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Abstract

Human gait is a unique behavioral characteristic that can be used to recognize individuals.

Collecting gait information widely by the means of wearable devices and recognizing people

by the data has become a topic of research. While most prior studies collected gait informa-

tion using inertial measurement units, we gather the data from 40 people using insoles,

including pressure sensors, and precisely identify the gait phases from the long time series

using the pressure data. In terms of recognizing people, there have been a few recent stud-

ies on neural network-based approaches for solving the open set gait recognition problem

using wearable devices. Typically, these approaches determine decision boundaries in the

latent space with a limited number of samples. Motivated by the fact that such methods are

sensitive to the values of hyper-parameters, as our first contribution, we propose a new net-

work model that is less sensitive to changes in the values using a new prototyping encoder–

decoder network architecture. As our second contribution, to overcome the inherent limita-

tions due to the lack of transparency and interpretability of neural networks, we propose a

new module that enables us to analyze which part of the input is relevant to the overall rec-

ognition performance using explainable tools such as sensitivity analysis (SA) and layer-

wise relevance propagation (LRP).

1 Introduction

1.1 Background

Human gait, i.e., the way in which people walk, is sufficiently unique to distinguish one indi-

vidual from another. Gait information has been utilized for diverse applications such as disease

diagnosis [1] and biometric authentication [2]. Compared to other biometric authentication

methods, gait recognition is advantageous in that it is robust against impersonation attacks,

not necessarily requiring vision sensors or physical contacts with sensing devices to collect

data [3].
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A gait recognition framework comprises two core components: data acquisition devices

and data analysis algorithms. It captures representational data of the gait and identifies indi-

viduals by classifying such data using different algorithms. To be more precise, the gait infor-

mation can be captured by using vision sensors, pressure sensors, and inertial measurement

units (IMU); then, the captured data are classified using the linear discriminant analysis

(LDA), k-nearest neighbor (k-NN), hidden markov model (HMM), support vector machine

(SVM), convolutional neural network (CNN), or the combinations thereof [3]. A recognition

problem can be categorized into two types: the closed set problem and the open set problem.

Whereas the closed set recognition tests samples of classes known from training, the open set

recognition deals with incomplete knowledge given at the time of training and tests not only

known but also unknown classes [4], which is a more challenging task. While the majority of

gait recognition frameworks have focused on the closed set recognition, few approaches have

addressed the open set recognition in the literature [5].

1.2 Main contributions

Fig 1 shows the motivation of the objectives of our study. We assume a wireless environment

in which all participants wear shoes with sensor-equipped insoles that can communicate wire-

lessly. This is due to not only an ease of data acquisition but also an availability of high-quality

sensors. Under such a circumstance, as an aspect of data acquisition, the time series of each

individual’s gait is captured by pressure sensors, a 3D-axis accelerometer, and a 3D-axis gyro-

scope installed in the insoles of the participants’ shoes. Because the data are collected by the

insoles, different than other publicly available datasets [6, 7], pressure values between the foot

and the ground can be measured in addition to the IMUs. Using the pressure values, the con-

tinuous gait data are segmented into separate unit steps for the gait recognition framework to

perform in a more efficient and effective manner along with the human walking cycles [8],

which consist of a stance phase and a swing phase [9]; the stance phase is the time when a foot

is on the ground, and the swing phase is the entire time when a foot is in the air. Using the fact

Fig 1. Illustration of the motivation and the objectives. Our study is to recognize a set of users from their gait patterns using a encoder network and

to provide an interpretable analysis of the network using the XAI method.

https://doi.org/10.1371/journal.pone.0264783.g001
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that the pressure values should be zero during the swing phase, the continuous data are split

into unit steps. When forming unit steps, Gaussian smoothing is applied to reduce potential

errors [8] such that pressure sensors sporadically show non-zeros during the swing phase [10].

To utilize the merit of using pressure values, we collected the data from 40 participants using

the insoles instead of using public database contains only acceleration and gyroscope data.

As our first main contribution, we propose an encoder–decoder network model with multi-

ple 1D convolutional layers. The encoder maps the multimodal unit steps into embedding vec-

tors in a latent space, and the decoder reconstructs the unit steps from the embedding vectors.

To train this network, a linear combination of two loss functions is used, i.e., L = Ltriplet +

λLproto where λ� 0. Here, the first loss function, denoted by Ltriplet, is based on the triplet loss

[11], and the second loss function, denoted by Lproto, similarly follows that of the denoising

autoencoder [12]. The Ltriplet widens the distance between the embedding vectors of the hetero-

geneous unit steps while narrowing the distance between the embedding vectors of the homo-

geneous unit steps in the latent space. For homogeneous unit steps, we compute their

prototype by averaging out over the unit step data; then, the Lproto forces the encoder–decoder

network to minimize the difference between the homogeneous unit steps and their prototype.

