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Prognostic signature based 
on m6A‑related lncRNAs to predict 
overall survival in pancreatic ductal 
adenocarcinoma
Qiong Wu, Lei Chen, Dongliu Miao, Yiqi Jin & Zhigang Zhu*

A growing body of evidence indicates that N6‑methyladenosine (m6A) and long non‑coding RNAs 
(lncRNAs) play crucial roles in the progression of PDAC and the treatment response of patients 
with pancreatic ductal adenocarcinoma (PDAC). In this study, we identified m6A‑related lncRNAs 
to reveal their association with PDAC in prognosis and tumor immune environment. A prognostic 
signature based on 9 m6A‑related lncRNAs was established, and the high‑risk patients exhibited 
a significantly worse prognosis than low‑risk patients. The predictive capacity was confirmed 
by receiver operating characteristic (ROC) curve analysis and an independent validation cohort. 
Correlation analyses revealed that m6A‑related lncRNA signature was significantly associated with 
the number of somatic mutations, immunocyte infiltration, immune function, immune checkpoints, 
tumor microenvironment (TME) score, and sensitivity to chemotherapeutic drugs. Consequently, we 
constructed a highly accurate nomogram for improving clinical applicability of signature and exhibited 
superior predictive accuracy than both the signature and tumor stage. In conclusion, our proposed 
m6A‑related lncRNA signature is a potential indicator predictive of prognosis and immunotherapeutic 
responses in PDAC patients.
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m6A  N6-methyladenosine
lncRNAs  Long non-coding RNAs
LASSO  Least absolute shrinkage and selection operator
ROC  Receiver operating characteristic
TME  Tumor microenvironment
RNA-seq  RNA-sequencing
TCGA   The cancer genome atlas
ICGC   International cancer genome consortium
FPKM  Fragments perkilobase million
GSEA  Gene set enrichment analysis
ICIs  Immune checkpoint inhibitors

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy with a dismal  prognosis1. Despite its 
low incidence, PDAC represents the fourth leading cause of cancer-related deaths in the United States, but may 
have moved to second place by 2030 after lung cancer and surpassing colorectal and breast cancers, and its 
mortality is increasing for both  genders2. PDAC is typically asymptomatic and the majority of PDAC patients 
were diagnosed at an advanced  stage3. Additionally, 60–80% of patients presenting resectable pancreatic tumors 
will exhibit recurrence, regardless of administration of adjuvant  therapy4. For patients with an advanced stage 
of PDAC, neoadjuvant therapy, radiotherapy, chemotherapy, targeted molecular therapy, and immunotherapy 
have only yielded modest improvements in  survival1. Therefore, it is significant and urgent to develop depend-
able biomarkers for accurate risk stratification and prognostic prediction, thereby facilitating individualized 
treatment and prolonging survival of patients with PDAC.
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N6-methyladenosine (m6A), a reversible and abundant modification on messenger RNAs (mRNAs) and non-
coding RNAs (ncRNAs), has been demonstrated to greatly affect various aspects of RNA metabolism, including 
splicing, stability, nuclear export, and  translation5,6. Several studies have indicated that the aberrant expression 
of m6A regulators, which include the “writers” (methyltransferases), “readers” (binding proteins), and “erasers” 
(demethylases), can potentially induce m6A to actively participate in carcinogenesis, cancer development, and 
drug resistance, including  PDAC7,8. For instance, high expression of METTL3, an m6A methyltransferase, has 
been reported to be able to facilitate the proliferation and progression of colorectal cancer, gastric cancer, and 
PDAC  cells9–11.

Long noncoding RNA (lnRNA) refers to a class of non-protein coding transcript, which constitute approxi-
mately eighty percent of the human whole gene  transcriptome12. It contains more than 200 nucleotides, which are 
not translated into proteins, can broadly be classified into: sense, antisense, bidirectional, intronic and intergenic 
 lncRNAs12. However, increasing evidence have revealed the contributions of lncRNA in cancer phenotypes by 
physically interacting with proteins, DNA, and other  RNA12. Previous studies have uncovered the influence of 
lncRNAs on the regulation of various biological processes, including tumorigenesis and  immunity13,14. Mounting 
evidence supports the notion that the interaction between m6A and lncRNAs is involved in the growth and devel-
opment of cancer, including pancreatic  cancer15. For example, He et al.16 revealed that the m6A eraser ALKBH5 
inhibited pancreatic cancer motility by demethylating lncRNA KCNK15-AS1. IGF2BP2 acts as an m6A reader to 
up-regulate the expression of lncRNA DANCR, which promotes cancer stemness-like properties and the patho-
genesis of pancreatic  cancer17. Another recent report demonstrated that m6A-mediated up-regulation of lncRNA 
LIFR-AS1 promotes the progression of pancreatic cancer via miRNA-150-5p/VEGFA/Akt  signaling18. Thus, an 
m6A-related lncRNA-based prognostic model may be helpful in the understanding and management of PDAC.

