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Techniques of non-invasive brain stimulation (NIBS) of the human primary motor cortex

(M1) are widely used in basic and clinical research to induce neural plasticity. The

induction of neural plasticity in the M1 may improve motor performance ability in healthy

individuals and patients with motor deficit caused by brain disorders. However, several

recent studies revealed that various NIBS techniques yield high interindividual variability

in the response, and that the brain-derived neurotrophic factor (BDNF) genotype (i.e.,

Val/Val and Met carrier types) may be a factor contributing to this variability. Here, we

conducted a systematic review of all published studies that investigated the effects

of the BDNF genotype on various forms of NIBS techniques applied to the human

M1. The motor-evoked potential (MEP) amplitudes elicited by single-pulse transcranial

magnetic stimulation (TMS), which can evaluate M1 excitability, were investigated as

the main outcome. A total of 1,827 articles were identified, of which 17 (facilitatory

NIBS protocol, 27 data) and 10 (inhibitory NIBS protocol, 14 data) were included in this

review. More than two-thirds of the data (70.4–78.6%) on both NIBS protocols did not

show a significant genotype effect of NIBS on MEP changes. Conversely, most of the

remaining data revealed that the Val/Val type is likely to yield a greater MEP response

after NIBS than the Met carrier type in both NIBS protocols (21.4–25.9%). Finally, to

aid future investigation, we discuss the potential effect of the BDNF genotype based on

mechanisms and methodological issues.
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INTRODUCTION

Non-invasive brain stimulation (NIBS) to the primary motor
cortex (M1) induces neural plasticity and is being used
ubiquitously as a leading-edge neurorehabilitation tool. Methods
of NIBS, including magnetic stimulation or electrical stimulation
to the M1 through the scalp, can temporally control M1
excitability toward an increased or decreased value (Nitsche
and Paulus, 2000; Di Lazzaro et al., 2010). Various types of
NIBS protocols are applied to patients with stroke to promote
recovery from motor deficit by modulating abnormal M1
excitability toward the normal direction (Hummel and Cohen,
2006). Although NIBS is widely used as a neurorehabilitation
tool, considerable interindividual variability in the response
after NIBS has recently been reported (Hamada et al., 2013;
López-Alonso et al., 2014; Wiethoff et al., 2014). For instance,
only half of the participants showed the expected motor-
evoked potential (MEP) changes that express M1 excitability
after transcranial direct current stimulation (tDCS) to the M1
(Wiethoff et al., 2014). López-Alonso et al. (2014) investigated
the degree of interindividual variability in the response using
tDCS, paired-associative stimulation (PAS), and theta burst
stimulation (TBS), which were shown to enhance M1 excitability
but did not yield the expected MEP changes in 55–61% of
the participants. Furthermore, a clinical study reported that
motor performance was improved in half of the patients with
stroke who had motor deficits after 10Hz repetitive transcranial
magnetic stimulation (rTMS) (Ameli et al., 2009). These studies
suggest that considerable interindividual heterogeneity exists in
the capacity of individuals to induce M1 plasticity, both in
healthy participants and in patients. Therefore, investigation of
this issue is necessary to perform effective NIBS and improve
motor performance in majority of the participants.

Various factors affect the interindividual variability in MEP
changes after NIBS, such as age (Opie et al., 2018), circadian
rhythms (Sale et al., 2007), and alpha power oscillations around
the M1 (Zrenner et al., 2018). Brain-derived neurotrophic factor
(BDNF) genotype may also be one of these factors. Brain-derived
neurotrophic factor is a member of the neurotrophin family that
is expressed throughout the central nervous system and plays

a vital role in synaptic plasticity (Zhou et al., 2004). A single-
nucleotide polymorphism that is widely observed at a frequency
of 0–72% worldwide (Petryshen et al., 2010) has been identified

in the human BDNF gene at codon 66 (Val/66Met), and the
replacement of Val66 with Met66 has been reported to reduce
BDNF secretion compared with the typical Val/Val type (Chen
et al., 2006). Kleim et al. (2006) reported for the first time that

the BDNF genotype modulates the M1 plasticity induced by
motor training in humans. This study reported that an increase
in MEP and expansion of the M1 area after motor training were
observed in the Val/Val group, but not in the atypical Val/Met and
Met/Met groups. Subsequently, Cheeran et al. (2008) investigated
the effect of the BDNF genotype on the MEP changes induced
by NIBS and found that the NIBS effects were greater in the
Val/Val group than in the Non-Val/Val (Val/Met+Met/Met)
group. Therefore, the typical genotype may have a greater effect
on NIBS than the atypical genotype, which may contribute to

the high interindividual variability in the response regarding
MEP changes after NIBS, as mentioned above. However, several
subsequent studies using various types of NIBS protocols failed to
achieve the same result. For example, Antal et al. (2010) showed
that Val/Met had a greater effect on tDCS than did Val/Val,
whereas Li Voti et al. (2011) revealed no significant effect on TBS
between the genotype groups. The introduction and discussion of
several previous articles mentioned the contribution of the BDNF
genotype to interindividual variability in the response after NIBS;
however, it is still unclear whether the effect of NIBS on the M1 is
modulated by the BDNF genotype.