To develop and evaluate our gait recognition system to effectively address an under-explored

open set recognition problem, we split the data into training, known test, and unknown test sets.

Once the encoder–decoder network is trained for the embedding vectors, the one-class sup-

port vector machine (OSVM) [13] is used to classify the unit steps. A few unit steps of each per-

son in the known test set are randomly selected. Using the embedding vectors of the selected

unit steps, OSVM is trained to compute a decision boundary for each subjects in the known
test set. The classifiers are thereby capable of identifying whether a unit step belongs to any of

the known classes. During the test phase of the system, when an unseen unit step of a subject is

given, it is first mapped into an embedding vector using the encoder. The embedded vector is

then examined if it is within the decision boundary of the class whose centroid is the closest

among the known classes. Otherwise, it is rejected.

On the other hand, it is worth noting that the use of such neural network-based models has

generally been regarded as a black-box because of the lack of transparency and interpretability

[14]. The highly non-linear nature of neural networks hinders our attempt to understand the

decision-making process of such models. To overcome this barrier, studies on explainable arti-

ficial intelligence (XAI) have emerged [15, 16], allowing transparency and interpretability to

be improved in neural networks. Improved transparency offers context to the model decision,

which thus leads to several benefits. First, XAI can build trust for users of a given model. Sec-

ond, the interpretation itself can be used as extra information to obtain a more complete

understanding [14].

The application of XAI for gait data analysis is still largely under-explored despite its poten-

tial. Several recent studies have applied XAI to the closed set gait recognition problem [17, 18].

Our study aims to utilize XAI to understand the process of the open set gait recognition. In

this study, as our second main contribution, we incorporate two well-known XAI tools,

namely sensitivity analysis (SA) [19] and layer-wise relevance propagation (LRP) [20], into our

gait recognition framework. Each method calculates attribution maps, where the values indi-

cate the importance of the input when the underlying model returns the output.

To interpret the encoder, we apply SA and LRP to the embedding vectors. However, unlike

the closed set recognition models, we take the expectation of all attribution maps calculated

from each dimension of the embedding space because the embedding space has no explicit

interpretation. Finally, by averaging out the attribution maps over all training subjects, it is

possible to obtain a common attribution map that represents important parts of the entire

training set for gait recognition.

PLOS ONE Explainable gait recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0264783 March 11, 2022 3 / 20

https://doi.org/10.1371/journal.pone.0264783


The main contributions of this study are summarized as follows:

• Using a combination of the triplet and prototype loss functions allows our encoder–decoder

network to be more robust and less dependent on the values of hyper-parameters;

• XAI approaches are shown to obtain insights from a human interpretable analysis of a neural

network-based open set gait recognition model, which demonstrates how high and low rele-

vant parts of the data affect the accuracy of the recognition.

The remainder of this paper is organized as follows. In Section 2, we summarize significant

studies that are related to our work. In Section 3, we describe the dataset for gait recognition.

Section 4 explains our proposed methods. Experimental results are provided in Section 5.

Finally, we summarize the paper with some concluding remarks in Section 6.

2 Related work

The method that we propose in this paper is related to two broader areas of research, namely

gait recognition and explainable neural networks.

2.1 Gait recognition

The use of vision sensors led to the beginning of gait recognition analyses [21]; follow-up stud-

ies have actively been carried out in the literature [22, 23]. Despite challenging conditions for

collecting data in vision-based recognition (e.g., requiring only the subject of interest in the

video sequences), the accuracy of gait recognition based on these vision-based approaches is

insufficiently high and yet unstable depending on the viewpoint and orientation of the sensing

devices [24]. To overcome these obstacles, not only subjects in video sequences were seg-

mented and individually tracked [24], but also 3D construction and view transformation mod-

els were used [25]. A view-adaptive mapping approach for gait recognition was also developed

in [26] to alleviate the free-view gait recognition problem in which the view angle is often

unknown, dynamically changing, or does not belong to any predefined views.

In addition to such vision-based approaches, pressure sensors and IMUs have been broadly

used to collect data in recent gait recognition analyses. IMUs typically consist of an accelerom-

eter, a gyroscope, and a magnetometer. For example, gait information was gathered from

IMUs attached to multiple parts of each participant’s body [27], and then the individuals were

identified using a CNN-based predictive model [28]. Later, pressure sensors and IMUs

installed in wearable devices, e.g., smartphones, fitness trackers, or shoe insoles [29], were

used. In a study on smartphone-based gait recognition [30], data from IMUs in smartphones

were analyzed using a mixed model of CNN and SVM [31]. In another study, null space LDA

was applied to analyze gait data from pressure sensors and accelerometers placed in shoe

insoles [32]. These methods, however, were limited in the sense of placing multiple sensors on

various parts of the body, taking a long period of time to gather data, or showing insufficient

performance of identification. The list of related studies is summarized in Table 1. Except for

[8, 32], all the related studies collected data using only IMU sensors. On the other hand, we

collected the data using insoles, where both IMU sensors and pressure sensors are installed

within them. The distinguishing feature of our research from related studies is the use of pres-

sure sensors with IMU sensors. Note that the pressure sensor data are useful due to the fact

that not only they have not been taken into account in the other studies, but also the time series

is split into small fragments corresponding to the phase of human gait. The detailed descrip-

tion is presented in Section 3.

