cells.

Expression in paired tumor and non-neoplastic tissues, cell 
lines, and tissue microarrays
Once tissue-specific expression patterns were estab-
lished, we then asked whether those genes were also
expressed in normal prostate tissue. We quantified
expression of the genes described above in ten paired fro-
zen tumor and non-neoplastic prostate tissues. Expres-
sion in tumor tissue was normalized to paired non-
neoplastic tissue obtained from the same prostate. The
genes highly expressed in microdissected tumor epithe-
lial cells were expected to be abundant in surgically dis-
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sected tumor tissue enriched with tumor epithelial cells.
For the genes WT1, GATA2, and FGFR3, the expression
pattern in surgically dissected tumor tissue was consis-
tent with that in the microdissected epithelial cells (Fig-
ure 2 Panel A). In contrast, paired tissue analysis showed
IGF1R levels in tumor tissues were similar to those in
non-neoplastic samples. Another exception to the pat-
tern of elevated expression in tumor tissues of genes
identified in epithelial cells, was the significantly higher
EGR1 expression in non-neoplastic compared to tumor
tissues (p < 0.05, paired t-test). This lack of elevated EGR1
expression in tumor tissue was consistent with the results
of the real-time PCR quantitation of expression in micro-
dissected tissue. Overall, the expression patterns in non-
neoplastic tissues from paired samples were consistent
with those in stroma cells obtained from laser capture
microscopy (Figure 2 Panel B). These results can be
attributed to relatively fewer epithelial cells in the normal
tissue samples. Thus, as a reflection of stromal cell preva-
lence, the stromal genes are more highly expressed in
non-neoplastic tissue than in the paired tumor tissue; all
mean fold difference values were 1.7-fold or greater in
non-neoplastic tissues.

Additional analysis of zinc finger transcription factor
expression was expanded to include another ten paired
frozen tumor and non-neoplastic tissue samples. Data
was analyzed by clinical stage to determine whether there
was any relationship between clinical stage, especially
invasiveness, and gene expression. Expression in invasive
T3 stage tumors was compared to that of non-invasive
stage T2 tumors. As seen in Table 5 top, in the majority of
invasive stage T3 tumors, WT1 expression levels are
higher (2.0 fold or greater) in tumor than in non-neoplas-
tic tissues. Conversely, in the majority of localized stage
T2 tumors WT1 expression levels are lower in tumor
than non-neoplastic tissues (Table 5 bottom). Surpris-
ingly, EGR1 expression was consistently lower in tumor
tissues relative to non-neoplastic tissues for both stage T2
and T3 tumors. GATA2 expression was also reduced in
tumor tissues in the majority of stage T2 samples,
although in stage T3 tumors, expression was not consis-
tent. To focus on the inverse relationship between WT1
and EGR1, we also examined five established prostate
cells lines for their expression levels of each gene. Expres-
sion in the prostate tumor cell lines LNCaP, LNCaP-C42,
PC3 and DU145 was normalized to expression in the
non-tumorigenic cell line RWPE-1 (Figure 3). With the
exception of the DU145 cells, WT1 and EGR1 expression
levels were consistent with the frozen paired tissue sam-
ples examined; that is, WT1 expression was elevated (p <
0.05) and EGR1 expression reduced (p < 0.001) in tumor
cell lines relative to RWPE-1 prostate epithelial cells.

Because elevated levels of WT1 mRNA expression were
observed in laser capture samples, frozen tissues, and

tumorigenic cells, we examined WT1 protein expression
by immunohistochemical analyses of prostate tissue
microarrays. These results demonstrated the presence of
WT1 protein in 65% of tumor samples examined (Figure
4). In contrast, WT1 protein was not detected in both
normal prostate and benign prostatic hyperplasia sam-
ples (Figure 4 Top). Notably, in those samples with WT1
expression, the majority of staining was cytoplasmic with
only a few samples demonstrating nuclear expression
(not shown). Both cytoplasmic and nuclear WT1 staining
has been shown in other tumor types [29,30].