Herein, by utilizing the RNA-sequencing (RNA-seq) data and corresponding clinical information from The 
Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, we investigated 
the prognostic and immunologic significance of m6A-related lncRNAs and developed an m6A-related lncRNA 
prognostic signature to predict survival outcomes in patients with PDAC. The effectiveness and stability of the 
signature were verified. Meanwhile, we also investigated the correlations of the prognostic signature with clini-
cal features, tumor immune microenvironment, somatic mutation landscapes, and chemosensitivity. Ultimately, 
nomograms were constructed and allowed for improved accuracy in survival estimation.

Materials and methods
Data collection and m6A‑related lncRNAs identification. Transcriptome profiling converted into 
fragments perkilobase million (FPKM) along with clinical data of 178 cases, and the somatic mutation data were 
downloaded from TCGA database (https:// portal. gdc. cancer. gov/ repos itory). GTF file was downloaded from 
GENCODE (https:// www. genco degen es. org) as annotation to differentiate mRNA and lncRNA. We excluded 
patient whose follow-up time was less than 30 days. One hundred and seventy patients in total with gene expres-
sion data were included. To validate the signature, we downloaded expression data (n = 82) from ICGC database 
(https:// icgc. org/). In the present study, TCGA dataset and ICGC dataset were used for training and validation, 
respectively. The expression matrices of 23 m6A-related genes were obtained based on the latest publications. 
m6A-related lncRNAs were extracted by co-expression strategy, whose correlation coefficients were over 0.4 and 
P-value < 0.001.

Establishment of m6A‑related lncRNA signature. The TCGA and ICGC cohorts were treated as 
training and validation sets, respectively. The prognostic signature based on m6A-related lncRNAs was con-
structed in three steps as follows: (1) univariate Cox regression analysis was conducted to screen m6A-related 
lncRNAs that significantly correlated with the overall survival (OS) of PADC patients; (2) to minimize the risk 
of overfitting, the least absolute shrinkage and selection operator (LASSO) Cox regression was applied, and 
the penalty parameter was estimated by tenfold cross-validation in the training set at the minimum partial 
likelihood deviance; (3) multivariate Cox regression analysis was ultimately performed to screen the optimal 
m6A-related lncRNAs for the prognostic signature. Then, a prognostic signature for the patients was developed 
using multivariate regression coefficients of lncRNA expression. The risk score was calculated by the formula as 
follows:Risk score = β1 ∗ Exp1+ β2 ∗ Exp2+ β3 ∗ Exp3,  where β is the coefficient and Exp is the expression 
value of the corresponding m6A-related lncRNAs. According to the median of risk scores as a cut-off value, 
patients were divided into high-risk and low-risk groups. Kaplan–Meier analysis was used to show the survival 
difference between the high- and low-risk groups. The receiver operating characteristic (ROC) curves were con-
ducted for assessment of the predictive ability of the signature by “SurvivalROC” R package.

To distinguish patients from high- to low-risk group, the optimal cutoff point for the risk score was deter-
mined using the formula described above in the training set. We performed Kaplan–Meier analysis to show the 
survival difference between the high- and low-risk groups. The predictive ability of the prognostic signature was 
assessed by the time-dependent ROC curve.

Immune infiltration analysis. To investigate the immune infiltration of PDAC, we analyzed the infil-
trating score of 16 immune cells and 13 immune-related pathways from PDAC gene expression profiles using 
single-sample gene set enrichment analysis (ssGSEA)19. We further used “estimate” R package to calculate the 
immune, stromal, and ESTIMATE scores of each PDAC patient based on the ESTIMATE  algorithm20. Finally, 
we extracted potential immune checkpoints from previous literature, then compared and analyzed differences 
among them at P-value < 0.05.

https://portal.gdc.cancer.gov/repository
https://www.gencodegenes.org
https://icgc.org/
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Mutation and drug sensitivity analyses. The waterfall function of “maftools” R package was used to 
visualize the mutation landscape in patients with high- and low-risk group. The somatic mutation count and 
TMB (mutations per million bases) of each patient were calculated. Wilcoxon test was performed to compare the 
somatic mutation and TMB levels between the high- and low-risk group. To explore differences in therapeutic 
effects of chemotherapeutic drugs in patients across the high- and low-risk groups, R package “pRRophetic” 
was used to predict the half-maximal inhibitory concentration (IC50), which could construct a ridge regression 
signature based on TCGA gene expression profiles and Genomics of Drug Sensitivity in Cancer cell line expres-
sion  spectrum21.