As for an open set gait recognition problem, a few studies have been conducted, each of

which was performed differently. For example, a CNN-based classification model was
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designed to have a softmax output layer including a ‘not recognized’ class for unknown sub-

jects at the time of training [46]. However, this approach is not scalable since the network

model needs to be trained whenever a new subject is added to the system. In another study

[30], a framework based on CNN and OSVM was used, but the system requires about a hun-

dred unit steps to train the OSVM while not being evaluated with samples of truly unknown

subjects. More recently, the open set problem was successfully handled in [47], proposing a

framework with an ensemble model of CNN and recurrent neural network (RNN) along with

the OSVM algorithm. It requires only a few unit steps to train OSVM while being evaluated

with unseen samples of both known and unknown subjects to the OSVM-based classifier.

2.2 Explainable neural networks

Although a wide range of studies on XAI have been carried out in various domains [48–50],

post-hoc methods, operating on the underlying model to be interpreted after the training has

ended, have received considerable attention due to ease of implementation, as in our study. As

one of popular post-hoc methods, SA measures the gradient values from the output to the

input [19]. As another post-hoc method, LRP redistributes the scores of the output layer back

to the input, rather than the gradient values [20]; this relies on the activation values during the

feedforward process to determine how the values of each layer should be distributed. Other

XAI methods have also been developed. Based on two axioms for attribution maps, integrated

gradients [51] calculates the average gradient while following a linear path from a baseline

(usually having the zero input). DeepLIFT [52] extended the LRP method by taking into

account the activation of the baseline as a reference. Besides, in [53], the LRP method was

applied to predict the category of text documents using standard machine learning models

such as CNN.

To evaluate attribution maps, region perturbation was introduced in [54], where occluding

parts of the input are shown with respect to relevance scores. According to the method in [54],

the occluded parts were replaced by randomly sampled values. As an alternative, those parts

were substituted with zero values [55]. In our study, we make some modifications in such a

way that the absolute values of the relevance scores are used.

Table 1. List of the related work on gait recognition.

Authors Year Sensor position Sensor types

Luo et al. [33] 2020 Trunk, wrist, thighs, shanks Acceleration, gyroscope, magnetic, orientation

Moon et al. [8] 2020 Foot Pressure, acceleration, gyroscope

Choi et al. [32] 2019 Foot Pressure, acceleration

Weiss et al. [34] 2019 Pants pocket, hand Acceleration, gyroscope

Gadaleta et al. [30] 2018 Pants pocket Acceleration, gyroscope

Al Kork et al. [35] 2017 Upper pocket, wrist, pants pocket, bag, leg, hand Acceleration, gyroscope

Chereshnev et al. [36] 2017 Foot, shanks, thighs Acceleration, gyroscope

Subramanian et al. [37] 2015 Pocket, holster Acceleration, gyroscope, magnetic, orientation

Ngo et al. [38] 2014 Inside backpack Acceleration, orientation

Anhuita et al. [39] 2013 Waist Acceleration, gyroscope

Frank et al. [40] 2013 Pocket Acceleration

Reiss et al. [41] 2012 Chest, wrist, ankle Acceleration, gyroscope, magnetic

Zhang et al. [42] 2012 Hip Acceleration

Altun et al. [43] 2010 Knees, chest, wrists Acceleration, gyroscope, magnetic

Bächlin et al. [44] 2010 Shank, thigh, lower back Acceleration

Gafurov et al. [45] 2010 Ankle Acceleration

https://doi.org/10.1371/journal.pone.0264783.t001
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3 Data description and prototyping

To collect the gait information of the subjects, we utilized a commercial shoe insole, FootLog-

ger [56], as illustrated in Fig 2. Eight pressure sensors, one 3D-axis accelerometer, and one 3D-

axis gyroscope were installed in the insole. The pressure sensor gauges the pressure at one of

three levels, and the accelerometer as well as the gyroscope measure the acceleration and rota-

tion, respectively, leading to 216 levels. While the subjects walked, the insole recorded data at

every 0.01 second.