Herein, we conducted a systematic review to investigate
the effect of the BDNF genotype on NIBS to the M1. This
review classified NIBS intervention with a facilitatory NIBS
protocol and an inhibitory NIBS protocol based on MEP
changes. Transcranial magnetic stimulation (TMS) measurement
with MEP is commonly used to non-invasively assess the M1
excitability changes induced by the NIBS protocol. Although it
is still controversial whether the MEP changes induced by NIBS
are associated with motor performance, MEP can capture the M1
plasticity changes via comparison of the amplitudes. Thus, we
aimed to investigate the functional difference on theM1 plasticity
using MEP at a neural level. If the NIBS effect varies depending
on the genotype, the secretion of BDNF could contribute to this
difference. Therefore, this review also discussed the mechanisms
via which the difference in BDNF secretion modulates the M1
plasticity after the NIBS protocol. Furthermore, to aid future
investigation, we raised some methodological issues in studies
that investigated the effect of the genotype on NIBS based on the
assessment of the collected articles.

METHODS

Protocol
This systematic review was conducted according to the guidelines
of the Preferred Reporting Items for Systematic Reviews and
Meta-analyses for Protocols 2015 (PRISMA-P 2015) (Moher
et al., 2015).

Eligibility Criteria
Articles were selected if they satisfied the following eligibility
criteria: (1) peer-reviewed articles published in English; (2)
articles reporting studies performed on healthy adult humans
(but not the elderly) not taking any psychoactive medications
or drugs; (3) articles that received formal ethical approval; (4)
the outcome had to include subjects who were classified into
BDNF genotype groups and underwentMEPmeasurements with
single-pulse TMS before and after the NIBS protocol (within
24 h); (5) rTMS, TBS, tDCS, transcranial alternating current
stimulation (tACS), transcranial random noise stimulation
(tRNS), PAS, and quadri-pulse stimulation (QPS), which can
modulate M1 excitability, were selected as a NIBS protocol; (6)
the outcomes were obtainable from the main text, figures, tables,
or supplementary data; (7) one NIBS protocol was administered
to the M1 as an intervention, expect for a combination of
NIBS and sham (e.g., rTMS+sham tDCS) or resting condition
(rTMS+resting condition); (8) first pre/post measurements were

Frontiers in Human Neuroscience | www.frontiersin.org 2 September 2021 | Volume 15 | Article 742373

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Sasaki et al. Genetic Effect of Motor Cortex Plasticity

TABLE 1 | Studies using TMS to examine M1 excitability before and after facilitatory NIBS techniques in healthy participants.

# Study Group N MEP NIBS

technique

Measurement Compared with the

baseline or sham

condition

Difference between

BDNF genotypes

Comments

1 Antal et al. (2010) Val/Val 10 FDI or ADM iTBS MEP ↑ NS

Val/Met 5 ↑

2 Cheeran et al. (2008) Val/Val 9 FDI iTBS MEP ↑ SD

Non-Val/Val 9 →

3 Guerra et al. (2020) Val/Val 15 FDI iTBS MEP → NS iTBS+sham tACS

condition

Non-Val/Val 13 →

4 Lee et al. (2013) Val/Val 6 FDI iTBS MEP → NS RMT_100% intensity

for single-pulse MEP

Val/Met 13 →

Met/Met 4 →

Val/Val 6 FDI iTBS MEP → NS RMT_120% intensity

for single-pulse MEP

Val/Met 13 →

Met/Met 4 →

Val/Val 6 FDI iTBS MEP → NS RMT_140% intensity

for single-pulse MEP

Val/Met 13 →

Met/Met 4 →

5 Li Voti et al. (2011) Val/Val 14 FDI iTBS MEP ↑ NS

Val/Met 7 ↑

6 Marsili et al. (2017) Val/Val 36 FDI iTBS MEP ↑↑ SD

Non-Val/Val 14 ↑

7 Mastroeni et al.

(2013)

Val/Val 15–17 FDI iTBS MEP ↑ NS Intervention:

iTBS+iTBS

Monophasic TMS for

single-pulse MEP

Val/Met 10–12 ↑

Val/Val 15–17 FDI iTBS MEP ↑ NS Intervention:

iTBS+iTBS

Biphasic TMS for

single-pulse MEP

Val/Met 10–12 ↑

1 Antal et al. (2010) Val/Val 14 FDI or ADM A-tDCS MEP ↑ SD

Val/Met 10 ↑↑

8 Fujiyama et al. (2014) Val/Val 11 FCR A-tDCS AURC → NS

Non-Val/Val 5 →

9 Jonker et al. (2021) Val/Val 34 FDI A-tDCS MEP → NS

Non-Val/Val 25 →

10 Strube et al. (2014) Val/Val 12 FDI A-tDCS MEP ↑ NS

Non-Val/Val 8 ↑

11 Teo et al. (2014) Val/Val 19 FDI A-tDCS MEP → NS Different statistics were

used for the same data

Val/Met 19 →

Met/Met 20 →

Val/Val 19 FDI A-tDCS MEP → NS

Non-Val/Val 39 ↑

1 Antal et al. (2010) Val/Val 21 FDI or ADM tRNS MEP → NS

Val/Met 8 →

(Continued)

