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Abstract: The interaction capability provided by the Internet of Things (IoT) significantly increases
communication between human and machine, changing our lives gradually. However, the abundant
constructions of 5G small base stations (SBSs) and large-scaled access of IoT terminal equipment (TE)
will surely cause a dramatic increase in energy expense costs of a wireless communication system.
In this study, we designed a bilateral random model of TE allocation and energy decisions in IoT, and
proposed a mixed energy supply algorithm based on a matching game and convex optimization to
minimize the energy expense cost of the wireless communication system in IoT. This study divided
the problem of minimizing energy expense cost of the system into two steps. First, the random
allocation problem of TEs in IoT was modeled to a matching game problem. This step is to obtain the
TE matching scheme that minimizes the energy consumption of the whole system on the basis of
guaranteeing the quality of service of TEs. Second, the energy decision problem of SBS was modeled
into a convex optimization problem. The energy purchase scheme of SBSs with the minimum energy
expense cost of the system was obtained by solving the optimal solution of the convex optimization.
According to the simulation results, the proposed mixed energy supply scheme can decrease the
energy expense cost of the system effectively.

Keywords: IoT; 5G; matching game; convex optimization; smart homes

1. Introduction

The concept of the Internet of Things (IoT) was proposed officially at the end of the 20th century.
In recent years, the development of various communication technologies has provided technical
support for the wide application of the IoT. We can divide these technologies into three categories based
on transmission rates and coverage. ZigBee and Wi-Fi technologies applied in local area networks
are suitable for providing short distance communication services; 5G cellular network technology is
suitable for high-rate transmission scenarios. Low-power wide-area networks technology represented
by LoRa can provide low power and long-distance communication with low transmission rate [1].
With the gradual construction of the space-terrestrial integrated networks [2], the IoT will bring
extensive interaction between man and machine and between machine and machine. Thus, the IoT
possesses promising applications in various fields, including the smart home, automatic driving, and
medical field, and will become an indivisible part of our daily lives in the near future [3]. As more and
more smart devices are introduced into family life, the smart home provides efficient management
solutions for families in many fields, such as security, fire protection, and lighting [4].

However, communication flows of cellular network will be doubled generally every year [5].
Data statistics show that the power consumption of base stations (BSs) accounts for approximately
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50%–80% of the total power consumption for the information and communication technological
industry [6,7]. Massive IoT nodes and connections require lower latency, higher reliability, and
other transmission features than ever before [8], which will surely cause a dramatic increase in the
energy expense cost of the wireless communication system. For communication operators, the energy
expense cost of BSs is roughly 18%–32% of the total operation cost [9,10]. The energy purchased
by communication operators is mainly electric energy from thermal power generation. With the
intensifying trend of global warming, people increasingly reach an agreement on power supply for the
IoT based on renewable energy sources. Moreover, renewable energy sources are superior to fossil
energy in terms of ecology and economy [11].

With the increasing demand of various new services and real-time services, wireless networks
need to support requirements with different traffic characteristics and different quality of service
(QoS) guarantees [12]. In order to ensure that the terminal equipment can always maintain the best
connection, it is important to design an efficient handover mechanism. Vertical handover (VHO) can
achieve seamless mobility and service continuity between various mobile wireless access networks [13].
Lai WK et al. [14] proposes a new handover management scheme for D2D communication in 5G
network, which reduces handover times and handover latency. Seo D.Y. and Chung Y.W. [15] has
made efforts to optimize BSs energy consumption and reduce the number of handovers in 5G network,
and is committed to achieving green communication in 5G network.

The development of smart grids provides a new solution to the green development of the 5G
network. The smart grid constructs an extensively distributed automatic energy transport network
through two-way information and energy flows, so that BSs can flexibly apply energy sources of
different energy suppliers in the smart grid [16,17]. Xu and Zhang [18] studied the energy supply
problem of BS in a coordinated multiple-point smart grid for intelligent power supply, optimized the
two-way energy exchange among BSs with the local renewable energy power generation and the smart
grid through convex optimization algorithm, and realized the minimum energy expense cost of the
system under a given QoS of terminal equipment (TEs). However, the influences of different energy
prices of energy suppliers in the smart grid on the energy expense cost of BSs were neglected. Ghazzai
and Kadri [19] considered dynamic pricing of electricity of different energy suppliers in the smart
grid. In a cellular network, the energy expense cost is minimized by optimizing the energy purchasing
schemes from all suppliers. Although this study considered different energy suppliers in the smart
grid and varying service types in BSs, the influences of different service qualities of TEs in the same
service type on total power consumption of BSs were ignored.