Clinical correlation analysis and stratification analysis of signature. Clinical correlation analysis 
was conducted to evaluate the correlation between risk score of the prognostic signature and clinical factors, 
including age, gender, T and N stage, surgery type, tumor size, and tumor location. In addition, we also divided 
the clinical characteristics of patients into various subgroups, namely those < 60 and > 60 years old, males and 
females, those with high and low pathological grades, T1-2 and T3-4, N0 and N1, body/tail of pancreas and 
head of pancreas, Whipple and other surgery types, as well as tumor size < 3.0 cm and > 3.0 cm. Thereafter, we 
calculated risk scores and compared them across subgroups. In addition, we used the risk scores to divide each 
sub-group into low- and high-risk groups, then generated K-M curves for comparison.

Development and validation of prognostic nomogram. We used Cox regression analysis to select 
clinical prognostic factors along with risk status as the prognostic parameters to construct a nomogram model 
for predicting the probability of survival at 1 and 3 years in PDAC patients and then plotted the nomogram 
by the “rms” R packages. Calibration plots were used to evaluate the discriminative power of the nomogram. 
The ROC curve and calibration curve varying with time were also drawn to estimate the accuracy of the actual 
observed rate with the predicted survival for 1- and 3-year OS of the nomogram.

Functional annotation of the included m6A‑related lncRNAs. To evaluate the possible biologi-
cal functions of the included m6A-related lncRNAs, Gene set enrichment analysis (GSEA) was performed to 
assess whether predefined gene sets showed statistically significant differences based on the risk score. “Expres-
sion datasets” and “phenotype labels” were made and imported as required by the software, and the “gene set 
database” was selected “C2cp.kegg.v7.2.symbols.gmt”, the number of permutations was set to 1000 times, and 
the “phenotype labs” were set to high-risk score versus low-risk score. The outcomes meet P-value < 0.05 were 
included in the analysis, and FDR < 0.25 were considered as the significant difference criteria.

Cell lines and transfection. The normal pancreatic cell line hTERT-HPNE and two human PDAC cell 
lines (PANC-1, SW1990) were purchased from the American Type Culture Collection (ATCC) and the Type 
Culture Collection of the Chinese Academy of Sciences (Shanghai, China). We cultured in RPMI 1640 (Thermo 
Fisher, Waltham, MA, USA) supplemented with 10% FBS (Thermo Fisher). hTERT-HPNE cells were maintained 
in DMEM medium supplemented with 5% FBS, human epidermal growth factor (EGF 10 ng/mL, ThermoFis-
cher, Waltham, MA, USA), puromycin (750 ng/mL, ThermoFischer, Waltham, MA, USA) and 5 mM D-glucose. 
All cells were cultured in a humidified incubator containing 5% CO2 at 37 °C. Small interfering RNAs (siRNAs) 
targeting lncRNA DCST1-AS1 and negative control siRNA (si-NC) were synthesized by GenePharma. (Shang-
hai, China). Transfection was carried out using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) and the 
final concentration was 100 nm for siRNAs.

RNA extraction and qRT‑PCR analysis. RNA extraction from tissues was performed using TRIzol rea-
gent (Invitrogen, Carlsbad, CA, USA). The total RNA was transcribed to cDNA using Prime ScriptTM RT Mas-
ter Mix (Takara, Japan). Real-time qPCR analyses were quantified with Bio-Rad system, and expression levels 
were normalized to GAPDH levels.

Cell counting Kit‑8 (CCK‑8) assay. To test cell viability, CCK-8 assay reagent (Beyotime, Shanghai, China) 
was utilized. SW1990 cells were inoculated in 96-well plates and then added with CCK-8 reagent at indicated 
time points. After the cells were cultured for another 4 h, the absorption at 450 nm was recorded.