Frontiers in Human Neuroscience | www.frontiersin.org 3 September 2021 | Volume 15 | Article 742373

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Sasaki et al. Genetic Effect of Motor Cortex Plasticity

TABLE 1 | Continued

# Study Group N MEP NIBS

technique

Measurement Compared with the

baseline or sham

condition

Difference between

BDNF genotypes

Comments

2 Cheeran et al. (2008) Val/Val 9 APB PAS MEP → NS MEPs were measured

from APB (target

muscle) and ADM

(non-target muscle) at

the same time

Non-Val/Val 9 →

Val/Val 9 ADM PAS MEP ↑ SD

Non-Val/Val 9 →

12 Cirillo et al. (2012) Val/Val 12 FDI PAS MEP (% Max

M-wave)

↑ SD MEPs were measured

from FDI (target

muscle) and ADM

(non-target muscle) at

the same time

Val/Met 10 →

Met/Met 7 →

Val/Val 12 ADM PAS MEP (% Max

M-wave)

↑ NS

Val/Met 10 ↑

Met/Met 7 ↑

13 Missitzi et al. (2011) Val/Val 10 APB PAS MEP ↑ SD

Non-Val/Val 4 →

14 Player et al. (2013) Val/Val 14 FDI PAS MEP ↑ NS ANOVA was performed

with healthy and

depressed participant

groups

Non-Val/Val 7 ↑

15 Witte et al. (2012) Val/Val 15 ADM PAS MEP ? NS

Non-Val/Val 15 ?

16 Hwang et al. (2015) Val/Val 12 FDI rTMS MEP ↑↑ SD (Val/Val or Val/Met

vs. Met/Met)

rTMS with

subthreshold intensity

Val/Met 19 ↑↑

Met/Met 9 ↑

Val/Val 12 FDI rTMS MEP ↑↑ SD (Val/Val vs.

Met/Met)

rTMS with

suprathreshold intensity

Val/Met 19 ↑

Met/Met 9 ↑

17 Nakamura et al.

(2011)

Val/Val 5 FDI QPS MEP ↑ NS

Non-Val/Val 7 ↑

The NIBS effects are indicated by the arrow direction based on the statistical data (i.e., facilitatory effect: ↑; no change: → ; inhibitory effect: ↓, or Not available: ?). In addition, when

either of the genotype groups had a greater effect on the direction of the facilitation, two arrows were added to express this enhanced effect (i.e., ↑↑). ANOVA, analysis of variance; APB,

abductor pollicis brevis; ADM, abductor digiti minimi; A-tDCS, anodal transcranial direct current stimulation; AURC, area under the recruitment curve; BDNF, brain-derived neurotrophic

factor; FCR, flexor carpi radialis; FDI, first dorsal interosseus; iTBS, intermittent theta burst stimulation; NIBS, non-invasive brain stimulation; Non-Val/Val, Val/Met+Met/Met; NS, not

significant; MEP, motor-evoked potential; PAS, paired-associative stimulation; QPS, quadri-pulse transcranial magnetic stimulation; rTMS, repetitive transcranial magnetic stimulation;

RMT, resting motor threshold; SD, significant difference; tACS, transcranial alternating current stimulation; tRNS, transcranial random noise stimulation.

included in cases of a NIBS protocol that aimed at homeostatic
plasticity using two interventions at different time points; and
(9) TMS was performed on the left M1 or right M1, and MEP
was recorded from the contralateral side. The titles and abstracts
of the articles were initially screened by one reviewer (R.S).
Eligibility of the studies was determined independently by two
reviewers (R.S and S.K), who assessed the full text against the
inclusion and exclusion criteria.

Search Strategy and Study Selection
A literature search was conducted using the scientific databases
PubMed and Web of Science on April 21, 2021 for articles
published from January, 2000 to April 21, 2021. The following
search terms were included in these combinations: “transcranial
direct current stimulation,” “repetitive transcranial magnetic
stimulation,” “theta burst stimulation,” “paired associative
stimulation,” “transcranial alternating current stimulation,”
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TABLE 2 | Studies using TMS to examine M1 excitability before and after inhibitory NIBS techniques in healthy participants.

# Study Group N MEP NIBS

technique

Measurement Compared with the

baseline or sham

condition

Difference between

BDNF genotypes

Comments

1 Cheeran et al. (2008) Val/Val 9 FDI cTBS MEP ↓ SD

Non-Val/Val 9 →

2 Guerra et al. (2019) Val/Val 13 FDI cTBS MEP → NS cTBS+sham tACS

condition

Non-Val/Val 13 →

3 Jannati et al. (2017) Val/Val 12 FDI cTBS MEP ? SD Only group data was

compared by a t-test

Val/Met 6 ?

