
Critical Care Explorations www.ccejournal.org     1

DOI: 10.1097/CCE.0000000000000814

Copyright © 2022 The Authors. 
Published by Wolters Kluwer Health, 
Inc. on behalf of the Society of Critical 
Care Medicine. This is an open-access 
article distributed under the terms of 
the Creative Commons Attribution-
Non Commercial-No Derivatives 
License 4.0 (CCBY-NC-ND), where it 
is permissible to download and share 
the work provided it is properly cited. 
The work cannot be changed in any 
way or used commercially without 
permission from the journal.

Jasmine M. Khan, BSc1

David M. Maslove, MD, MSc, 
FRCPC2,3

J. Gordon Boyd, MD, PhD, FRCPC2,3

METHODOLOGY

Optimized Arterial Line Artifact Identification 
Algorithm Cleans High-Frequency Arterial 
Line Data With High Accuracy in Critically Ill 
Patients
OBJECTIVES: High-frequency data streams of vital signs may be used to gen-
erate individualized hemodynamic targets for critically ill patients. Central to this 
precision medicine approach to resuscitation is our ability to screen these data 
streams for errors and artifacts. However, there is no consensus on the best 
method for data cleaning. Our goal was to determine whether an error-checking 
algorithm developed for intraoperative use could be applied to high volumes of 
arterial line data in an ICU population.

DESIGN: Multicenter observational study.

SETTING: ICUs across Ontario, Canada.

PATIENTS: Nested cohort of ICU patients with shock and/or respiratory failure 
requiring invasive mechanical ventilation.

INTERVENTIONS: High-frequency blood pressure data was analyzed. Systolic, 
diastolic, and mean arterial pressure minute averages were calculated. For manual 
analysis, a trained researcher retrospectively reviewed mean arterial pressure 
data, removing values that were deemed nonphysiological. The algorithm was 
implemented and identified artifactual data.

MEASUREMENTS AND MAIN RESULTS: Arterial line data was extracted 
from 15 patients. A trained researcher manually reviewed 40,798 minute-by-
minute data points, then subsequently analyzed them with the algorithm. Manual 
review resulted in the identification of 119 artifacts (0.29%). The optimized algo-
rithm identified 116 (97%) of these artifacts. Five hundred thirty-seven data points 
were erroneously removed or modified. Compared with manual review, the modi-
fied algorithm incorporating absolute thresholds of greater than 30 and less than 
200 mm Hg had 97.5% sensitivity, 98.7% specificity, and a Matthew correlation 
coefficient of 0.41.

CONCLUSIONS: The error-checking algorithm had high sensitivity and speci-
ficity in detecting arterial line blood pressure artifacts compared with manual data 
cleaning. Given the growing use of large datasets and machine learning in critical 
care research, methods to validate the quality of high-frequency data is important 
to optimize algorithm performance and prevent spurious associations based on 
artifactual data.

KEY WORDS: artifacts; critical care; data cleaning; invasive blood pressure 
monitoring; mean arterial pressure

High-frequency data streams of vital signs can be used to generate indi-
vidualized hemodynamic targets for critically ill patients (1). However, 
accuracy of this approach is dependent on adequate removal of arti-

facts from data streams prior to analysis (2). Arterial line data, which is used to 
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derive these targets, are prone to artifacts due to blood 
sampling, malpositioning, line flushing, and calibra-
tion procedures (3, 4). High volumes of data generated 
in the ICU present a logistical challenge for manual 
artifact identification, necessitating the automation 
of arterial line data cleaning. Despite this, there is no 
consensus on the best method for cleaning arterial line 
data derived from the ICU (5).

Various methods have been used to assess artifacts in 
arterial line traces in the ICU and can be broadly clas-
sified as machine learning, statistical, or logic-based 
(6). Each model presents its own challenges, including 
implementing arbitrary thresholds, averaging data 
over large time intervals, or using complex machine 
learning techniques (6, 7). In the ICU, most existing 
artifact identification algorithms require the input of 
waveform data (2, 4, 6, 8–11), which is much larger 
and more computationally demanding than basic nu-
meric data and which may not be as readily available. 
Few existing algorithms use numeric data input; this 
approach has potential advantages but requires further 
validation (12, 13). More stringent methods are needed 
to capture changes that appear physiologic, preserve 
data granularity, and can be implemented with ease on 
invasively derived numeric blood pressure data.