The pressure sensors report non-zero values when a foot is on the ground and show zero

values otherwise. Using this property, as in [8], the original time series is converted into a

series of unit steps in a fixed length, each of which includes data for one walking cycle. We par-

tially adapted the notation in [47]. The ith data of subject id = a for sensing modality m are

denoted by sm
i;a, where m 2M ¼ fpl1; � � � ; pl8; pr1; � � � ; pr8; alx; � � � ; arz; rlx; � � � ; rrzg. M is a set

of all modalities. For example, pl1 denotes the pressure from the pressure sensor id = 1 in the

left foot insole; alx denotes the acceleration along the x-axis in the left foot insole; and rrz

denotes the rotation along the z-axis in the right foot insole. We define spre
i;a , sacc

i;a , srot
i;a , and si,a as

follows:

spre
i;a ¼ ½spl1

i;a ; � � � ; s
pl8
i;a ; s

pr1
i;a ; � � � ; s

pr8
i;a �

sacc
i;a ¼ ½salx

i;a ; s
aly
i;a ; s

alz
i;a ; s

arx
i;a ; s

ary
i;a ; s

arz
i;a �

srot
i;a ¼ ½srlx

i;a; s
rly
i;a; s

rlz
i;a; s

rrx
i;a ; s

rry
i;a ; s

rrz
i;a �

si;a ¼ ½spre
i;a ; sacc

i;a ; s
rot
i;a �:

Fig 2. The insole used to collect the gait data.

https://doi.org/10.1371/journal.pone.0264783.g002
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We call si,a by the ith unit step of subject id = a. In addition, for sensing modality m and sub-

ject id = a, the prototype is defined as follows:

cm
a ¼

1

q

Xq

i¼1

sm
i;a; ð1Þ

where q is the number of unit steps of subject id = a. Then, we define the prototypes for three

types of sensors by

cpre
a ¼ ½cpl1

a ; � � � ; c
pl8
a ; c

pr1
a ; � � � ; c

pr8
a �

cacc
a ¼ ½calx

a ; c
aly
a ; calz

a ; c
arx
a ; c

ary
a ; carz

a �

crot
a ¼ ½crlx

a ; c
rly
a ; crlz

a ; c
rrx
a ; c

rry
a ; crrz

a �:

A conceptual diagram of computing the prototype is depicted in Fig 3.

4 Proposed methods

We assume a wireless environment in which all participants wear shoes with sensor-equipped

insoles that can communicate wirelessly. The research problems are stated as follows:

• Given a set of data collected using the insoles, we aim at recognizing users using our

encoder–decoder network to be more robust and less dependent on the values of hyper-

parameters;

• Given the trained network for the gait recognition, we aim at demonstrating how high and

low relevant parts of the data affect the accuracy of the recognition.

We first present our encoder–decoder architecture for gait recognition in Subsection 4.1.

We then elaborate on two types of XAI methods built upon the designed architecture in Sub-

section 4.2.

The study was conducted according to the guidelines of the Declaration of Helsinki and

approved by the Institutional Review Board of California State University Long Beach (IRB

No. 21-091).

Fig 3. Illustration of computing the prototype of each sensing modality for a subject. The prototypes (bold solid

curves in the rightmost figures) of a subject are computed by averaging over all unit steps. For brevity, the L2 norms of

spre
i;a ; sacc

i;a ; and srot
i;a are depicted.

https://doi.org/10.1371/journal.pone.0264783.g003
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4.1 Gait recognition

In this subsection, we describe our proposed encoder–decoder network architecture and a

few-shot learning approach for gait recognition. In the previous work [47], an ensemble model

of CNN and RNN with the triplet loss function showed the recognition accuracy about 93%,

which is however quite sensitive to the values of hyper-parameters. This motivates us to pro-

pose the encode–decoder network with the combination of the prototype and triplet loss func-

tion to overcome the issue.

4.1.1 Network architecture. We propose an encoder–decoder network architecture

alongside two loss functions. The encoder f(�) maps a unit step to an embedding vector in a

latent space, and the decoder g(�) maps an embedding vector to a prototype. The encoder f(�)
includes three identical sub-encoders fsub(�), which consist of three one-dimensional (1D) con-

volutional layers with 32, 64, and 128 filters and a flattened layer in order. The last flattened

layers of three sub-encoders are fully connected to a dense layer with 256 units, and the dense

layer is fully connected to another dense layer with 128 units, which is the output of the

encoder. Similarly as in the encoder, the decoder g(�) includes one dense layer with 256 units

and three identical sub-decoders gsub(�), which consist of the same layers as those in the sub-

encoders in reverse order. Although the layouts of the sub-encoders or sub-decoders are iden-

tical, their parameters are independently trained using different sensing modalities, including

pressure, acceleration, and rotation. The network architecture is depicted in Fig 4.

In the encoder–decoder network architecture, we take the middle dense layer with 128

units as the output of the encoder. The encoder maps unit steps of s≜½spre
i;a ; sacc

i;a ; s
rot
i;a � to embed-

ding vectors v:

f ðspre
i;a ; sacc

i;a ; s
rot
i;a Þ ¼ f ðsÞ ¼ v; ð2Þ

where the dimension of embedding vectors is 128 (i.e., f ð�Þ 2 R128) and the vectors are normal-

ized to 1 (i.e., ||f(�)||2 = 1). Hereafter, to simplify notations, spre
i;a , sacc

i;a , and srot
i;a will be written as

spre, sacc, and srot, respectively, if dropping the subscript (i, a) does not cause any confusion.