4 Marsili et al. (2017) Val/Val 36 FDI cTBS MEP ↓↓ SD

Non-Val/Val 14 ↓

5 McDonnell et al.

(2013)

Val/Val 10 FDI cTBS MEP (% Max

M-wave)

→ NS

Non-Val/Val 15 →

6 Mastroeni et al.

(2013)

Val/Val 15–17 FDI cTBS MEP ↓ NS Intervention:

cTBS+cTBS

Monophasic TMS for

single-pulse MEP

Val/Met 10–12 ↓

Val/Val 15–17 FDI cTBS MEP ↓ NS Intervention:

cTBS+cTBS

Biphasic TMS for

single-pulse MEP

Val/Met 10–12 ↓

Val/Val 15–17 FDI cTBS MEP ↓ NS Intervention:

cTBS+iTBS

Monophasic TMS for

single-pulse MEP

Val/Met 10–12 ↓

Val/Val 15–17 FDI cTBS MEP ↓ NS Intervention:

cTBS+iTBS

Biphasic TMS for

single-pulse MEP

Val/Met 10–12 ↓

7 Antal et al. (2010) Val/Val 11 FDI or ADM C-tDCS MEP ↓ NS

Val/Met 8 ↓

1 Cheeran et al. (2008) Val/Val 8 FDI C-tDCS MEP ↓ NS

Non-Val/Val 8 ↓

8 Di Lazzaro et al.

(2012)

Val/Val 21 FDI C-tDCS MEP ↓ NS

Non-Val/Val 8 ↓

9 Strube et al. (2014) Val/Val 10 FDI C-tDCS MEP ↓ NS

Non-Val/Val 12 ↓

10 Nakamura et al.

(2011)

Val/Val 5 FDI QPS MEP ↓ NS

Non-Val/Val 7 ↓

The NIBS effects are indicated by the arrow direction based on the statistical data (i.e., facilitatory effect: ↑; no change: → ; inhibitory effect: ↓, or Not available: ?). In addition, when

either of the genotype groups had a greater effect on the direction of the inhibition, two arrows were added to express this enhanced effect (i.e., ↓↓). ADM, abductor digiti minimi; BDNF,

brain-derived neurotrophic factor; cTBS, continuous theta burst stimulation; C-tDCS, cathodal transcranial direct current stimulation; FDI, first dorsal interosseus; iTBS, intermittent

theta burst stimulation; NIBS, non-invasive brain stimulation; Non-Val/Val, Val/Met+Met/Met; NS, not significant; MEP, motor-evoked potential; QPS, quadri-pulse transcranial magnetic

stimulation; rTMS, repetitive transcranial magnetic stimulation; SD, significant difference; tACS, transcranial alternating current stimulation.

“transcranial random noise stimulation,” or “quadri-pulse
stimulation” + “brain-derived neurotrophic factor,” “BDNF,” or

“Val66Met.” Furthermore, a manual search was carried out over
the reference sections of the retrieved studies.
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Data Extraction and Assessment
The MEP amplitudes elicited by single-pulse TMS were
investigated as main outcome measures. The Tables 1, 2 that
summarized the effect of genotype on the NIBS protocol was
divided into two categories, i.e., facilitatory and inhibitory
NIBS protocols. The classification was carried out based on the
expected MEP changes after the NIBS intervention, regardless
of the actual result. Subjects were classified into the Val/Val,
Val/Met, and Met/Met groups. If the Val/Met and Met/Met
groups were merged as Met carriers, they were represented
as the Non-Val/Val group. We assessed MEP changes in the
selected articles before and after the NIBS intervention, based
on statistical data. P-values < 0.05 were taken as a measure of
statistical significance. First, we used ANOVA or t-test to evaluate
the effect of NIBS on MEP changes for each genotype group
by comparing the MEP changes between the pre and post data
before and after theNIBS condition or NIBS and sham conditions
obtained from the results of the selected articles. We established
the existence of a facilitatory or inhibitory effect of NIBS for
each genotype group if a significant difference was observed
by ANOVA or t-test. Second, the effect of genotype on NIBS-
induced MEP changes was assessed. Most of the selected articles
used ANOVA to assess the main effect of time and genotype, as
well as the interaction. If the main effect of the genotype group
or the interaction was not significant, we judged that no effect
of the genotype was observed on MEP changes based on the
NIBS protocol, even if there was a trend. If different effects were
observed between time points or genotype groups by post hoc
analysis after ANOVA, we established that there was a significant
difference between the genotype groups. A few articles used t-
test without ANOVA to assess the effect of the genotype on
MEP changes before and after NIBS. In this case, if a different
effect was observed between the time points (i.e., pre and post)
for each group or between groups, we judged that there was a
significant difference.

Risk of Bias
The risk of bias was assessed using the Cochrane Collaboration’s
tool (Higgins et al., 2011). This tool evaluates the risk of selection
bias, performance bias, detection bias, attrition bias, reporting
bias, and other biases of the individual studies included in this
review. The risk of bias was categorized as low, unclear, or high.