The recent emergence of an arterial line error-check-
ing algorithm developed for intraoperative use by Du 
et al (7) provides a promising avenue for numeric 
blood pressure data cleaning. The algorithm identi-
fies artifacts by integrating minute-by-minute blood 
pressure changes over time as well as the difference 

between systolic blood pressure (SBP), diastolic blood 
pressure (DBP), and mean arterial pressure (MAP) 
values. When sufficient data is present across traces, 
points identified as discrepant are altered based on data 
from preceding and succeeding time points as well as 
from the other two traces. An assessment of the algo-
rithm’s performance in the ICU is warranted before 
use in critical care, as intraoperative conditions differ 
significantly. First, arterial line placement, zeroing, and 
stabilization usually occur once for the entire opera-
tion, whereas in the critical care setting, there may be 
more disruption due to patient movement, procedures, 
blood draws, and transport. Second, invasive arterial 
pressure monitoring in the OR is only done for the du-
ration of surgery, typically a few hours, whereas ICU 
monitoring may extend much longer, over multiple 
days. Longer term recordings have the potential for a 
different set of morphologic variabilities and artifacts, 
for example, due to nonphysiologic changes attributed 
to longer duration of catheters use (e.g., kinking and 
blockages). Third, clinical and pharmacological factors 
predispose patients to arterial line artifacts in the ICU 
that may impact algorithm accuracy (14).

Our objective was to determine whether an error-
checking algorithm that assesses the association 
between SBP, DBP, and MAP data developed for intra-
operative use could be applied to high volumes of ar-
terial line data in an ICU population to reliably detect 
and remove artifacts.

MATERIALS AND METHODS

Study Design

High-frequency blood pressure data from a nested co-
hort of ICU patients enrolled in the multicenter prospec-
tive Cerebral Oxygenation and Neurological Outcomes 
FOllowing CriticAL Illness-2 (CONFOCAL-2) study 
(15) (Clinicaltrials.gov ID: NCT03141619) from three 
ICUs across Ontario, Canada, were analyzed. The study 
was conducted in accordance with the ethical standards of 
Clinical Trials Ontario and with the Helsinki Declaration 
of 1975, as most recently amended. Ethics approval 
was obtained by Clinical Trials Ontario (Study Title: 
Correlation of Cerebral Oxygenation During Critical 
Illness and Neurological Outcomes, Approval no.: 0815, 
Approval Date: July 17, 2017), and informed consent was 
obtained for the CONFOCAL-2 study for each partici-
pant. Patients were enrolled if in shock and/or respiratory 

 KEY POINTS

Question: Can an algorithm developed for intra-
operative use accurately clean invasive arterial line 
data collected in the ICU?

Findings: The optimized algorithm identified 
errors with high accuracy, producing 98% sen-
sitivity and 99% specificity when compared with 
manual error-checking.

Meanings: The algorithm was easy to implement 
with high volumes of arterial line data. It has the 
potential to be integrated into invasive blood pres-
sure data analysis in the context of research and 
clinical care.



Methodology

Critical Care Explorations www.ccejournal.org     3

failure requiring invasive mechanical ventilation for 
greater than 24 hours. Patients were excluded if they 
had less than 24 hour life expectancy, neurologic admit-
ting diagnosis, or inability to participate in follow-up 
assessments (15). Invasive blood pressure monitoring 
was collected using GE Solar monitors and extracted 
with commercial software (Bedmaster, Anandic Medical 
Systems, Feuerthalen, Switzerland) for up to 72 hours be-
ginning at study enrolment. SBP, DBP, and MAP values 
were derived from waveforms captured at 240 Hz and 
sampled at 0.5 Hz. Minute averages (i.e., 1/60 Hz) were 
calculated using the numerical data captured at 0.5 Hz 
without reference to the waveforms themselves.

Manual Analysis

For manual analysis, the researcher retrospectively 
reviewed a tabular depiction of high-frequency MAP 
data point-by-point and removed any values deemed 
nonphysiological. Artifacts were defined as values that 

increased or decreased rapidly (e.g., > 20 mm Hg tran-
sient fluctuations from preceding MAP values) and 
returned to values similar to those preceding the large 
change in a short period of time or were nonphysiolog-
ical (i.e., values < 30 and > 200 mm Hg). An example 
of fluctuations deemed nonphysiological is shown in 
Figure 1. The reviewer was blinded to systolic and di-
astolic traces. A second researcher reviewed points 
deemed anomalous, and any disagreements were dis-
cussed until a consensus was reached.