With the continuous development of a smart grid, the renewable energy generation unit of
BSs provides an opportunity to decrease the energy expense cost of a communication system [20].
Rached et al. [21] proposed an energy purchasing strategy of the cellular network to solve the
uncertainty in renewable energy supply. This strategy involves simultaneous power supplies of
the smart grid and uncertain local renewable energy sources. Xin et al. [22] proposed a new online
control technique over the communication system in the smart grid based on random subgradient by
using the advanced time-decoupling technology to solve the high randomness problem of renewable
energy sources. This online control technique realized a feasible and asymptotically optimal resource
scheduling when the statistics of random process is unknown. Although these two studies solved
the uncertainty problem of renewable energy generation, they still neglected the influences of QoS of
accessed TEs on power consumption of BSs.

In addition, applications of coordinated multipoint transmission technology provide a new
solution to the energy optimization of communication systems. Xu et al. [23] proposed a suboptimum
zero-forcing precoder to solve the energy-saving precoding problem in heterogeneous network and
realized energy efficiency optimization that meets QoS constraint of TEs and maximum transmission
power constraint of BSs under multiple interferences. However, this suboptimum zero-forcing precoder
only realized the optimization of relative energy efficiency and did not consider the absolute energy
expense cost of BSs. Wang and Zhu [24] proposed a power control algorithm of micro BSs based on
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the game theory, which realized maximum total rate of cellular network, to solve the power control
problem of BSs in a heterogeneous cellular network under multiple interfaces. Although this study
realized the maximum total rate of a cellular network under power constraint, the influences of energy
suppliers with different prices on the operation network of a cellular network were neglected. Xu and
Zhang [25] designed a coordinated multipoint wireless communication system that has a power supply
through renewable energy generation, aiming to maximize the communication and rate of all TEs.
Given the new power constraint of transmission loss, the sum of the communication rate of all TEs was
realized by jointly optimizing the transmitted power allocation and energy exchange of cooperated
BSs. Although a new joint communication and energy cooperation scheme was proposed, BSs in this
study were powered by using renewable energy sources, where energy sources that were brought by
BSs from the power grid were neglected.

Existing studies on the energy consumption problems of BSs mainly focus on the following two
aspects. On the one hand, the QoS of TEs is optimized in these studies under the total energy limits of
BSs assuming that the energy source of BSs is provided by one supplier. On the other hand, given a fixed
QoS of TEs, the energy supply ratio of different suppliers is optimized. However, no comprehensive
considerations have been given to situations on the energy and communication sides. Different QoS
demands of TEs in BS and energy sources that BSs purchased from energy suppliers are a bilateral
random problem. Changes in sending power caused by different QoS demands of TEs can influence
the quantity of energy sources that BSs purchase from energy suppliers, and vice versa.

This study targets at minimum energy expense cost of the wireless heterogeneous communication
system in IoT. Hence, a bilateral random system model was designed. Based on this system model, a
mixed energy supply algorithm of matching game and convex optimization was proposed, which can
realize the minimum energy expense cost of the system. The main contributions of this study are
introduced as follows:

1. This study designed a bilateral random system model of TE allocation and energy decisions
in IoT to minimize the energy expense cost of the wireless heterogeneous communication system
in the IoT. In the system model, TEs with different QoS demands are distributed within the service
scope of small base stations (SBSs) randomly, and SBSs purchase energy sources from different energy
suppliers who have varying selling prices. Based on this model, a mixed energy supply method based
on matching game and convex optimization was proposed. During the allocation of TEs in IoT, a new
matching game model was designed to depict the mutual selection behaviors of SBSs and TEs. For the
energy purchase decision problem of SBS in IoT, the energy purchase scheme with minimum energy
expense cost of the system was gained based on the optimal energy selection mechanism of convex
optimization algorithm.