RESULTS

Selection of Studies
A flow chart of the current systematic review is presented in
Figure 1. Electronic literature searches identified a total of 1,827
studies matching the search terms. The removal of duplicates
resulted in 403 studies being retained. An initial screening of the
titles and abstracts was performed against the selection criteria,
and, in case of insufficient information, full-text articles were
scrutinized. The full-text versions of 29 articles were screened
for eligibility. A total of eight articles were eliminated by full-
text assessment because of the following reasons; (1) single-pulse
MEP was not analyzed (Jayasekeran et al., 2011; Myers et al.,
2017; Andrews et al., 2020; Jannati et al., 2020); (2) 1mV MEP

was measured before and after the intervention (Deveci et al.,
2020); (3) the post MEP measurement was performed after 24 h
(Frazer et al., 2016); and (4) healthy adults were not recruited
(Jayasekeran et al., 2011; Myers et al., 2017; Jannati et al., 2020).
The selected articles were finally categorized into two groups
based on the expected results of MEP changes by the NIBS
protocol (facilitatory NIBS technique, 17 articles; inhibitory NIBS
technique, 10 articles). Regarding the facilitatory protocol, a total
of 27 data obtained from 17 articles were extracted: iTBS, 10 data;
anodal tDCS, 6 data; tRNS, 1 datum; PAS, 7 data; rTMS, 2 data;
and QPS, 1 datum. Regarding the inhibitory protocol, a total of
14 data obtained from 10 articles were extracted; cTBS, 9 data;
cathodal tDCS, 4 data; andQPS, 1 datum. Herein, 1 datummeans
that one NIBS intervention and genotype group were included.
Finally, tACS was not identified in both NIBS protocols in the
full-text assessment.

Risk of Bias
The risk of bias of the individual studies included in this
review, as judged by the authors, is presented in Figure 2.
Generally, the risk of bias varied from low to unclear in all
categories. However, 1 out of 17 studies had a high risk for
selective bias, and 2 out of 17 studies had a high risk for
other biases in the facilitatory NIBS protocol. Conversely, 1 out
of 10 studies had a high risk for selective bias, and 2 out of
10 studies had a high risk for other biases in the inhibitory
NIBS protocol. The blinding of participants and experimenters
was insufficient for BDNF genotyping and NIBS intervention
in all studies. However, several studies blinded either BDNF
genotyping or NIBS intervention for participants, experimenters,
or both (facilitatory NIBS= 7/17 studies; inhibitory NIBS= 3/10
studies). Such studies were classified under unclear risk unless a
double-blind design was adopted for both BDNF genotyping and
NIBS intervention. Most studies did not include information on
the blinding of the outcome assessment.

Participant and Methodological
Characteristics
Tables 1, 2 present a summary of the participant and
methodological characteristics of the selected studies. Met
carriers were relatively fewer than Val/Val carriers in many
studies (facilitatory NIBS: Val/Val = 13.3 ± 7.8 (mean ± SD),
Val/Met = 12.0 ± 5.3, Met/Met = 8.0 ± 5.3, Non-Val/Val =
12.6 ± 9.6; inhibitory NIBS: Val/Val = 14.1 ± 9.3, Val/Met
= 7.0 ± 1.4, Met/Met = no data, Non-Val/Val = 10.8 ± 3.1).
Motor-evoked potentials were recorded from the hand or
forearmmuscles in all studies. Most studies used MEP amplitude
or MEP ratio to assess the genotype effect, whereas one study
normalizedMEP amplitude to theM-wave from the samemuscle
[facilitatory NIBS= 1 study (Cirillo et al., 2012); inhibitory NIBS
= 1 study (McDonnell et al., 2013)], and another study used the
area under the recruitment curve [facilitatory NIBS = 1 study
(Fujiyama et al., 2014)].
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FIGURE 1 | PRISMA flow chart of the present analysis. Here, 1 datum signifies that 1 NIBS intervention and genotype group were included. cTBS, continuous theta

burst stimulation; iTBS, intermittent theta burst stimulation; NIBS, non-invasive brain stimulation; PAS, paired-associative stimulation; QPS, quadri-pulse transcranial

magnetic stimulation; rTMS, repetitive transcranial magnetic stimulation; tDCS, transcranial direct current stimulation; tRNS, transcranial random noise stimulation.
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FIGURE 2 | Risk of bias in the studies included in this review. (A) Studies with facilitatory NIBS. (B) Studies with inhibitory NIBS. NIBS, non-invasive brain stimulation.