Algorithm Modification

The algorithm derived by Du et al (7) was imple-
mented using the preset parameters to identify artifac-
tual data. Figure S1 (http://links.lww.com/CCX/B105) 
describes the algorithm in detail. The algorithm con-
tains modifiable delta values (step 2) that dictate the 
magnitude of change between consecutive readings for 
each pressure trace deemed within normal limits. For 

Figure 1. Representative mean arterial pressure (MAP) trace containing fluctuations deemed nonphysiological, which were 
subsequently removed manually (red circles).

http://links.lww.com/CCX/B105
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values that vary significantly from acceptable limits, 
the data point is interpolated based on values from the 
other two blood pressure traces and/or from the first 
available data preceding and succeeding this artifact 
in time. If there are insufficient data to interpolate a 
modified value, the data point is removed and replaced 
with “NA.”

We defined any modification greater than or equal to 
5 mm Hg to be an artifactual data point based on clin-
ical reasoning. Alternative definitions ranging from 
0–10 mm Hg were also assessed (Table S1, http://links.
lww.com/CCX/B105). Original delta values from Du et 
al (7) for MAP, SBP, and DBP were 6, 8, and 5 mm Hg, 
respectively. During algorithm optimization, we mod-
ified delta values to determine the values associated 
with the best performance in our critically ill popula-
tion. Delta values were multiplied by one factor across 
all traces. For example, modification by a factor of 2 
resulted in MAP, SBP, and DBP delta values of 12, 16, 
and 10 mm Hg, respectively. Additional modifications 
to the algorithm included adding upper and lower ab-
solute limits. We removed MAP values less than 30 and 
greater than 200 mm Hg as these were unlikely to rep-
resent true physiological data (4, 9).

Algorithm Analysis

2 × 2 tables were generated to compare algorithm 
performance at different delta thresholds with and 
without implementation of absolute blood pressure 
limits. Sensitivity, specificity, Matthew correlation co-
efficient (MCC) (16, 17), F1 score, and Cohen kappa 
(18) were calculated for each algorithm iteration to 
evaluate performance. MCC was chosen based on its 
robustness to data imbalance in a binary classifica-
tion model. The event rate was extremely low (0.3%), 
therefore warranting analysis with MCC rather than 
Cohen kappa (19). MCC ranges from –1 to 1, where 
1 indicates complete agreement between manual and 
algorithm cleaning. All analyses and plots were gener-
ated in R (Version 4.1.1) (20). The modified algorithm 
is available for use at https://github.com/jasmine-jk/
ICU-MAP-Cleaning.git.

RESULTS

Arterial line blood pressure data was extracted from 
15 patients enrolled over 9 months (from April to 
December 2018). Forty thousand seven hundred 

ninety-eight minute-by-minute data points were col-
lected with mean (± sd) individual recording length 
of 48 hours (± 1,243 min). Manual review resulted in 
the identification of 119 artifacts (0.29%), of which 
47 were less than 30 mm Hg and 8 were greater than 
200 mm Hg. The unmodified algorithm identified 111 
(93%) of manually identified artifacts. The algorithm 
also identified additional 575 data points, which were 
classified as false positives. The unmodified algorithm 
had 92.3% sensitivity and 98.8% specificity compared 
with manual cleaning. A representative example of 
manual and algorithmic MAP trace cleaning is shown 
in Figure 2.

To optimize accuracy and MCC for use in critical 
care, we tested various multipliers of delta values. 
Multiplication factors ranged from 0.1 to 6. Each fac-
tor was tested with and without the addition of upper 
and lower MAP value limits. Further, we incorporated 
post hoc removal of data breaks as we found the algo-
rithm attempted to fill in spaces inappropriately (Fig. 
S2, http://links.lww.com/CCX/B105). Metrics to an-
alyze algorithm performance including 2 × 2 tables, 
MCC, F1 score, and Kappa were generated (Table 1; 
and Table S2, http://links.lww.com/CCX/B105).