Wound healing and transwell assays. Cell migration was assessed by wound healing assay. Briefly, cells 
were seeded into 6-well plates and allowed to grow until confluent. Following serum starvation for 24 h, an 
artificial wound was created onto the cell monolayer using a sterile 100 μl tip. Then, the cells were washed with 
serum-free medium, added with complete medium, and images of the wounds were collected at 0 h and 24 h.

Transwell chambers (24-well insert, 8 μm, Corning Costar Corp, USA) were performed to evaluate the migra-
tion capability of pancreatic cancer cells. Briefly, transfected cells in serum-free medium were added into the 
top chamber and the complete medium was supplemented into the bottom medium. After 24 h of incubation, 
the migrated cells were dyed using crystal violet (Beyotime). The dyed cells were counted in three fields under 
a 200 × objective lens using a microscope.

Results
Identification of m6A‑related prognostic lncRNAs in PDAC patients. Supplementary Fig. 1 shows 
the flowchart of data analysis in this study. The detailed clinicopathological features of PDAC patients are sum-
marized in Supplementary Table 1. Through Pearson correlation analysis, we obtained 317 m6A-related lncR-
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NAs (correlation coefficient > 0.4, P-value < 0.001; Supplementary Fig. 2). Subsequently, we identified 95 lncR-
NAs related to OS (P-value < 0.05) using univariate Cox regression analysis (Supplementary Table 2).

Establishment and validation of m6A‑related prognostic lncRNA signature. Based on 
95 candidate prognostic lncRNAs, LASSO regression analysis was performed, 19 m6A-related lncRNAs 
remained according to the minimum partial likelihood deviance (Fig.  1A, B). Then an optimum prognos-
tic signature involving 9 m6A-related lncRNAs was ultimately defined based on multivariate Cox regres-
sion analysis (Fig.  1C). The risk score for each patient was calculated as follows: risk score = (0.20906 × Exp 
AP005233.2) + (−1.13087 × ExpAC092171.3) + (−1.36500 × ExpAC010175.1) + (0.52510 × Exp-
C A S C 8 )  +  ( − 0 . 4 8 8 7 1  ×  E x p T P 5 3 T G 1 )  +  ( − 0 . 9 6 2 5 5  ×  E x p SNA I 3 . A S 1 )  +  ( − 1 . 7 9 5 0 4  ×  E x p -
FLRT1) + (−1.14898 × ExpAC022098.1) + (0.86774 × ExpDCST1.AS1). Among 9 lncRNAs, 3 lncRNAs were 
regarded as risk factors, while other 6 lncRNAs were protective factors. The distribution of the risk scores, OS 
statuses, and OS times of PDAC patients were visualized by scatter plots (Fig. 1D). Patients were divided into 
high-risk group and low-risk group based on medium value of the risk score, and the low-risk group have a lower 
mortality than high-risk group (Fig. 1E). For assessing the prediction performance of the prognostic signature, a 
risk score was calculated for each patient. The ROC curves demonstrated that the signature harbored a promis-
ing performance to predict OS of PDAC in the TCGA cohort (1-year AUC = 0.771, 3-year AUC = 0.832; Fig. 1F).

We used the ICGC dataset to determine the prognostic accuracy of the signature (Fig. 2). We calculated the 
risk score of the prognostic signature for each patient in the validation dataset using the same formula. The dis-
tribution of the risk scores, OS statuses, and OS times of PDAC patients were visualized by scatter plots (Fig. 2A, 
B). Kaplan–Meier survival analysis was conducted and demonstrated that the high-risk group exhibited a sig-
nificantly poorer prognosis compared with the low-risk group (Fig. 2C). These figures indicated that high-risk 
patients were corresponded to more death cases and shorter OS time compared with low-risk patients. The AUC 
of ROC for 1- and 3-year survival predictions were 0.794 and 0.777 in the ICGC dataset (Fig. 2D).

Immune infiltration analysis. To further explore the relationship between the prognostic risk score and 
tumour-infiltrating immune-cell fractions, we quantified the enrichment scores of diverse immune cell subpop-
ulations. As shown in Fig. 3A, the high-risk score was negatively associated with lower abundance of immune 
infiltrating cells like B cells, CD8 + T cells, DCs, mast cells, neutrophils, NK cells, pDCs, T helper cells, Tfh, Th1 