Genotype-Related MEP Changes in the
Facilitatory NIBS Protocol
The studies that reported an effect of genotype on NIBS protocol
are illustrated in Figure 3A. In total, 8 of 27 data (29.6%) from 17
studies showed a significant difference between Val/Val and Non-
Val/Val (N = 4), Val/Met (N = 2), or Met/Met (N = 3) [1 datum
compared between three genotypes, and the result showed that
there was a significant difference between Val/Val and Val/Met
or Met/Met (Cirillo et al., 2012)]. In general, the expected MEP
response after the facilitatory NIBS protocol was greater in the
Val/Val than in the Non-Val/Val (N = 4), Val/Met (N = 1),
or Met/Met (N = 3) carriers from 7 out of 8 data [1 datum
compared between three genotypes, and the result showed that
there was a significant difference between Val/Val and Val/Met
or Met/Met (Cirillo et al., 2012)], with a significant difference
(25.9% in 27 data); however, only 1 out of 8 data indicated
Val/Met as having a greater MEP response than Val/Val (3.7%
in 27 data) (Antal et al., 2010). Further, 4 out of the 17 studies
classified subjects into three BDNF genotype groups (i.e., Val/Val,
Val/Met, and Met/Met) (Cirillo et al., 2012; Lee et al., 2013; Teo
et al., 2014; Hwang et al., 2015). Also, four studies compared the
genotype effect between three genotype groups, but only one out
of eight data revealed a significant difference between Val/Met
and Met/Met (Hwang et al., 2015). Supplementary data on the
assessment of MEP changes before and after the facilitatory
NIBS techniques and between BDNF genotypes are presented in
Supplementary Table 1.

Genotype-Related MEP Changes in the
Inhibitory NIBS Protocol
Studies that reported the effect of genotype on the NIBS protocol
are illustrated in Figure 3B. In total, 3 out of 14 data (21.4%)

from 10 studies showed that there was a significant difference
between Val/Val and Non-Val/Val (N = 2 data), Val/Met (N =

1 datum), or Met/Met (N = 0 data). The expected inhibitory
MEP response after the inhibitory NIBS protocol was greater
in the Val/Val than in the Non-Val/Val (N = 2 data), Val/Met
(N = 1 datum), or Met/Met (N = 0 data) from three data,
with a significant difference (21.4% in 14 data) (Cheeran et al.,
2008; Jannati et al., 2017; Marsili et al., 2017); thus, no data
showed that Met carriers had a greater inhibitory MEP response
than Val/Val carriers (0% in 14 data). None of the studies
classified subjects into three BDNF genotype groups (i.e., Val/Val,
Val/Met, and Met/Met), which means that there is no report
on whether the inhibitory NIBS protocol modulates the MEP
response differently between Val/Met and Met/Met carriers.
Supplementary data on the assessment of MEP changes before
and after the inhibitory NIBS techniques and between BDNF
genotypes are presented in Supplementary Table 2.

DISCUSSION

To the best of our knowledge, this systematic review is the first
to investigate whether the BDNF genotype affects the NIBS-
induced response to MEPs applied to the M1 of healthy adults.
Surprisingly, more than two-thirds of the data on both facilitatory
and inhibitory protocols did not show any differences in MEP
changes after NIBS between the genotype groups. Regarding the
facilitatory protocol, although only 29.6% of the data showed
that the MEP response after NIBS varied between the groups,
the expected facilitatory MEP response in the Val/Val group
was greater than that in the Met carriers in 25.9% of the
27 data. Regarding the inhibitory protocol, 21.4% of the data
showed that there is a significant difference on the inhibitory
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FIGURE 3 | Genetic effect of the NIBS protocol on MEP responses. (A) Studies with facilitatory NIBS. (B) Studies with inhibitory NIBS. Each pie graph expresses the

ratio (%) of how many data showed a significant difference in terms of the BDNF genotype effect. A-tDCS, anodal transcranial direct current stimulation; C-tDCS,

cathodal transcranial direct current stimulation; cTBS, continuous theta burst stimulation; iTBS, intermittent theta burst stimulation; NIBS, non-invasive brain

stimulation; NS, not significant; PAS, paired-associative stimulation; QPS, quadri-pulse transcranial magnetic stimulation; rTMS, repetitive transcranial magnetic

stimulation; SD, significant difference; tRNS, transcranial random noise stimulation.

MEP response between genotype groups; however, Val/Val had
a greater inhibitory MEP response than did Val/Met among all
the data.

A review article investigated the effect of the genotype on
the MEP response using iTBS and cTBS (Chung et al., 2016).
Although the expected facilitatory iTBS effects were observed
in both Val/Val and Met carriers, the long-lasting effects were
greater in the Val/Val carriers than in the Met carriers. In
contrast, the expected inhibitory cTBS effects were observed in
the Val/Val, but not in the Met, carriers. These findings suggest
that the BDNF genotype contributes to the MEP modulation
after TBS. Conversely, this systematic review summarized the
typical NIBS, including TBS, and approximately 20–30% of
the data identified genotype-related MEP changes in both
facilitatory and inhibitory NIBS protocols. By focusing on the
TBS effects, this review revealed that only 2/10 (Cheeran et al.,
2008; Marsili et al., 2017) and 3/9 data (Cheeran et al., 2008;
Jannati et al., 2017; Marsili et al., 2017) showed genotype-
related MEP changes in the facilitatory and inhibitory TBS