Let si,a and sj,a (i 6¼ j) be two unit steps of subject id = a, and let sk,b be a unit step of subject

id = b. Similarly as in the triplet loss [11], our multimodal triplet loss is defined as follows:

Ltriplet ¼ jjvi;a � vj;ajj
2

2
� jjvi;a � vk;bjj

2

2
þ a; ð5Þ

where vi,a = f(si,a), vj,a = f(sj,a), vk,b = f(sk,b), and α� 0 is a margin. We set α = 1.25 in the exper-

iments unless otherwise stated.

Fig 4. Illustration of the encoder–decoder architecture. The encoder and decoder include three sub-encoders and sub-decoders

for multimodal sensing.

https://doi.org/10.1371/journal.pone.0264783.g004
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The multimodal triplet loss attempts to ensure that the distance between two embedding

vectors vi,a and vj,a is smaller than the distance between another pair of embedding vectors vi,a

and vk,b for all possible triplets in the training set. However, an encoder with the triplet loss

function can be severely distorted when the variation of the unit steps of one subject is large.

To alleviate this drawback of the traditional triplet loss function, we propose an encoder–

decoder architecture with a prototyping loss. This is similar to the denoising autoencoders [12],

the center loss encoder [57], or the variational prototyping encoder [58]; however, the pro-

posed method does not corrupt the original data, does not compute the loss in a latent space,

and does not require additional prototypes as input. For each sensing modality m 2M, the

prototyping loss is defined as follows:

Lproto ¼
1

jMj

X

m2M

jjgðf ðsm
i;aÞÞ � cm

a jj
2

2
: ð4Þ

Before computing the loss above, both gðf ðsm
i;aÞÞ and cm

i are normalized to 1, that is

jjgðf ðsm
i;aÞÞjj2 ¼ jjc

m
i jj2 ¼ 1. Since the overall loss function is given by a linear combination of

the multimodal triplet loss function and the prototyping loss function, it is formulated as

L ¼ Ltriplet þ lLproto; ð5Þ

where λ� 0 is one of the hyper-parameters of the system. A conceptual diagram of the proto-

typing encoder–decoder architecture is illustrated in Fig 5.

4.1.2 Few-shot learning. We split the subjects into the following three groups: training,

known, and unknown groups. For the training group, all unit steps of the subjects are allocated

to the training set. For the known group, n unit steps are utilized to compute the centroids of

the embedding vectors and to learn the decision boundaries of the subjects using the OSVM

algorithm [13], where n is one of hyper-parameters of the system, and we set n = 10 in the

experiments unless otherwise stated. Subsequently, all unit steps with the exception of n unit

steps in the known group are allocated to the known test set. For the unknown group, all unit

steps are allocated to the unknown test set. From now on, we design our method based on few-

shot learning (see [47] and references therein).

Fig 5. Illustration of the prototyping encoder–decoder with triplet loss. The overall loss function is a linear combination of the multimodal triplet

loss function and the prototyping loss function.

https://doi.org/10.1371/journal.pone.0264783.g005
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Let s�,u be a unit step of subject id = u in either the known test or unknown test set. The

symbol � indicates that the unit step can be any unit step of subject u. To recognize s�,u,

the system first computes v�,u = f(s�,u) and finds the provisional subject id = p such that

p ¼ arg minajjDa � v�;ujj
2

2
, where Da ¼

1

n

Pn
i¼1

vi;a for all subjects a in the known group. Here,

the centroid Da is computed using n unit steps, which are not included in the known test set.

Next, the system discovers a decision boundary of subject p using the OSVM algorithm. Spe-

cifically, for the n embedding vectors of subject p, the algorithm uses the computed set {vi,p|1

� i� n} as input and then solves the following optimization problem:

mina
1

2

Xn

i

Xn

i0
aiai0Kðvi;p; vi0 ;pÞ

subject to : 0 � ai �
1

nn
;
Xn

i¼1
ai ¼ 1;

8
>><

>>:

ð6Þ

where Kðv; v0Þ ¼ e� gjjv� v0 jj22 is a radial bias kernel function; αi are the Lagrange multipliers; and

γ and ν are the hyper-parameters of the system. The decision function of v� ,u for subject p is

defined by

hpðv�;uÞ ¼
Xn

i

aiKðvi;p; v�;uÞ � dp; ð7Þ

where dp ¼
Pn

i aiKðvi;p; vh;pÞ for any h that fulfills the condition 0 < ah <
1

nn and 1� h� n.