Discussion
Using laser capture microdissection to isolate distinct
cell-type populations from epithelial and stromal tissues
in prostate cancer, our results identified nearly 500 genes
whose expression was significantly different between epi-
thelial and stromal cells. One important finding was the
differential expression of WT1 in prostate cancer epithe-

Figure 2 Quantitation of differentially expressed genes in ten 
paired tumor and non-neoplastic samples. Panel A. Relative ex-
pression of epithelial genes in tumor tissue compared to paired non-
neoplastic tissue. Panel B. Relative expression of stromal genes in non-
neoplastic tissue compared to paired tumor tissue. Data indicates fold 
changes in gene expression using the 2-ddCt method. Values greater 
than 1 indicate greater expression in tumor (A) or non-neoplastic (B) 
tissue. The upper and lower boundaries of the boxes define the 
quartiles, 75% and 25%, respectively, and the black bar represents the 
median value. The diamond indicates the mean.
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lia cells. This cell specific expression suggests a potential
role for WT1 in prostate cancer. While there have been
reports of WT1 expression in prostate [29,31], our results
demonstrate the most complete evidence of elevated
WT1 expression at both mRNA and protein levels in
prostate tumors. While Devilard et al. [32] demonstrated
differential expression of WT1 by microarray analysis of
the LuCaP cell line in a xenograft model, our study is the
first to identify WT1 expression in microdissected
human epithelial cells. We have confirmed the microar-
ray results by real-time PCR and quantified WT1 expres-
sion in paired tissue samples and in established

tumorigenic cell lines. In paired tumor and non-neoplas-
tic tissue, WT1 expression was elevated in 70% of high-
grade tumors examined. In three of four established pros-
tate cancer cell lines, WT1 expression was also signifi-
cantly higher than the non-neoplastic cell line RWPE-1.
Further analysis of WT1 protein identified expression in
65% of tumor samples and, more importantly, the
absence of expression in non-neoplastic and BPH sam-
ples.

This elevated WT1 expression provides evidence for a
potential oncogenic role in prostate cancer. Although
WT1 is expressed mainly in the urogenital system during
development and in the central nervous system, bone
marrow, lymph nodes, and gonads in adulthood [33,34],
many studies have shown elevated WT1 expression in
diverse cancer types [29], including leukemia [35-37].,
breast [29,38,39], ovarian [40], mesothelioma and pulmo-
nary adenocarcinomas [30]. Additionally, WT1 is being
thoroughly investigated as a potential prognostic marker
[35,38,41]. Structurally, WT1 belongs to the family of
transcription factors with four Krüppel-like zinc fingers
in the C-terminus that aid in nucleic acid binding. WT1
exists in multiple isoforms and its ability to regulate tran-
scription is primarily determined by the presence or
absence of three amino acids: lysine, threonine, and ser-
ine (KTS), encoded at the end of exon 9 [42]. Function-
ally, WT1 has been shown to regulate genes important in
prostate cancer including VEGF, Bcl2, AR, and IGF1R
[43-46]. We have recently identified potential WT1 bind-
ing sites in the regulatory sequences of genes expressed in
prostate cancer epithelial cells [47,48]. Additionally, WT1
protein was identified bound to several of these gene pro-
moters in native chromatin of transfected LNCaP cells.

Figure 3 Inverse relationship between WT1 and EGR1 in prostate 
cancer cell lines. WT1 and EGR1 expression in LNCaP, C42, PC3, and 
DU145 prostate cancer cells was examined by QRTPCR using the 2-ddCt 

method after normalization with 18S primers. Values shown are fold 
differences relative to the non-neoplastic Prostate epithelial cell line 
RWPE-1. All cell lines were significantly different from RWPE1 using 
Dunnett's Two sided multiple comparison test (p < 0.05 for WT1 and p 
< 0.001 for EGR1).