Figure 1.  Construction of m6A-related lncRNA signature in PDAC patients. (A, B) The LASSO regression 
analysis and partial likelihood deviance of the 19 m6A-related lncRNAs. (C) Forrest plot showed that a total of 
9 m6A-related lncRNAs were identified as prognosis related by multivariate cox analysis. (D) The distribution of 
the risk scores and patient living status. (E) Kaplan–Meier survival estimates of OS according to the signature. 
(F)The 1- and 3-year ROC curves of the signature in predicting OS of PDAC patients.
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cells, Th2 cells, and TIL cells (P-value < 0.05). In addition, significant differences between two risk groups were 
observed in 9 of 13 immune-related pathways (P-value < 0.05; Fig. 3B). Analysis of relationship between the risk 
score and the TME score revealed that the high-risk score was significantly associated with low stromal score, 
immune score, and ESTIMATE score (Fig. 3C–E). In addition, as the immune checkpoint inhibitors (ICIs) are 
currently considered to be a potential curative approach, and a mass of ICIs are under clinical trial. Here, we 
analyzed the relationship between the immune checkpoints and our risk score. The result demonstrated that 26 
immune checkpoints were differentially expressed in two groups, including PDCD1 (PD-1), CTLA4 (Fig. 3F), 
suggesting a potential role of the signature model in predicting immune responses to immunotherapy in PDAC 
patients.

Somatic mutation landscapes and drug sensitivity analyses. We explored the differences in 
somatic mutation between high- and low-risk groups based on the TCGA cohort (Fig. 4A, B). Waterfall plots 
depicted the frequently mutated genes in PDAC stratified by high- and low-risk groups. The top 5 mutated 
genes were KRAS, TP53, SMAD4, CDKN2A, TTN. We noticed that the high-risk group exhibited more fre-
quent somatic mutations than the low-risk group. Next, we assessed the relationship of the signature with the 
somatic mutation count and tumor mutation burden (TMB). The results indicated that the somatic mutation 
count (P-value < 0.001; Fig.  4C) and TMB (P-value = 0.002; Fig.  4D) of patients in the high-risk group were 
significantly higher than in the low-risk group. We used the R package “pRRophetic” to estimate the response 
to chemotherapy drugs in the high- and low-risk groups. As shown in Fig. 4E–H, patients in the low risk group 
were more sensitive to Camptothecin and Elesclomol, while those in the high risk group were more sensitive 
to AKT.inhibitor.VIII and Paclitaxel. However, there is no statistical difference in the response to cisplatin and 
gemcitabine between the two risk groups (Supplementary Fig. 3).

Clinical correlation analysis and stratification analysis of signature. To further verify the signifi-
cance of the prognostic signature in clinical practices, we examined the correlation between the prognostic sig-
nature and the available clinical characteristics. As shown in Fig. 5, there were significant differences between 
the high- and low-risk groups regarding T stage (P = 0.012; Fig. 5A) and N stage (P = 0.004; Fig. 5B). To confirm 
the prognostic discriminatory power of the signature, we performed stratified survival analysis in various clini-
cal subgroups, including age (age < 60 and age > 60), gender (female and male), grade (G1-2 and G3-4), T stage 

Figure 2.  Evaluation of the signature in the ICGC dataset. (A) The distribution of the risk scores. (B) Scatter 
plot illustrating the patients’ survival status. (C) Kaplan–Meier survival estimates of OS according to the 
signature. (D) The 1- and 3-year ROC curves of the signature in predicting OS of PDAC patients.
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(T1-2 and T3-4), N stage (N0 and N1), tumor location (body/tail and head), surgery type (Whipple and other), 
and tumor size (< 3.0 cm and > 3.0 cm). As the result shown in Fig. 5C–P, the OS of the high-risk patients based 
on age (P-value < 0.001), sex (P-value = 0.002 in female and P-value < 0.001 in male), grade (P-value < 0.001 
in G1-2 and P-value = 0.013 in G3-4), T stage (P-value < 0.001 in T3-4), N stage (P-value = 0.005 in N0 and 
P-value = 0.001 in N1), tumor location (P-value < 0.001 in head and P-value = 0.027 in body/tail), surgery type 
(P-value < 0.01 in Whipple), tumor size (P-value = 0.001 in < 3.0 cm and P-value < 0.001 in > 3.0 cm) were signifi-
cantly lower than those of the low-risk patients.