2. When allocating TEs in IoT, this study hypothesized that TEs in the service scope of SBSs have
different QoS demands. The allocation problem of TEs was modeled into the Mixed-Integer Nonlinear
Programming (MINP). The optimal allocation scheme of TEs was solved by using the matching game
model. In the matching game model, the utility functions of SBSs and TEs were built to describe the
preferences of SBSs (TEs) to TEs (SBSs). Based on the guaranteed QoS of TEs, the TE allocation scheme
with the minimum energy consumption in the whole system was gained through the game between
SBSs and TEs.

3. When making energy decisions for SBSs in IoT, the energy selection problem of SBSs in IoT
was modeled into a convex optimization problem. Different energy prices and maximum energy
supply capacities of energy suppliers were introduced into the convex optimization problem, thereby
obtaining the energy decision for the minimum energy expense cost of the system. According to the
simulation results, the proposed algorithm effectively decreases the energy expense cost of the system
by optimizing the TE allocation and energy purchase schemes of SBSs, while meeting the QoS demands
of different TEs and energy constraints of SBSs.

The remainder of this study is organized as follows. Section 2 introduces the system model and
problem modeling. Section 3 introduces the matching game model and matching exchange algorithm
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of TEs. Section 4 introduces the energy decision problem of the system. Section 5 describes a simulation
analysis of the proposed algorithm and compares it with the traditional algorithm. Section 6 concludes
the study.

2. System Model and Problem Modeling

2.1. System Model

A wireless heterogeneous communication network system with N SBSs, which serves for K TEs in
the IoT, is shown in Figure 1. Each TE is equipped with one antenna, and each SBs has large-scaled
multiple-input-multiple-output (MIMO) antenna in the system. In our study, the macro base station is
only powered by traditional energy, and each SBS is powered by a hybrid of its own renewable energy
devices and energy suppliers in the smart grid. Since we only focus on the TE allocation and energy
optimization of the SBS, the impact of the macro base station on the system is ignored in this paper.
In this system, the set N = {1, 2, . . . , N} is used to represent all SBSs, and the set K = {1, 2, . . . , K} is
applied to express all TEs. The BSn serves for Kn TEs, and

∑N
i=1 Ki = K. In the system, TEs distribute

randomly within its service scope and can be provided by different SBS. Each TE can obtain services
from only one SBS to assure QoS of TEs and avoid wasting communication resources. In this study,
Rk, k ∈ K is applied to express a bit rate needed by the TE k. Given that different TEs require various
service types, each TE has the corresponding QoS demands. For different TEs, Rk , Rk′ , k, k′ ∈ K, k , k′.
In a practical system, many modes exist for SBSs to collect charges from terminals. In this study, SBSs
may gain profits and maintain their energy expense costs by collecting service fees from TEs. Different
SBSs have varying prices to unit code rate, and the unit code rate price that SBS n collect from the TE k
is γn, n ∈ N. Each SBS is equipped with a renewable energy generation unit and purchases energy
from energy suppliers in a smart grid to offset energy shortage. In a smart grid, L energy suppliers
have different prices, and the energy supplier l provides energy sources to SBSs through the smart grid.
In a system, the intelligent control center can gain bilateral information flows between it and SBSs
and between it and energy suppliers and makes decision on TE allocation and energy purchase by
collecting information. For the convenience of calculation, the energy mentioned in this study refers to
the energy in unit time.

We assume that TEs distribute randomly in the service scope of the whole IoT. Each TE k
that belongs to the set K is allocated to an SBS n,∀n ∈ N and served by this SBS. The matrix
VN×K =

[
νn,k

]
,∀k ∈ K,∀n ∈ N is applied to express the allocation situation of all TEs, where νn,k is

defined as the situation that the SBS n serves the TE k. νn,k is expressed as:

νn,k =

{
1, SBS n serves the TE k
0, else

. (1)

The set Kn =
{
k ∈ K

∣∣∣νn,k = 1
}
,∀n ∈ N is the set of TEs that are allocated to the SBS n. Considering

the uniqueness of SBS serving TE, Kn ∩Kn′ = Ø, n, n′ ∈ N, and n , n′. νn,k must meet the following
equation to assure that each TE k is served by an SBS:

N∑
i=1

νi,k = 1,∀k ∈ K. (2)

The SBS adjusts its transmitted power to TEs to assure their service qualities. The power
consumption of SBS n can be divided into two parts. One is the signal transmitted power that is
determined by using the quantity of accessed TEs:

Pe =
K∑

i=1

νn,ipn,i,∀n ∈ N, (3)
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where pn,i is the transmitted power of an SBS to the TE i, and its value is related to the QoS of
users, which will be introduced in detail in the following text. The other part is the fixed power P f ix
that is unrelated with the quantity of accessed TEs. This variable is the power needed to meet the
encoding/decoding hardware of SBSs, cooling equipment, and other facilities.Sensors 2020, 20, x FOR PEER REVIEW 5 of 21 
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Here, channel gain of SBS n to TE k is expressed by ηn,k. Given that only the influences of
large-scaled attenuation on the information channel received attention, it can be gained by:

ηn,k =
(
λ

4π

)2 1(
dn

k

)2 G,∀k ∈ K,∀n ∈ N, (4)

where dn
k is the distance between SBS n and TE k, λ is the wavelength of the sending signals, and G is

gain of sending and receiving antennas. Here, β =
(
λ

4π

)2
G. The TEs are also disturbed by white noises

with a power spectral density of n0 in the information channel. In the system, the channel bandwidth
that is allocated to an SBS is B. Therefore, the bit rate of TE k in the SBS n can be expressed as:

Rk = log2

(
1 +

ηn,kpk

n0B + I

)
, (5)

where I is the interuser interferences to the TE k. Given that each SBS in the system is equipped with
massive MIMO antennas and interuser interferences are eliminated by using zero-forcing precoding
technology [26], Equation (5) can be rewritten as:

Rk = log2

(
1 +

ηn,kpk

n0B

)
. (6)

In this study, the set of energy suppliers is expressed by L = {1, 2, . . . , L}. Each SBS is equipped
with a renewable energy generation unit, and the renewable energy generation power of the SBS is
expressed by gRE. gRE can be obtained using the Markov model mentioned in [27]. Additionally,
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SBSs purchase energy from energy suppliers in the smart grid to offset shortages of renewable energy
supply. The energy quantity xn that the SBS n purchases from the power grid in unit time is defined as:

xn =
K∑

i=1

νn,ipn,i + P f ix − gRE,∀n ∈ N. (7)

When an SBS has to purchase energy from different energy suppliers in the smart grid, the energy
quantity that the base n purchases from the energy supplier l is xl

n,∀n ∈ N,∀l ∈ L.

xn =
L∑

j=1

x j
n =

K∑
i=1

νn,ipn,i + P f ix − gRE,∀n ∈ N. (8)

In the present study, different energy suppliers are hypothesized to have varying selling prices [19].
The energy price that the energy supplier l offered to the SBS is defined cl,∀l ∈ L. The expenses of SBS
n to purchase energy can be expressed as:

fn = xncT, (9)

where c =
[
c1, c2, . . . , cl

]
is the energy price vector of energy suppliers, xn =

[
x1

n, x2
n, . . . , xl

n

]
,∀n ∈ N

is the energy purchase scheme of SBS n, and fn is the expense of the SBS n to purchase energy.
Therefore, the matrix XL×N =

[
x1

T, x2
T, . . . , xn

T . . . , xN
T
]
,∀n ∈ N can be used to express energy

purchase information of all SBSs from different energy suppliers in the system.

2.2. Problem Modeling

The energy expense cost of the whole system is minimized by optimizing the TE allocation matrix
V and energy purchase matrix X in an SBS. The energy expense cost of the system can be expressed as:

f =
N∑

n=1

xncT,∀n ∈ N, (10)

In the system, the transmitted power pn,k of the SBS n provided to the TE k can be rewritten from
Equation (6) to assure the QoS of TEs:

pn,k = νn,k
1
ηn,k

(
2Rq − 1

)
n0B,∀k ∈ K,∀n ∈ N. (11)

The SBS has the highest transmitted power limit Pe,max. Therefore, the total transmitted power of
an SBS must meet:

K∑
i=1

νn,ipn,i ≤ Pe,max,∀n ∈ N. (12)

Energy suppliers have a maximum energy supply amount, which is expressed by xmax
l . Therefore,

the energy amount that the system purchased from the energy supplier l has the following constraints:

N∑
i=1

xl
i ≤ xmax

l ,∀l ∈ L. (13)
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In summary, the objective function of minimum energy expense cost of the system can be expressed
by combining Equations (1), (2), (4), (8) and (11)–(13) as follows:

min
V,X

f (V, X) = min
V,X

N∑
n=1

xncT, (14)

subject to:

ηn,k = β
1(

dn
k

)2 ,∀k ∈ K,∀n ∈ N, (15)

pn,k = νn,k
1
ηn,k

(
2Rq − 1

)
n0B,∀k ∈ K,∀n ∈ N, (16)

K∑
i=1

νn,ipn,i ≤ Pe,max,∀n ∈ N, (17)

K∑
i=1

νi,k = 1,∀k ∈ K, (18)

νn,k ∈ {0, 1},∀k ∈ K,∀n ∈ N, (19)

N∑
i=1

xl
i ≤ xmax

l ,∀l ∈ L, (20)

L∑
j=1

x j
n =

K∑
i=1

νn,ipn,i + P f ix − gRE,∀n ∈ N, (21)

Equation (15) expresses the channel gain of TE, and Equation (16) assures the limiting condition
of QoS for TEs. Equation (17) indicates that each SBS has an upper bound of output power,
and Equation (18) assures that each TE is served by an SBS. Equation (19) is the value range of
binary parameters for “switch” of the TEs, and Equation (20) indicates that each energy supplier has
an upper limit of energy generation. Equation (21) demonstrates the relationship between energy
quantity that SBS must purchase from the smart grid and energy consumption of the SBS.

Through Equation (14), the system resource can be optimized, and the energy expense cost of the
system is minimized. Nevertheless, the following are the difficulties in the optimization process:

1. When the energy quantity purchased by all SBSs is fixed, how to allocate TEs with different
QoS demands in the IoT to different SBSs is a Mixed-Integer Nonlinear Programming (MINP).
This problem is a nondeterministic polynomial time hard (NP-hard) optimization problem [28].
For a fixed TE allocation scheme V(1)

N×K, calculating the total cost is easy. However, the time
complexity is difficult to estimate even for a small IoT system when we want to solve the scheme
with the minimum energy expense cost of the system.

2. When the TE allocation scheme in SBSs is fixed, how SBSs in the IoT purchase energy sources from
different energy suppliers is also an NP-hard optimization problem. Similarly, the time complexity
is difficult to estimate by solving the global optimal solution through conventional methods.

Hence, a mixed energy supply optimization algorithm based on a matching game and convex
optimization is proposed. The objective function in Equation (14) is divided into two parts. In this
study, the proposed mixed energy supply optimization algorithm is solved by using two steps. First,
we hypothesize that the energy strategy of SBS is fixed, and the TE allocation scheme V that achieves
the optimal utility function of the whole system is gained through a multiple-to-one matching game
model. Second, the energy decision X of SBSs to realize the minimum energy expense cost of system is
gained through a convex optimization algorithm.
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When solving the TE allocation problem in the IoT, we hypothesize that the energy decision X of
SBSs is known and fixed, and the TE allocation scheme with the minimum energy consumption of the
system is acquired by changing service SBSs to TEs. Under the premise of QoS of TEs and the power
constraint of SBSs, a utility function of the system is constructed based on the matching game model
and expressed as Equation (22):

max
V
φ(V) = max

V

∑
k∈K

φk +
∑
n∈N

φn

, (22)

subject to:

ηn,k = β
1(

dn
k

)2 ,∀k ∈ K,∀n ∈ N, (23)

pn,k = νn,k
1
ηn,k

(
2Rq − 1

)
n0B,∀k ∈ K,∀n ∈ N, (24)