Table 5: Quantitative real-time PCR analysis of zinc finger transcription factor expression in tumor tissue relative to non-
neoplastic tissuea.

Clinical stage

T3 T2

Gene Up
in tumorb,c

No change/Downb,d Up
in tumorb,c

No change/Downb,d

WT1 7 3 3 7

EGR-1 0 10 2 8

GATA-2 4 6 2 8

a: Frozen tumor and non-neoplastic tissue obtained from 20 patients with prostate cancer (all Gleason Score 7, but clinical stage ranging from 
T2 to T3b). Gene expression levels determined by the ddCt method after normalization using 18s rRNA primers.
b. Number of samples with elevated expression (Up in tumor) and those with no change or reduced expression (No change/Down) in tumor 
relative to non-neoplastic tissue is shown for each gene and clinical stage.
c. Up in tumor: Tumor samples with elevated expression, relative to non-neoplastic tissue. Fold-change in expression values ≥ 2.0;
d. No change/Down: Tumor samples with no change or reduced expression, relative to non-neoplastic tissue. Fold-change in expression 
values ≥ 2.0 or no difference from non-neoplastic tissue.
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Therefore, an up-regulation of WT1 expression in pros-
tate epithelial cells would be consistent with transcrip-
tional modulation of important prostate cancer growth
control genes.

In addition to nuclear WT1 protein, we and others have
observed WT1 protein in the cytoplasm of several tumor
types [30], and this is consistent with the presence of a
cytoplasmic localization signal on the WT1 protein.
Although the exact function of cytoplasmic WT1
remains to be elucidated, WT1 can shuttle between the
nucleus and cytoplasm as it contains both a nuclear local-
ization signal and a nuclear export signal [49]. One caveat
is that cytoplasmic WT1 protein could be of one specific
isoform, as antibody staining cannot distinguish amongst
the various isoforms of the WT1 protein. It is possible
that cytoplasmic protein is transcriptionally inactive,
indeed the phosphorylated form is thought to be retained
in the cytoplasm [50,51]. Another possibility is that the
cytoplasmic function is post-transcriptional; surprisingly,
it has been shown that both +KTS and -KTS isoforms can
function as shuttling proteins and both associate with
polyA RNPs and polysomes[52].

One surprising result was the pattern of EGR1 expres-
sion. Although EGR1 has previously been reported to be

elevated in high grade prostate tumors (GS 8-10) [53], our
results demonstrated that EGR1 expression was not sig-
nificantly elevated in tumor tissues relative to non-neo-
plastic tissues in paired T3 stage samples. This trend was
also consistent in cell cultures; the non-tumorigenic
RWPE-1 cell line expressed greater levels of EGR1 than
all tumorigenic cell lines tested. These discrepancies in
EGR1 expression can primarily be attributed to two rea-
sons. First, we measured EGR1 levels in paired samples
within the same individual, while the aforementioned
study examined tissue samples from unrelated individu-
als. Secondly, the tumor samples were all Gleason Score
7; so the possibility remains that EGR1 levels might be
elevated in higher grade tumor samples. Clearly, the topic
of EGR1's activity as a tumor suppressor or oncogene
remains highly debated [54].

Previous microarray studies have primarily examined
prostate tumor tissues as a whole, containing both epithe-
lial and stromal cell types, and compared their expression
patterns to adjacent non-neoplastic tissue or normal
donor prostates [9,10,55]. However, a comparison with
the genes expressed significantly higher in our microdis-
sected tumor epithelial samples suggests that some of the
reported tumor genes in the literature are actually