Finally, the system recognizes subject u as subject p if hp(v�,u)� τ, where τ is one of the hyper-

parameters of the system. A conceptual diagram of the few-shot learning-based recognition is

illustrated in Fig 6, and the detailed procedure is summarized as follows:

1. Compute v�,u = f(s�,u);

2. Find a provisional subject p ¼ arg minajjDa � v�;ujj
2

2
;

3. If hp(v�,u)� τ, then “u is recognized as p”.

4. Otherwise, “u is not recognized”

4.2 Explainable gait recognition

We describe two types of XAI methods for gait recognition built upon our encoder–decoder

network architecture.

4.2.1 Methods for explanation. After we train the encoder f(�), we further implement two

types of XAI methods, including SA and LRP, to gain transparency in our model and

Fig 6. Illustration of gait recognition using the trained encoder. Here, unit step s� ,u is recognized as that of the “green” subject, whereas unit step

s� ,w is rejected.

https://doi.org/10.1371/journal.pone.0264783.g006
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understand the decision process [14]. That is, we aim to explain our encoder f(�) by generating

attribution maps that have the same dimensions as those in the input. Ideally, the values in an

attribution map represent the importance (also known as the relevance score) of the input in

the same position when the encoder calculates the embedding vector. For the encoder f(�) and

given unit step input s = [spre, sacc, srot], our objective is to calculate an attribution map AcðsÞ,
where ðAcðsÞÞij captures the degree to which the c-th component of f(s) is relevant to the i-th

row and j-th column in the input s. Next, we would like to describe two XAI methods for gait

recognition as in the following.

4.2.1.1 Sensitivity analysis (SA). One of the most widely adopted methods is to use the gradi-

ent that flows from the output to the input [19]. The gradientrs(f(s))c can be interpreted as

measuring the sensitivity of the input value affecting the c-th component of the output. That is,

high gradient values indicate that small deviations in the input can result in substantial changes

in the model output. Each component of the gradient-based attribution map is defined as fol-

lows:

ðAcðsÞÞij ¼
@ðf ðsÞÞc
@ðsÞij

�
�
�
�
�

�
�
�
�
�
: ð8Þ

The gradient attribution map can be efficiently calculated using a back-propagation algorithm

without any re-training of the encoder.

4.2.1.2 Layer-wise Relevance Propagation (LRP). We also take into account LRP [20] to

interpret our gait recognition encoder. This method also does not require additional training

of the model and efficiently calculates attribution maps. LRP calculates the relevance attribu-

tion map of given input s by redistributing the output value of the encoder f(�) back to the

input. LRP starts by defining the relevance score of the final layer as the value of the output

layer itself. Then, from the output layer, the method redistributes the relevance score through

each layer in an iterative manner, while computing the relevance scores for each hidden layer.

In general, let us denote each layer in the encoder f(�) as {l(0), � � �, l(L−1), l(L)} in a sequential

manner, where l(0) is the input layer and l(L) is the output layer. We also define the relevance

score of neuron k in layer l(H) as RðHÞk . As mentioned before, we define the relevance score in

the final layer l(L) as the output value of the model itself, i.e., RðLÞk ¼ ðf ðsÞÞk. To describe how

the output value is redistributed back to the input layer, we consider an intermediate or the

output layer l(h) for h = 1, � � �, L. For all neurons j in layer l(h), the relevance score RðhÞj is redis-

tributed to the neuron i in the previous layer l(h−1) through the following redistribution rule:

Rðh� 1Þ

i ¼
X

j

xðh� 1Þ

i wðh� 1;hÞ
ij

P
ix
ðh� 1Þ

i wðh� 1;hÞ
ij

RðhÞj ; ð9Þ

where xðh� 1Þ

i is the activation value of the i-th neuron in layer l(h−1) and wðh� 1;hÞ
ij is the trained

weight between neuron i in layer l(h−1) and neuron j in layer l(h). The redistribution rule is

applied until it reaches the input layer, which becomes Acðs�;aÞ. A modified version of LRP,

dubbed LRP-�, is frequently used, which adds a small stabilizer term � in the denominator of

Eq (9). The role of � is to absorb some weak or contradictory relevance, thereby leading to

sparser and less noisy descriptions [59]. We adopt this LRP-� method in our experiments and

use the iNNvestigate toolbox [60] to calculate the attribution maps.

4.2.2 Attribution maps for open set gait recognition. Typically, methods generating

attribution maps are applied to neural networks for performing classification tasks [19, 20, 55],

which is applicable to the closed set recognition. In this case, each component in the output is
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interpreted as the inferred probability. In this context, the attribution map Ac represents the

relevance scores of the input to the probability that the input is classified as class c.

However, in the open set recognition setting, the encoder returns embedding vectors for

each unit step s, rather than a vector of the probabilities. Due to the fact that the components

in the output do not have explicit meaning, it may be hardly possible to directly apply the pre-

vious approach for interpretation. In our study, we propose another strategy that averages out

the attribution maps over all 128 components in the embedding vectors to see how the trained

encoder views the input s�,a. Formally, the attribution map is defined as

AðsÞ ¼
1

128

X128

c¼1

AcðsÞ: ð10Þ

5 Evaluation and results

In this section, we first describe the experimental settings and evaluation metrics. Next, we

present evaluation results for the proposed gait recognition with the prototyping encoder–

decoder architecture. Finally, we comprehensively demonstrate the evaluation results of our

XAI methods using attribution maps.