K∑
i=1

νn,ipn,i ≤ Pe,max,∀n ∈ N, (25)

where φk and φn are the utility function of TE k and the SBS n, respectively. The matching scheme that
realizes the optimal utility function of a system is obtained through the matching game. The energy
decision of SBSs with the minimum energy expense cost of the whole system can be made through
convex optimization algorithm. Hence, the objective function can be expressed as:

min
X

f (X) = min
X

N∑
n=1

xncT, (26)

subject to:
N∑

i=1

xl
i ≤ xmax

l ,∀l ∈ L, (27)

L∑
j=1

x j
n =

K∑
i=1

νn,ipn,i + P f ix − gRE,∀n ∈ N. (28)

3. TE Allocation Based on Matching Game

If the energy quantity purchased by different SBSs in unit time is a fixed value, then the transmission
power of each SBS is fixed. Under this circumstance, the optimal TE allocation scheme is searched.
Therefore, this study utilizes a multiple-to-one matching game model. In this system, TEs with different
QoS demands distribute randomly within the service scope of SBSs in the system. Here, the conditions
that meet the exchange and termination of the final exchange are defined. In addition, the utility
functions of TEs and SBSs are constructed to describe the influences of exchange on SBSs and TEs.
An overall utility function of the system is made to compare the advantages and disadvantages of
different schemes to describe the total utility of the SBS and TE system in the whole internet. Moreover,
an algorithm is designed to obtain the matching scheme with the maximum utility function of the
whole system.

3.1. Matching Game Model

The matching game can construct models of bilateral allocation problems between two groups of
participants according to their preference relationships [29]. In the proposed model, TEs have different
preferences to SBSs, such as channel gain from SBSs and fees that SBS collected from served TEs. SBSs
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have different preferences to TEs, such as gains from service to different TEs and sending power to TEs.
Hence, the TE allocation problem in the IoT was naturally modeled into a multiple-to-one game model
in the present study.

A matching scheme of TEs was defined as a matching matrix µ that describes the allocation
situation of all TEs in the system. Specifically, an SBS serves several TEs, and one TE is only served by
one SBS. This scheme can be described as follows:

Definition 1. The matching matrix is µ and µ ⊆ K⊗N.

‖µ(k)‖1 = 1, (29)

‖µ(n)‖1 = Kn, (30)

where the vector µ(k) =
{
n ∈ N

∣∣∣(k, n) ∈ µ
}

and the vector µ(n) =
{
k ∈ K

∣∣∣(k, n) ∈ µ
}
.

In Definition 1, Equation (29) indicates that the TE k is served by only one SBS, and Equation (30)
indicates that an SBS serves for a total of Kn TEs. µ(k) = n indicates that SBS n serves for TE k, that is,
νn,k = 1. µ(n) = Kn reflects the set of all TEs that SBS n serves for.

Two utility functions were introduced into the describe preferences of the two groups of
participants, which are utility functions of TE and SBS, to measure the quality of matching schemes.

The channel gain of SBS n to the served TEs was defined as
→
ηn = (ηn,1, ηn,2, . . . , ηn,Kn , ηn,K), and

the transmitted power vector of SBS n was
→

Pn = (pn,1, pn,2, . . . , pn,Kn , pn,K). During the matching
between TEs and SBSs, the channel gain and transmitted power of SBS n will change after the
serviced TEs are changed. Therefore, when a determined matching scheme µ was gained, the channel

gain and transmitted power vectors of SBS n were defined as
→

η
µ
n =

(
η
µ
n,1, ηµn,2, . . . , ηµn,Kn

, ηµn,K

)
and

→

Pµn =
(
Pµn,1, Pµn,2, . . . , Pµn,Kn

, Pµn,K

)
, respectively.

The utility function of TE k of SBS n was defined as:

maxφk

(
→

η
µ
n

)
= ηn,k −Rkγn, (31)

subject to:

ηn,k = β
1(

dn
k

)2 ,∀k ∈ K,∀n ∈ N. (32)

Equation (31) expresses the preferences of TE i to SBS n, and these preferences can be composed
of two parts. The first part is the improvement of channel gain of TE k by choosing the SBS n, which is
a positive factor for TE k to choose SBS n. The second part is the service cost that SBS n collects from
the TE k, which is a negative factor for TE k to choose SBS n.