Construction of prognostic nomogram. Univariate and multivariate Cox regression analyses were 
employed to determine whether the m6A-related lncRNA signature has prognostic value independent of clin-
icopathological indicators, such as age, tumor location, T and N stage, grade, surgery type, and tumor size. In 
addition, to determine whether there is collinearity among the potential risk factors, we performed a correlation 
analysis among the potential risk factors. The result demonstrated that there was no obvious correlation between 
them (Table S3). As shown in Fig. 6A, B, univariate and multivariate analyses revealed a significant correlation 
between OS of PDAC patients, age, tumor location, surgery type, and risk score. Nomogram for the 1- and 
3-year OS rates based on the independent predictors determined from the multivariate analysis is shown in 
Fig. 6C. A certain point was generated for each covariate, and a total nomogram score, which was correlated with 
the 1- and 3-year OS rates, was calculated for every patient. The AUCs for the 1- and 3-year OS predictions were 
0.784 and 0.764, respectively (Fig. 6D). Calibration curves were drawn to depict the predictive value between 
the predicted 1-and 3-year survival events and the virtual observed outcomes (Fig. 6E), which showed that the 
nomogram was precise and stable.

Gene set enrichment analysis (GSEA). Gene set enrichment analyses revealed functions and pathways 
in the high-risk group that were mainly enriched in cell cycle, P53 singaling pathway, mismatch repair, and DNA 
replication signaling pathways (Supplementary Fig. 4). Notably, most of these functions were closely associated 
with occurrence and development of tumors.

Silencing of DCST1‑AS1 suppresses the proliferation and migration of PDAC cells 
in vitro. Combined with the results of the database, the functional phenotypic role of DCST1-AS1 was inves-
tigated by experimental studies. To verify the expression of DCST1-AS1 in PDAC cells, we firstly performed 
qRT-PCR assay. As shown in Fig. 7A, DCST1-AS1 was significantly upregulated in PDAC cells (PANC-1 and 
SW1990) compared with that in the normal pancreatic cell line hTERT-HPNE (P-value < 0.05). Then, siRNA 
specific for DCST1-AS1 was used to downregulate the expression of DCST1-AS1 in SW1990 cells. CCK-8 assay 

Figure 3.  Immune infiltration analysis between the two risk groups. (A, B) Boxplot of immune cells and 
immune function between high and low risk groups. (C–E) Association the risk score and the TME score 
(immune scores, stromal scores, and ESTIMATE scores). (F) Expression of immune checkpoints in high and 
low risk groups.
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indicated that DCST1-AS1 knockdown repressed the viability of SW1990 cells relative to the negative control 
(Fig. 7B).

Given that PDAC is more prone to metastasize, we further studied whether DCST1-AS1 affected the invasion 
of PDAC cells. As a result of the wound healing assay, knockdown of DCST1-AS1 significantly decreased the 
migration rate of SW1990 cells (Fig. 7C). Consistently, transwell invasion assays confirmed that the migration 

Figure 4.  Comparison of the somatic mutations and drug sensitivity analyses between the two risk groups. 
(A, B) The waterfall plot of somatic mutation features established with the high-risk group and the low-risk 
group. Each column represented an individual patient. The upper barplot showed TMB, the number on the right 
indicated the mutation frequency in each gene. The right barplot showed the proportion of each variant type. 
(C) Correlation of somatic mutation count with risk score. (D) Correlation of TMB with risk score. (E–H) The 
IC50 values of four chemotherapeutic drugs in the high- and low-risk groups.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3079  | https://doi.org/10.1038/s41598-022-07112-8

www.nature.com/scientificreports/

ability was significantly inhibited after knockdown of DCST1-AS1 in DCST1-AS1 cells (Fig. 7D). All these find-
ings suggested that DCST1-AS1 knockdown inhibited PDAC cell progression.

Discussion
PDAC is a complex and heterogeneous tumor that is associated with a high morbidity and poor  prognosis22. 
Current major challenges of PDAC are the early diagnosis, precise prediction of tumor progression and effective 
intervention. Thus, it is urgent to identify specific biomarkers that can improve accurate prognosis prediction that 
can guide personalize treatment selection to improve survival rates. With the development of next-generation 
sequencing technology, genome sequencing and analysis can be performed within a clinically significant turna-
round time. This can determine the treatment goals of individual patients and personalize treatment selection. 
Incorporating preclinical findings and molecular-guided therapies into the design of clinical trials has the poten-
tial to significantly improve the outcome of this deadly malignant  tumor23. The m6A regulators reportedly act 
as a lncRNA structural switch, participates in the lncRNA-mediated competing endogenous RNA model, and 
enhances the stability of lncRNA to serve its functions, thereby influencing tumor initiation and  progression5,6,24. 
Therefore, it is necessary to further study m6A-related lncRNAs to clarify the potential regulatory mechanism 
of m6A-related lncRNAs in tumor immune microenvironment.