Sensitivity and specificity without the addition of 
limits were optimized when delta values were mul-
tiplied by a factor of 0.4 (deltaMAP = 2.4 mm Hg, 
deltaSBP = 3.2 mm Hg, deltaDBP = 2 mm Hg), pro-
ducing a 95.0% sensitivity and 98.0% specificity. Seven 
values were less than 30 mm Hg, and no values were 
greater than 200 mm Hg. MCC was optimized with 
a delta multiplication factor of 1.3. The addition of 
greater than 30 mm Hg and less than 200 mm Hg lim-
its resulted in optimized accuracy when deltas were 
multiplied by a factor of 1.3 (deltaMAP = 7.8 mm Hg,  
deltaSBP = 10.4 mm Hg, deltaDBP = 6.5 mm Hg), 
resulting in 97.5% sensitivity and 98.7% specificity 
compared with manual cleaning (Table 2). One hun-
dred sixteen (97%) of artifacts identified manually 
were removed or modified with the algorithm, with 
an additional 537 false positives generated. MCC was 
highest at a delta multiplication factor of 2. The opti-
mized algorithm included greater than 30 mm Hg and 
less than 200 mm Hg limits, with a 1.3 delta factor.

Algorithm performance was also assessed on a per-
patient basis. Table  3 describes the association be-
tween manual and algorithm artifacts. The rate of true 
artifact identification was high, with the algorithm 

http://links.lww.com/CCX/B105
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identifying between 75% and 100% of artifacts manu-
ally cleaned. The majority of false positives occurred in 
patients 3 and 13, as shown in Figure S3 (http://links.
lww.com/CCX/B105).

Artifacts identified by the optimized algorithm were 
further analyzed based on how the algorithm dealt 
with the anomalous data. Of the 653 artifacts identified 
in the optimized algorithm, 91 (14%) were removed, 
whereas 562 (86%) were altered based on SBP and 
DBP data. Of the 562 modified data points, 497 (88%) 
were false positives, and 65 (12%) were true positives, 
where false positives represent data only flagged as an 
artifact via algorithm, whereas true positives represent 

Figure 2. Visual representation of MAP data cleaning. Representative example comparing mean arterial pressure (MAP) traces before 
modification (A), after manual cleaning (B), and with algorithm cleaning (C). D, Overlapping raw and clean signals, where orange lines represent 
raw data identified as artifact by both manual and algorithmic cleaning, and black lines represent raw data identified as artifact by algorithm only.

TABLE 1.
Performance Metrics of the Algorithm With Various Modifications, Including Adjustment of 
the Delta Factor and the Addition of Upper and Lower Limits

Delta 

No Upper and Lower Thresholds
Lower (> 30 mm Hg) and  

Upper (< 200 mm Hg) Thresholds

Sensitivity (%) Specificity (%) MCC Sensitivity (%) Specificity (%) MCC 

1× deltas 92.31 98.75 0.39 97.48 98.59 0.40

0.4× deltas 94.96a 98.02a 0.34 97.48 98.02 0.35

1.3× deltas 93.28b 98.68b 0.40 97.48a 98.68a 0.41

2× deltas 91.60 98.72 0.40 96.64b 98.72b 0.42

4× deltas 86.55 98.72 0.37 95.80 98.72 0.41

MCC = Matthew correlation coefficient.
aSensitivity and specificity optimized.
bMCC optimized.

TABLE 2.
Characterizing Artifactual Data Identified 
by Human and Algorithm

Classification 
Artifact 

(Human) 
Nonartifact 

(Human) Total 

Artifact (algorithm) 116 537 653

Nonartifact (algorithm) 3 40,142 40,145

Total 119 40,679 40,798

2 × 2 table using the optimized algorithm with the addition of 
mean arterial pressure limits (> 30 and < 200 mm Hg), where 
delta factor = 1.3×.

http://links.lww.com/CCX/B105
http://links.lww.com/CCX/B105
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data flagged as an artifact by both the algorithm and 
manual cleaning. Data points modified by the algo-
rithm were parsed based on whether they were true 
positives (orange) or false positives (black) (Fig. 3A). 
Agreement between human and algorithm occurred at 
the upper and lower extremes of MAP values, whereas 
the majority of false positives fell within the physiolog-
ically plausible MAP range. The distribution of MAP 
modifications is shown in Figure 3B. Modifications 
ranged from 5 to 69 mm Hg, with approximately 50% 
of false positive modifications being less than 12 mm 
Hg.