Figure 4 Immunohistochemical analysis of WT1 expression in prostate tissue microarrays. Top Panel. FFPE tissues were stained as described 
in text using WT1 polyclonal antibody (Epitomics). Representative fields of tumor tissue (left, Gleason Score 8) and normal (center) and BPH samples 
(right) panels show WT1 protein expression (brown) limited to tumor epithelium. Bottom Panel. Relative staining intensity was scored as described 
in text. Duplicated cores samples from 31 patients with Gleason score 6-10 (nearly half were high grade, Gleason 8-10) and 7 patients with BPH and 5 
samples of normal tissue from cancer-free prostates were analyzed. Positive WT1 staining was seen in 65% of patient samples examined.
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expressed in the stromal cell compartment and not in the
epithelia. For example, SPARC expression appears in sev-
eral tumor microarray analyses [56,57], but was identified
in the stromal compartment in our studies and in other
tumor types [58,59].

Our analysis of differential expression between adjacent
stroma and tumor epithelia showed that the cytokines,
CCL5 and CXCL 13, and the growth factors, IGF-1 and
FGF-2, were upregulated in stromal cells. Additionally
their expression was elevated in non-neoplastic paired
frozen prostate tissues. Both IGF and FGF axes are
known to be upregulated in prostate tumors [25-27] and
several groups have shown IGF-1 to be expressed in pros-
tate tumor stroma [26,60,61]. Overall our results are in
agreement with other studies that have shown elevated
expression of genes such as IGF-1, FGF-2, IGFBP3,
desmin, vinculin, and vimentin in prostate stromal tissues
[7,27,62]. These results demonstrate that genes differen-
tially expressed in tumor cell compartments include
those important to growth regulation, and in particular,
genes of the IGF axis are expressed.

While it is difficult to make direct comparisons
between this study and others that used LCM to examine
altered expression in tumor vs. normal epithelia, we and
others observed genes elevated in prostate cancer epithe-
lial cells including kallikrein proteins 2 (KLK2), and 3
(KLK3, or PSA) [16]. KLK2 and PSA are androgen regu-
lated serine proteases expressed in prostate epithelial
cells and upregulated in prostate cancer [63]. Two ets
related transcription factors observed in this study, ets-
related gene (ERG) and Sam pointed domain ets tran-
scription factor (SPEDF) [16] are known to be upregulated
in prostate tumor epithelial cells [64,17,18]. The impor-
tance of the ERG gene is supported by its frequent
involvement in complex rearrangements with a host of
other gene fusion partners. Overall the expression of
these genes in prostate cancer epithelial cells is consistent
with their potential roles in tumorigenesis.

Fewer studies have used LCM to examine gene expres-
sion in stromal samples, but the SELECT cancer preven-
tion trial identified expression of two angiogenesis genes
elevated in stromal tissue: angiopoietin1 (angpt1) and the
endothelin A receptor (EDNRA), genes that we also
observed in stromal tissues [14]. Additionally, gene fami-
lies upregulated in normal stroma relative to reactive
tumor stroma included: caveolin (CAV), tropomyosin
(TPM), transforming growth factor-B (TGFβ), Laminin
(LAM), and EDNR [12]. In our study, TPM1, TPM2,
CAV1 and CAV2 were elevated in stromal compared to
epithelial tissue. Thus, while a direct comparison cannot
be made between our unique study of tumor epithelial
and stromal tissues and other studies focused predomi-
nantly on one tissue type, there are indications of com-
mon patterns of gene expression. Importantly, using this

tissue specific approach novel gene expression patterns
can be more clearly identified.

Conclusions
In the present study, LCM and microarray analysis were
used as tools to identify distinct gene expression patterns
in prostate cell populations and led to the identification
of genes of potential significance in prostate cancer, such
as WT1. As WT1 has already been investigated as a clini-
cal marker in acute leukemia, data demonstrating WT1
expression in prostate tumor tissues may point to its use-
fulness as a potential marker for prostate cancer.

Data Deposition
Results of the microarray analyses are posted at NCBI's
Gene Expression Omnibus and are accessible through
GEO Series accession number GSE 20758 http://
www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE20758.
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