Figure 5.  Clinical correlation analysis and stratification analysis of signature. (A) Correlation between the risk 
score and T stage. (B) Correlation between the risk score and N stage. (C–P) Stratified survival analysis between 
the high- and low-risk group.
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Taking advantages of high-throughput RNA-seq data and aided by previous publications for experimentally 
supported lncRNAs related to m6A modification, we constructed and verified a risk stratification signature to 
improve the prediction of clinical outcome of PDAC. First, we identified 95 lncRNAs related to OS through 

Figure 6.  Development of a nomogram for survival prediction of PDAC patients based on signature and 
clinical characteristics. (A, B) Univariate and multivariate Cox analyses simultaneously demonstrated 
the independent prognostic value of the risk score. (C) The nomogram combining risk signature and 
clinicopathological factors. (D) AUCs on the nomogram suggested that this model had higher accuracy in OS at 
1 and 3 years. (E) Calibration plots were established to compare the proposed nomogram with an ideal model.
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Pearson correlation and univariate Cox regression analyses. Next, a robust m6A-related lncRNA signature was 
established with the combination of LASSO and multivariate Cox regression analyses. Patients with high-risk 
score had a worse OS compared with low-risk score patients. The favorable performance of this signature was 
confirmed by ROC curve, and an independent ICGC dataset. Furthermore, stratified survival analysis in various 
clinical subgroups confirmed the robust prognostic discriminatory power of the signature. Analysis of immuno-
cyte infiltration by signature as well as immunologic function, revealed significant differences in two risk score 
groups. Similarly, analyses of TME score, immune checkpoints, and drug susceptibility also revealed significant 
differences between low- and high-risk groups. Further analysis revealed that patients with high-risk had signifi-
cantly higher more frequent somatic mutations and TMB than their low-risk counterparts, indicating that those 

Figure 7.  Impacts of DCST1-AS1 knockdown on the proliferation and migration of PDAC cells in vitro. (A) 
The expression of DCST1-AS1 in PANC-1 and SW1990 cells was detected by qRT-PCR assay. (B) The viability 
of SW1990 cells was analyzed by CCK-8 assay. (C, D) The migration capability of SW1990 cells transfected with 
siRNA were measured using wound healing assay and transwell assay.
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in the high-risk group had a close relationship with genomic instability. Results from univariate and multivariate 
cox analyses revealed that the prognostic value of signature was independent of other clinical characteristics. 
To improve the usefulness of the prognostic signature, we established a nomogram model, including age, tumor 
location, surgery type, and risk score. This model had excellent accuracy in predicting 1- and 3-year survival rates 
of patients with PDAC. Finally, the functional phenotypic role of DCST1-AS1 was investigated by experimental 
studies. We validated the expression of DCST1-AS1 in different PDAC cells and normal pancreatic cell lines. 
In vitro analysis showed that inhibition of DCST1-AS1 suppresses the proliferation and migration of PDAC cells.

A growing number of studies have highlighted the potential effects of the cancer immune microenvironment 
on the development and progression of  cancer25. Assessment of the enrichment of tumour infiltrates may help to 
predict the prognosis and host immune response to tumour antigens of cancer patients. In the present study, we 
found that compared to the high-risk group, the low-risk group had a higher proportion of B cell. Accumulating 
evidence have shown that B cells also participated in immune  response26,27. The enrichment of B cells and tertiary 
lymphoid structures (TLS) have been considered as the strongest prognostic factor of prolonged survival and 
positively correlated with the response to PD1 blockade in soft-tissue  sarcomas28. Meanwhile, B cell-related genes 
were markedly higher expressed in patients who responded to immune checkpoint blockade compared to non-
responders27. T cells has been deemed to play a vital role in anti-cancer immune response. This is corresponded 
to our result that low-risk group patients contained more CD8 + T cell than low-risk group in TME. This provides 
evidence that the prognostic signature might predict the efficacy of immunotherapy. Advances in the knowledge 
of immune checkpoint inhibitors have uncovered a new era of cancer  immunotherapy29. However, only a limited 
proportion of treated patients possess clinical responses, indicating the urgent demands for the investigation of 
predictive models. Therefore, we performed an immune checkpoint analysis and found 26 immune checkpoints 
with significant difference. Amon them, PD1 and CTLA4 were well-known predictive biomarkers for immuno-
therapy  response30. In addition to PD-1 and CTLA-4, our risk model revealed some underlying checkpoints that 
might be novel targets for immunotherapy in PDAC, especially for patients who are non-responders of anti-PD1/
PDL1 treatment, given the fact that not all patients are beneficial from anti-PD1/PDL1 strategy.