DISCUSSION

As research and clinical practice in the ICU moves 
toward precision medicine, the analysis of high-fre-
quency vital sign data is becoming increasingly impor-
tant. Adequate tools to identify artifacts are imperative 
to ensure reliable data analysis. There is no consensus 

on the best tool to clean arterial line data in the ICU; 
therefore, we assessed the use of an intraoperative ar-
terial line error-checking algorithm to detect artifacts 
in critically ill patients during the first 72 hours of ICU 
admission. Our goals were to determine whether the 
algorithm would provide a viable method for clean-
ing numeric data obtained from ICU arterial lines and 
whether it could be optimized for a critically ill popu-
lation. Ultimately, we found that the Du et al (7) algo-
rithm detected artifacts with high accuracy.

We demonstrated high sensitivity and specificity, 
and moderate MCC of the algorithm compared with 
manual cleaning. The unmodified algorithm pro-
duced an MCC of 0.39, with a sensitivity of 92.3% 
and specificity of 98.8%. Modifying the delta values 
by 0.4-fold led to an improved accuracy. However, 
the algorithm required stringent criteria of 2.4, 3.2, 
and 2 mm Hg for MAP, SBP, and DBP, respectively; 
these fluctuations are small and likely to result in the 
removal of true physiologic fluctuations. Further, 
several MAP values were below 30 mm Hg. The addi-
tion of upper and lower limits to MAP values led to 
higher accuracy and MCC, where a delta factor of 
1.3 resulted in optimal sensitivity of 97.5% and spec-
ificity of 98.7% and MCC of 0.41. Therefore, a delta 
value of 1.3, along with the addition of greater than 
30 mm Hg and less than 200 mm Hg thresholds, rep-
resents the ideal application of the algorithm for crit-
ically ill patients.

Despite high accuracy with each algorithm itera-
tion, MCC was low to moderate based on the param-
eters used. This is in part attributed to the large 
number of false positives; five times more data points 
were deemed artifactual by algorithm than manual 
review. It is difficult to assess whether these modifica-
tions are warranted without live annotation. However, 
the majority of false positives were not removed from 
the data set, but rather modified via linear interpo-
lation. In plotting the true and false positives, we 
showed that the majority of false positives existed 
within the physiologic MAP range and that modifica-
tions were commonly of a small magnitude (>50% of 
changes were <12 mm Hg). These extensive modifica-
tions were mostly confined to two patients, in which 
MAP data was noisy. Therefore, these false positives 
may represent artifactual data that are missed with 
manual review because the fluctuations appear phys-
iologic. Overall, the majority of true artifacts were 

TABLE 3.
Artifacts Grouped by Patient Using the 
Optimized Algorithm Parameters in Table 2

Patient 
True 

Artifacts (n) 
Algorithm 

“Artifacts” (n) 
Coverage 

(n [%]) 

1 1 6 1 (100)

2 11 27 11 (100)

3 16 343 16 (100)

4 3 11 3 (100)

5 1 19 1 (100)

6 20 28 18 (90)

7 2 5 2 (100)

8 4 10 3 (75)

9 2 5 2 (100)

10 2 4 2 (100)

11 4 15 4 (100)

12 9 16 9 (100)

13 41 154 41 (100)

14 3 6 3 (100)

15 0 4 -

Coverage represents the number of true artifacts also identified 
by the algorithm. Manual cleaning resulted in the identification and 
removal of 119 artifacts across 14 patients, whereas algorithm 
cleaning resulted in the identification and removal or modification 
of 653 artifacts across all patients.
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either removed or modified with the algorithm, pro-
viding evidence that the algorithm is able to identify 
and remove erroneous data that could interfere with 
data analysis.

There are several limitations to this study. First, we 
encountered difficulties when there were long stretches 
of missing data for an individual patient. In these cir-
cumstances, the algorithm attempted to interpolate 

Figure 3. Characterizing data modified by the algorithm across patients. A, Visualization of mean arterial pressure (MAP) data that were 
modified by the optimized algorithm and the magnitude of change from the original values, where orange = true positives, black = false 
positives. B, Histogram of the magnitude of MAP.
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and fill in data erroneously. Therefore, we incorpo-
rated an automated removal of gaps in data after the 
algorithm was run as a part of our modified algorithm. 
Further, MAP was manually cleaned without inte-
grating associated SBP and DBP data. Manual cleaning 
incorporating SBP and DBP is possible, but the process 
is cumbersome, especially with high volumes of data 
(18). Therefore, the process undertaken is more likely 
representative of the data cleaning process in real-
world conditions. Finally, we modified all three deltas 
by the same factor for each iteration. The algorithm 
could be further optimized by testing different combi-
nations of modifications to individual MAP, SBP, and 
DBP deltas. However, we were able to achieve adequate 
results without this step.