The utility function of SBS n that serves for Kn TEs was defined as:

maxφk

(
→

Pµn

)
=

K∑
i=1

γnRi −

K∑
i=1

pµn,i , (33)

subject to:
K∑

i=1

pµn,i ≤ Pe,max,∀n ∈ N, (34)

pn,k = νn,k
1
ηn,k

(
2Rq − 1

)
n0B,∀k ∈ K,∀n ∈ N. (35)
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Equation (33) expresses the preferences of SBS n to TEs. The first part of Equation (33) expresses
the service gains of the SBS n from the served TEs, which is beneficial for the SBS n. The second part is
the transmitted power of SBS n needed to assure the QoS needs of TEs, which is disadvantageous for
the SBS n.

Equation (31) shows that attention shall be paid to the service cost of TEs to acquire gains in
addition to channel gains of different SBSs to TEs to maximize the utility function of TEs. Equation (33)
shows that the low transmitted power of SBSs is conducive to SBS because SBS must purchase energy
from energy suppliers at different prices or supply energy sources through renewable energy generation.
Nevertheless, decreasing the served TEs will decrease service gains of the SBS, thereby decreasing
its profits. Hence, service gains and transmitted power of SBSs must be considered in the process
of matching game. Therefore, the matching method in reference [30] was chosen and optimized,
achieving the optimal results of the following matching methods.

Definition 2. For ∀k, k′ ∈ K,∀n, n′ ∈ N, (n, k), (n′, k′) ∈ µ, the matching exchange µk′
k was defined as

µk′
k =

{
µ
∣∣∣(n, k), (n′, k′) < µ

}
∪

{
(n′, k), (n, k′)

}
.

Here, two SBSs could mutually exchange one TE that they serve for. In this process, other TEs
belonging to these two SBSs remained the same. However, the exchange had a prerequisite of meeting
conditions for gain exchange.

The exchange gain was given by Definition 3.

Definition 3. In a matching scheme µ, the exchange is called gain exchange only when a pair of exchange 〈k, k′〉
of TEs meets the following conditions:

∀t ∈
{
k, k′,µ(k),µ(k′)

}
,φt

(
µk′

k

)
≥ φt(µ), (36)

∃t ∈
{
k, k′,µ(k),µ(k′)

}
,φt

(
µk′

k

)
≥ φt(µ). (37)

Equation (36) demonstrates that after finishing gain exchange, the utility functions of the
two involved SBSs and TEs did not decrease. Equation (37) demonstrates that after finishing
the gain exchange, at least one of the utility functions of the two involved SBSs and TEs will
increase. Gain exchange conditions also avoid the circulation of equivalent matching exchange because
Equation (37) requires the increase of at least one utility function in exchange.

Gain exchange also determined the condition to terminate matching exchange.

Definition 4. When no gain exchange exists in a matching scheme µ, this matching scheme is called
stable matching.

When the matching exchange in a system does not meet the condition of gain exchange, the utility
functions of SBSs or TEs will decrease if exchange of TEs continues. In the game theory, each gamer
is self-interested, and no one will decrease matching exchange of its own utility functions. At this
instance, the system gains the optimal matching scheme.

3.2. Matching Exchange Algorithm

In this section, a matching algorithm of TEs was designed to obtain the stable matching scheme.
The progressive increase and convergence of the matching algorithm were proposed. In the matching
algorithm, each SBS and TE can make decisions rationally according to their preferences. A global
utility function was built up to compare the advantages and disadvantages of different matching
schemes to measure the performances of different matching schemes.
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The objective function of the matching algorithm is as follows:

max
V
φ(V) = max

V

∑
n∈N

∑
k∈Kn

φk

(
→

η
µ
n

)
+

∑
n∈N

φk

(
→

Pµn

), (38)

subject to:

ηn,k = β
1(

dn
k

)2 ,∀k ∈ K,∀n ∈ N, (39)

∑
i∈K

pµn,i ≤ Pe,max,∀n ∈ N. (40)

pn,k = νn,k
1
ηn,k

(
2Rq − 1

)
n0B,∀k ∈ K,∀n ∈ N. (41)

Equation (38) expresses the global utility function of the whole system. The first term refers to the
sum of utility functions of all TEs belonging to different SBSs. The second term is the sum of utility
functions of all SBSs. When the objective function gains the optimal value, the corresponding matching
scheme µ is the stable matching, which is the desired matrix V.