5.1 Experimental settings and evaluation metrics

It is worth noting that one of the key component of the proposed method is utilization of the

pressure data. To have pressure data while walking, we collected gait information data by our-

selves using the insole from 40 adults as they walked for approximately 3 minutes. The entire

dataset consists of 6,303 unit steps, which correspond to 158 unit steps per subject. We also

note that, although a much higher number of subjects might be utilized from publicly available

datasets (e.g., [6, 7]), we do not adopt such datasets in our experiments since they basically lack

pressure sensors that play a crucial role in our study.

To see the impact of our occlusion strategy that replaces the corresponding parts by zero,

the original data with pressure sensors of 0’s are first replaced by δ through data pre-process-

ing. The δ was set to 0.01 to make minimal adjustments to the original data.

As shown in Fig 7, the data were split into three sets: training, known test, and unknown test
sets. First, we sampled 20 subjects from 40 subjects, and all of their unit steps were assigned to

the training set for the encoder–decoder network. Second, the other 20 subjects were divided

into two groups equally. 10 unit steps of 10 subjects in one group were used to train the OSVM

classifier, and the remaining unit steps of the subjects in the group were kept for the known
test set. Finally, 100% of the unit steps of 10 subjects in the other group were allocated to the

unknown test set. The known test, unknown test, and training sets contain approximately 1,480,

1,580, and 3,160 unit steps, respectively. Such datasets were generated 10 times repeatedly.

We trained and evaluated the network with each dataset. We then evaluated the perfor-

mance metrics averaged from 10 repetitions. When a unit step in the known test set is recog-

nized correctly, we define such an event as a true positive (TP), otherwise a false negative (FN).

In contrast, if a unit step in the unknown test set is not recognized as any subject known, we

Fig 7. Illustration of splitting the data into the training, known test, and unknown test sets.

https://doi.org/10.1371/journal.pone.0264783.g007
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define such an event as a true negative (TN) or otherwise a false positive (FP). Subsequently, we

denote the true positive rate as TPR ¼ TP
TPþFN, the true negative rate as TNR ¼ TN

TNþFP, and the

accuracy as ACC ¼ TPþTN
TPþFNþTNþFP.

5.2 Evaluation for gait recognition

The distributions of ACC as a function of hyper-parameters γ and ν for different values of λ
are shown in Fig 8. Clearly, selection of γ and ν is critical to the overall recognition accuracy of

our model. The area in which the rates are greater than 90% (corresponding to the yellow

area) indicates that the region for λ = 1.0 is broader than the regions for other cases. This

means that the case of λ = 1.0 has a weak dependency when γ and ν are selected, which affects

the robustness to the recognition performance. In practice, the hyper-parameters need to be

tuned by considering both the TPR and TNR simultaneously. For example, if all unit steps are

rejected, then we could achieve the TNR of 100% at the cost of 0% of TPR. Thus, we set the

hyper-parameters in the sense of minimizing the difference between the TPR and TNR.

To examine the effect of τ, we used γ = 2.2 and ν = 0.06 for λ = 1.0. In Fig 9, we can see that

the TPR and ACC get considerably enhanced when τ is smaller than 0. Based on this observa-

tion, it is desirable to choose alternative τ instead of τ = 0.0 for the decision boundary in the

latent space.

5.3 Evaluation for attribution maps

5.3.1 Extraction of common attribution maps. In our study, we would like to answer the

following question: can we identify what parts of the unit steps are the most relevant to the open

Fig 8. ACC as a function of γ and ν for a value of τ = −0.1. A similar rate is represented as the same color with the maximum 1%

difference, with the highest rates as yellow.

https://doi.org/10.1371/journal.pone.0264783.g008
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set gait recognition, regardless of the subject id? In other words, we aim to find an attribution

map where the relevance values are commonly valid for most of the unit steps. To achieve this

goal, we define a common attribution map Acom as the attribution map averaged out over all

unit steps in the training set:

Acom ¼
1

Pm
a na

Xm

a

Xna

i

Aðsi;aÞ; ð11Þ

where a denotes the subject index, i denotes the unit step index, m denotes the number of sub-

jects in the training set, and na denotes the number of unit steps of the subject id = a in the

training set.

5.3.2 Evaluation methods. As in [54, 55], we choose region perturbation to evaluate the

common attribution map from Eq (11) with some modifications. For the given unit step s and

the common attribution map Acom (derived from either SA or LRP-�), it is possible to order

the relevance scores in Acom from the highest to the lowest. The region perturbation observes

the amount of performance degradation when specific parts of the unit step are occluded (i.e.,

replaced by zero). The intuition behind is that, if we occlude regions of the unit step with high

relevance, then the performance degradation will be significant compared to the case in which

we occlude regions with low relevance.