protocols, respectively; therefore, the genotype effect was not
apparent. However, the current and previous reviews were
methodologically distinct, involving a different number of
selected articles and diverse statistical approaches. Chung et al.
(2016) searched articles in 2014, and finally included seven
data on iTBS and three data on cTBS in the meta-analysis,
which resulted in 3–6 fewer data compared with the current
review, which conducted the search in 2021. Furthermore, we
defined genotype-related MEP changes after NIBS as those with
a significant main effect of the genotype or interaction of the
genotype and time upon analysis via ANOVA, although previous
several articles used a t-test. In contrast, a previous review
article normalized MEP data across time data, and subsequently
analyzed the data using a simple pre and post comparison in
each genotype group. Taken together, the findings of the current
review, which judged the significant difference based on the
results of ANOVA including multiple main factors, might be
more conservative for P-value calculation than those of the
previous reviews.
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Although the genotype effects on MEP changes after NIBS
were limited in both NIBS protocols, we discussed the possible
mechanisms that produce the differences in MEP changes
between genotypes, as described below. Chen et al. (2006)
classified mice into Val/Val, Val/Met, and Met/Met groups, and
they subsequently measured BDNF secretion in hippocampal
cortical neurons. Consequently, BDNF secretion in the Val/Met
and Met/Met groups was significantly reduced by 18 and 29%,
respectively, suggesting that the BDNF genotype influences
BDNF secretion, implying the modulation of brain function
in terms of neural plasticity. Several studies also investigated
how BDNF regulates brain function in mice and showed that
NMDA-receptor-dependent synaptic plasticity was impaired
in the hippocampus of Met/Met mice (Ninan et al., 2010),
and decreased NMDA and GABA receptor-mediated synaptic
transmissions were observed in the pyramidal neurons of the
prefrontal cortex in Met/Met mice (Pattwell et al., 2012).
Similarly, lower glutamate plus glutamine concentrations, known
as an excitatory neurometabolite index, in the M1, as measured
by magnetic resonance spectroscopy, were observed in the Non-
Val/Val human adults compared with the Val/Val human adults
in a previous study (Sasaki et al., 2021). Considering that the
glutamatergic and GABAergic activities in the M1 play an
important role in the synaptic changes caused byNIBS (Liebetanz
et al., 2002; Nowak et al., 2017; Bachtiar et al., 2018; Wischnewski
et al., 2019), the decreased BDNF secretion in the Met carriers
may weaken M1 plasticity function via the NMDA- and GABA-
receptor-dependent activities, consequently producing smaller
MEP changes after NIBS than Val/Val carriers. Taken together,
these findings suggest that the weaker MEP changes observed in
Met carriers after the facilitatory and inhibitory NIBS protocols
(21.4–29.6% in all data) in this review are derived from decreased
BDNF secretion. Furthermore, as for the predominant NIBS
effect in the Val/Val carriers, short-term memory and cognitive
functions were greater in the Val/Val carriers than in the Met
carriers (Dempster et al., 2005; Ho et al., 2006; Huang et al., 2014).

Met/Met might have a greater impact on brain function than
Val/Met in terms of neural activity and BDNF secretion. First,
synaptic transmissions via GABA and NMDA receptors were
significantly different between Val/Val andMet/Met mice (Ninan
et al., 2010; Pattwell et al., 2012). Second, BDNF secretion in
the Met/Met mice was less than that in the Val/Met mice (Chen
et al., 2006). Despite these findings, majority of the selected
articles in the current review merged Val/Met and Met/Met into
Met carriers or did not recruit Met/Met participants because,
compared with other genotypes, Met/Met carriers in the human
population are fewer (Caucasian population: approximately 1–
8%) (Shen et al., 2018). Because of this, most studies could
not investigate the genotype effect in detail. Conversely, the
recruitment of Met/Met participants may be easier in the Asian
population owing to the higher prevalence of the Met/Met
genotype in this population (approximately 15–23%) (Shen et al.,
2018).

Few of the selected articles classified participants into three
genotype groups in the facilitatory NIBS protocol. High-
frequency rTMS, which induces MEP facilitation, had a poor
facilitatory effect in the Met/Met group compared with Val/Val
and Val/Met groups (Hwang et al., 2015), whereas the other

studies failed to report similar results (Cirillo et al., 2012;
Lee et al., 2013; Teo et al., 2014), suggesting that a definitive
conclusion could not be reached. These studies included a
relatively small sample size for Met/Met participants (N = 4–20).
Given the genotype-related functional changes in the brain
between Val/Met and Met/Met carriers, in addition to the small
sample size, future studies including the three groups and a
large sample population are required. None of studies reporting
inhibitory NIBS data classified participants into three groups.

Cortical volume may also explain the genotype-related MEP
changes that occur after NIBS. Neuroimaging studies reported
that the cortical volume varied in some cortical regions between
the genotype groups (Yang et al., 2012; Jasińska et al., 2017;
Shen et al., 2020). When the interaction of cortical volume with
the NIBS effect was considered, the volume of the sensorimotor
cortex positively predicted the NIBS effect on MEP changes
(Conde et al., 2012). However, this hypothesis lacks reliable
information, because the different cortical volumes did not
correspond to the same regions (Yang et al., 2012; Jasińska
et al., 2017; Shen et al., 2020), and some studies failed to show
the genotype-related cortical volume changes (Kim et al., 2015;
McKay et al., 2019). Moreover, one study showed that the M1
volume in the Met/Met group was larger than that in the other
groups (Jasińska et al., 2017).