PDAC was found with widespread and complex patterns of chromosomal rearrangement, which means it 
was  necessary31. We compared the somatic mutation data of high-risk group and low-risk group, and found 
that the mutation frequency of TP53 in the high-risk group was significantly increased (71% versus 34%). Con-
sidering the fact that TP53 is a recognized tumor suppressor gene, this might also explain the better prognosis 
in low-risk group. In addition, KRAS mutation is the main event of PDAC; it confers permanent activation of 
the KRAS protein to maintain the cellular processes of proliferation, transformation, invasion and  survival32. 
Patients with KRAS mutation were associated with poor prognosis of PDAC. Therefore, it is meaningful to further 
explore potential ability of KRAS mutation to predict prognosis in PDAC. Moreover, our results indicated that 
TMB was significantly higher in the high-risk group, from the perspective that TMB was widely accepted as a 
biomarker for predicting  immunotherapy33, we speculated that the high-risk patients might get more benefits 
from immunotherapy.

Although most lncRNAs in our signature have not been reported before, some of them have been proved 
to be associated with cancer development, including PDAC. A recent study revealed that lncRNA DCST1-AS1 
expression was significantly upregulated in triple-negative breast cancer (TNBC), and promote TGF-β-induced 
epithelial-mesenchymal transition and enhance chemoresistance in TNBC cells through  ANXA134. Similarly, the 
expression of TP53TG1 was markedly elevated in PDAC and knockdown of GPX4 in vitro and in vivo inhibited 
cell proliferation, promoted apoptosis, and decreased migration and invasion by miR-96/KRAS  axis35. CASC8 
was found highly expressed in retinoblastoma, contributing to retinoblastoma cell proliferation by upregu-
lating miR34a  methylation36. Zhang and  colleagues37 recently revealed that lncRNA SNAI3-AS1 promoted 
PEG10-mediated proliferation and metastasis of hepatocellular carcinoma cell via decoying of miR-34a-5p and 
miR-27a-3p.

In this work, altogether 4 variables were identified to independently predict prognosis, which were age, 
tumor location, surgery, and risk score. Among them, age is identified as the vital factor that affects OS in some 
 articles38,39. The location of the PDAC is critical because it determines the extent of resection. In addition to guid-
ing surgical selection, tumor location can actually predict survival in patients with  PDAC38,40–42. The use of tumor 
location to prognosticate PDAC is appealing because this information can be easily obtained by cross-sectional 
imaging. Atsushi et al.38 built a nomogram based on data from the National Cancer Database, and identified 8 
variables. They showed by multivariate analysis that tumor location is an independent prognostic factor, con-
sistent with our results. Winer et al.40 analyzed 175,556 patients with PDAC undergoing curative resection and 
found that patients with tumor of the head had worse OS compared with those with tumors of the body and 
tail. A single-center observational study showed that patients with head PDAC had worse OS and disease-free 
survival (DFS) compared with those with body and tail  tumors41. Similarly, significant differences of the median 
disease-specific survival (DSS) between patients with head and those with body/tail (26 months vs 33 months)42.

However, we have to admit that some limitations were also existing in our study. Firstly, although we con-
structed our proposed signature using biostatistical methods and validated it using a dataset from the ICGC 
database, we did not validate it experimentally or clinically. Secondly, most patients were diagnosed as stage III, 
which may be the main reason responsible for tumor stage was not an independent prognostic factor. Thirdly, it 
involves the nature of retrospective study. Intratumor heterogeneity contributes to sampling bias, which means 
a small tissue sample may not be representative of the whole tumor mass. Finally, experimentally supported 
m6A-related lncRNAs are extremely limited in number. There will be an increasing number of experimentally 
confirmed cancer metastasis-related lncRNAs in the future.
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Conclusions
The m6A-related lncRNA signature may act as a novel independent prognostic biomarker for screening patients 
who may have a probability to benefit from the individualized treatment. Our proposed signature could not only 
be a useful tool for prognostic evaluation, but also be complementary with and add information to the predictive 
biomarkers of immunotherapy response in patients with PDAC.

Data availability
Publicly available datasets were analyzed in this study. This data can be found here: TCGA database (http:// www. 
cancer. gov/ tcga) and ICGC database (https:// icgc. org/).
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