For the evaluation, we consider a sequence, denoted as O = (pos1, � � �, posi, posj, � � �, posL),

where posi indicates the position (e.g., row and column indices) and L is the total number of

components in the unit step s. The sequence order is determined by the relevance score of the

position, where, for two neighboring indices i and j, the attribution map scores for posi are

greater than (or equal to) posj. Hence, pos1 indicates the position in the unit step with the high-

est relevance score, and posL indicates the position of the lowest relevance score. As explained

in Section 4.2.2, if the output of the network to be explained represents the classification

Fig 9. Performance as a function of τ for fixed values of γ = 2.2, ν = 0.06, and λ = 1.0.

https://doi.org/10.1371/journal.pone.0264783.g009
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probability, then each output component eventually responds to a binary (yes/no) question. In

this case, the sign of the relevance scores can be interpreted as positively/negatively affecting a

certain class. However, in our experiment, because each component of the embedding vectors

(corresponding to the output of the encoder f(�)) has no explicit meaning, we use the magni-
tude of the relevance score to acquire the sequence O.

5.3.3 Evaluation results for common attribution maps. To validate the effectiveness of

common attribution maps, we first divide the sequence O into several groups. We equally

divide O into five sub-sequences, O1, � � �, O5. Thus, O1 includes the top 20% of the positions

with the highest relevance score, and O2 includes the next 20% of the positions, and so on. We

Fig 10. Averaged relevance score heat maps and the their occluding positions for O1 � � � O5 of SA and LRP-�. In each heatmap, the x-axis

and y-axis indicate features of each sensor and time-stamps of each unit step, respectively. (a) Common attribution maps. (Left: SA, Right:

LRP-�). (b) Occluding positions (O1, � � �, O5) for all modal inputs. (Top: SA, Bottom: LRP-�).

https://doi.org/10.1371/journal.pone.0264783.g010
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removed the positions in the unit step for O1, � � �, O5 individually and then observed the met-

rics ACC, TPR, and TNR. We compare the results with a random baseline such that the same

amount is occluded but the positions are randomly chosen.

The heatmap visualizations and their occluding positions are shown in Fig 10a and 10b. As

shown in Fig 10a, the attribution maps for both methods exhibit different patterns. For

instance, in the pressure attribution maps, LRP-� focuses on the parts of unit steps when feet

are contacting with the ground (i.e., the stance phase). In contrast, SA focuses on the other

parts of unit steps when feet are in the air (i.e., the swing phase). Subsequently, the occluding

positions for O1, � � �, O5 also reveal different patterns as depicted in Fig 10b.

Furthermore, from Fig 11a and 11b, we can observe the overall performance degradation

for both methods in terms of TPR and ACC as we move from occlusion of O5 to that of O1.

The occlusion of O1 obtained from the attribution map results in TPR decrement of 0.3 and

0.5 for SA and LRP-�, respectively, compared to the random baseline. This implies that both

SA and LRP-� can detect the most important unit step regions (O1) for the known test set.

Especially, we observe that, if we occlude O1, then the TPR drops to zero for LRP-�. When we

pay our attention to less relevant occlusions, we see that the SA method exhibits a lower perfor-

mance gain in TPR, resulting in inferior performance compared to the random baseline even

in the case of O5. Meanwhile, LRP-� surpasses the random baseline in O3 and results in much

superior performance in O5. This demonstrates that using LRP-� can offer more robust com-

mon attribution maps compared to SA. For both methods for O1, the TNR values are very

close to 1 and the TPR values are very low. From these findings, we see that the model does not

recognize almost every unit step. In consequence, both methods detect the most relevant part

of the unit step while LRP-� outperforms SA as seen from the ACC.

Fig 11. Performance as a function of occluding position O1, � � �, O5 by SA and LRP-� for fixed γ = 2.2, ν = 0.06,

τ = −0.1, and λ = 1.0. (a) SA. (b) LRP-�.

https://doi.org/10.1371/journal.pone.0264783.g011
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6 Concluding remarks

This paper presented a novel gait recognition system capable of revealing the most important

parts of the multimodal time series to distinguish the individuals. The proposed encoder–

decoder prototyping network architecture along with our loss functions successfully solved the

open set gait recognition problem from the data collected using a wearable device. Our experi-

ments demonstrated that the system’s recognition performance is less sensitive to the changes

in the values of hyper-parameters than those in the previous studies. Furthermore, using XAI

methods based on SA and LPR-�, we provided insightful interpretability for the complex rela-

tions between the multimodal time series and the recognition results. The proposed common

attribution map clearly revealed which part of the multimodal time series is relevant to the rec-

ognition performance.

Potential avenues of future research in this area include performance improvement of the

end-to-end recognition system and design of more sophisticated XAI methods by optimizing

the common attribution map.
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