Although NIBS is becoming a popular rehabilitation tool that
modifies M1 excitability in patients with stroke, considerable
interindividual variability in MEP changes has been recently
reported in healthy participants (Hamada et al., 2013; López-
Alonso et al., 2014; Wiethoff et al., 2014). We expected the
BDNF genotype to partially contribute to the variability, but
found the genotype effect to be relatively small in this review.
Therefore, rather than genetic factors, other factors, such as age
(Opie et al., 2018), attention (Stefan et al., 2004), time (Sale
et al., 2007), and neural oscillations (Zrenner et al., 2018) may
contribute more to the variability. For example, tDCS applied to
the M1 was less effective in older adults than in young adults
(Ghasemian-Shirvan et al., 2020). Furthermore, PAS effect was
more pronounced in the afternoon session than in the morning
one (Sale et al., 2007). Altogether, a variety of factors may
complicatedly interact with each other to affect M1 plasticity.

The differences related to the genotype changes between the
facilitatory and inhibitory NIBS protocols are likely to be small.
A total of 27 data were collected in the facilitatory NIBS protocol,
and a total of 14 data were collected in the inhibitory NIBS
protocol. Thus, the number of data was considerably different
between these NIBS protocols. Furthermore, majority of the
inhibitory NIBS protocols used cTBS (9/14 data), suggesting that
tDCS, rTMS, and PAS were performed less frequently in the
inhibitory NIBS protocol (tDCS = 3 data; rTMS = 0 data; PAS
= 0 data) than in the facilitatory NIBS protocol (tDCS = 6 data;
rTMS = 2 data; PAS = 7 data). Taken together, to investigate the
genotype-related changes in detail, further studies investigating a
variety of NIBS protocols are warranted.

We assessed the risk of bias based onCochrane Collaboration’s
tool (Higgins et al., 2011), and found that majority of the bias
types had low risk or unclear risk. In most of the selected articles,
the performance bias showed an unclear risk, indicating that
the blinding of the data collection and analysis were unclear.
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An epidemiological study reported that incomplete blinding may
exaggerate the effect size by approximately 25% (Wood et al.,
2008). To improve the quality for this kind of study regarding
the BDNF genotype, a double-blind protocol is required for both
multiple NIBS interventions and data analysis in BDNF genotype
groups. None of the selected articles adopted a double-blind
design in both settings, but some adopted a single-blind design
for NIBS interventions or BDNF genotyping. Furthermore, the
inclusion of a sham NIBS group is desirable in a double-blind
protocol to confirm the cumulative effect of single-pulse TMS,
which increases the MEP amplitude (Julkunen et al., 2012;
Pellicciari et al., 2016).

There are some limitations of the current review. First,
we could not investigate the genotype-related NIBS response
in detail because of the different genotyping groups. Some
classified participants as Val/Val, and Val/Met, and Met/Met,
whereas the others merged Val/Met and Met/Met into Non-
Val/Val. This difference may affect the judgment of the genotype-
related changes in this review. Second, it is unclear whether
the genotype-related NIBS effect on MEP changes modulates
actual motor performance through MEP changes because recent
studies reported that there was no correlation between MEP
and motor behavior changes induced by NIBS (López-Alonso
et al., 2015; Lopez-Alonso et al., 2018). Although some studies
investigated the effect of the genotype on motor performance,
similar results were not obtained (McHughen et al., 2010; Li
Voti et al., 2011; van der Vliet et al., 2018). Therefore, assessing
motor performance, in addition to measuring MEP, may be
better for understanding the mechanism at neural and behavioral
levels. Finally, we summarized a variety of NIBS protocols
to determine the effect of the BDNF genotype across typical
NIBS protocols; thus, each NIBS effect was not individually
evaluated. Recent studies reported that QPS showed stronger
M1 plasticity than TBS (Tiksnadi et al., 2020) and relatively low
interindividual variability (Nakamura et al., 2016; Tiksnadi et al.,
2020). Furthermore, QPS effect was not influenced by BDNF
polymorphism (Nakamura et al., 2011). Therefore, the selection
of NIBS from a variety of its protocols may be important to
minimize the interindividual variability, but further research is
required to determine which NIBS protocol is the most effective
inducing M1 plasticity.

CONCLUSION

This systematic review investigated whether the BDNF genotype
influences MEP modulation after NIBS to the M1 in healthy

adults. Our findings revealed that only approximately 20–30% of
the selected data showed BDNF-genotype-dependent changes in
the MEP response, suggesting that the genotype effect may have
a lesser impact than previously anticipated. However, because
majority of the articles merged Val/Met and Met/Met into Met
carriers, future studies classifying the participants into three
groups are required for both facilitatory and inhibitory NIBS
protocols. Although the genotype-related MEP changes detected
after NIBS were relatively small, Val/Val is likely to have a
greater effect on NIBS than Met carriers for both NIBS protocols.
This difference may be associated with the decreased BDNF
secretion in Met carriers, which results in the poor induction of
M1 plasticity.
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