Although algorithms to clean invasive arterial blood 
pressure data exist (Table S3, http://links.lww.com/
CCX/B105), they have several limitations leading to 
barriers in implementation (6, 21). First, most rely on 
the input of waveform data. Logic-based algorithms 
to clean arterial line waveforms have performed well 
with sensitivities and specificities ranging from 94% to 
100% and 84% to 98%, respectively (4, 9–11). Machine 
learning techniques have also been employed on wave-
form data with similar success (2, 6, 8). Son et al (6) 
used a deep belief network on arterial waveforms from 
traumatic brain injury patients with greater than 20 
continuous hours of recording. The optimized algo-
rithm had a net prediction rate of 95.9% and contained 
five hidden layers with two to 128 hidden units within 
each layer. Waveform data is high dimensional, mak-
ing it an attractive source for signal cleaning even if 
numeric data is ultimately used for analyses (6). The 
high-frequency data provide a wealth of information 
for training to produce cleaning algorithms with high 
performance. Despite high accuracy of these algo-
rithms, MAP waveforms can be difficult to obtain 
and analyze as data is large, cumbersome, and costly 
to store and maintain (22). Further, deep belief net-
works contain hidden layers with weighted edges and 
nonlinear transformations between input and output 
variables that lead to difficulty in interpretating what 
constitutes an erroneous data point (23). Therefore, 
algorithms that can be applied to numeric data may 
provide an avenue for cleaning that can be imple-
mented with greater ease and increase interpretability.

Two groups have developed artifact identification 
methods based on numeric data. One algorithm used a 

statistical time-series approach with low-order autore-
gressive models and phase space models on arterial 
time-averaged 1/60-Hz data (13). They concluded 
that both required an experienced user with in-depth 
knowledge of the statistical techniques employed and 
were too sensitive, and therefore not feasible for bed-
side use. Another used logic-based rules adapted from 
fetal heart rate data cleaning, but only examined sys-
tolic and diastolic traces (12). Further, algorithm per-
formance was based on the ability to predict hospital 
death after artifact removal rather than direct com-
parison with an alternate cleaning strategy. Ultimately, 
currently available numeric cleaning algorithms have 
not been sufficiently characterized and validated in 
critically ill adults.

Another major barrier to implementation is that 
many algorithms are not made publicly available. Of 
the nine ICU algorithms discussed above, only one 
made code accessible (4). Despite the existence of inva-
sive blood pressure signal cleaning methods, research-
ers have resorted to more simplistic approaches to 
MAP cleaning, removing artifacts by employing upper 
and lower physiologic limits (24, 25). Although in our 
study the addition of upper and lower limits improved 
algorithm performance, 54% of artifacts fell within the 
defined physiologic range. Therefore, a majority of er-
roneous data points would escape detection using this 
approach.

The present algorithm requires minute-to-minute 
arterial blood pressure data, with transparent and 
modifiable equations that can be easily reproduced 
and/or modified to fit the population analyzed. The use 
of this algorithm can also reduce data loss. The ma-
jority (86%) of the artifacts identified in this data set 
were modified rather than deleted, representing data 
that would have been lost if cleaned manually. Further, 
this study validated the algorithm across three dif-
ferent centers. This is one of the first algorithms that 
relies solely on minute-averaged invasive arterial line 
data that have been validated in the ICU. Overall, the 
algorithm is easy to use, quick, and simple, making it 
a good candidate for artifact cleaning in ICU research 
and for use at the bedside.

CONCLUSIONS

The error-checking algorithm created by Du et al (7) 
provides a reasonable approach for cleaning arterial 

http://links.lww.com/CCX/B105
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line data from the ICU, as it was easy to employ 
and performed very well across all modifications. 
When optimized, the error-checking algorithm had 
high accuracy and moderate MCC in detecting ar-
terial line blood pressure artifacts compared with 
manual data cleaning. Given the growing use of ar-
tificial intelligence in critical care research, methods 
to validate the quality of high-frequency data is im-
portant to optimize algorithm performance and pre-
vent spurious associations based on artifactual data. 
Comparing algorithm performance to live annota-
tion may be useful to further validate the algorithm. 
Future work incorporating the error-checking algo-
rithm in real time is warranted, as well as quantifying 
the clinical impact of MAP cleaning on future data 
analysis.
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