Algorithm 1 shows the details of the matching algorithm.

Algorithm 1: Matching game of TE Allocation

1. Initialize parameters. Let the number of iteration be t = 0, the maximum number of iterations be ttop, and
the minimum difference of utility function be e. TEs distribute randomly within service scopes of
different SBSs. Therefore, the initial allocation µ0 is gained.

2. do
3. choose two TEs i, i′ ∈ K belonging to different SBSs n, n′ ∈ N at the iteration t = t + 1.
4. if the exchange 〈i, i′〉 is a gain exchange,
5. if the exchange meets the limiting conditions (32), (34), and (35)
6. Updating µt ← µk′

k ;

7. else retaining the matching µt = µt−1

8. else if the exchange 〈i, i′〉 is not a gain exchange
9. Retaining the matching µt = µt−1

10. Until t > ttop or
∣∣∣φ(µt) −φ(µt−1)

∣∣∣ < e

Next, progressive increase and convergence of the matching game algorithm for TE allocation
were proved. In other words, the uniqueness of the solution of the proposed algorithm was proved.
Given that the TE exchange between SBSs only influenced the involved SBSs and the TEs belonging
to the involved SBSs, only the involved SBS and TEs had to be considered to prove the progressive
increase and convergence of the matching game algorithm for TE allocation.

Without loss of generality, any gain exchange 〈k, k′〉 was chosen. In the initial matching scheme µ,
µ(k) = n,µ(k′) = n′. After gain exchange, the matching scheme gained is µk′

k . Given that the premise
for each exchange is that the exchange is a gain exchange, at least one utility function of the involved
TEs and SBSs in the exchange will increase after matching game algorithm for TE allocation. The utility
functions of other gamers will not decrease. Thus, the utility functions of TEs and SBSs involved in the
exchange will not decrease after matching game algorithm for TE allocation.

Moreover, the number of gain exchange is limited because the quantities of TEs and SBSs are
limited. Progressive increase of the matching game algorithm for TE allocation has been proven in the
above text. Therefore, the stable matching scheme with the optimal utility functions of all SBSs and
TEs can be gained eventually. This phenomenon indicates that the matching game algorithm for TE
allocation finally converges with matching schemes at a stable matching.
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Additionally, although the optimal stable matching scheme could not guarantee maximization
of the utility functions of single TE or SBS, it can realize the maximum utility function of the whole
network. Although the utility function of a TE (SBS) fails to reach the maximum, the part that is
“sacrificed” by the maximum utility function brings additional utility values of other TEs (SBSs),
thereby realizing the maximum utility functions of all TEs and SBSs.

4. Energy Decision Based on Convex Optimization

At the energy side, this study assumed that TE allocation to each SBS is determined and known
(the scheme µ is assumed). The optimal energy purchase scheme of SBSs was searched by fixing the
energy quantity that each SBS must purchase. During the modeling of energy decision side, Equation
(14) and its constraints were rewritten to change the energy decision modeling problem into a convex
optimization problem. The global optimal solution of the convex optimization problem was solved by
using the optimization algorithm.

Given that the optimal matching scheme µ that meets the stable matching was known, the total
energy quantity xn that has to be purchased for each SBS n was known and xn met Equation (8).

Then, Equation (14) and its constraints can be expressed as:

min
X

f (X) = min
X

N∑
n=1

xncT, (42)

subject to:
N∑

i=1

xl
i ≤ xmax

l ,∀l ∈ L, (43)

L∑
l=1

xl
n ≤ xn,∀n ∈ N, (44)

where xn =
∑K

i=1 νn,ipn,i + P f ix − gRE,∀n ∈ N.
After given xn, it can be proved that the problem constituted by Equation (42) and its constraint

conditions (43) and Equation (44) is convex optimization problem [31]:

1. Since the objective function Equation (42) has a non-positive second derivative with respect to
any variable xn, Equation (42) is a convex function;

2. Since the constraint conditions (43) and (44) are both affine functions, the constraint conditions
are convex functions.

Given that the problem expressed by Equation (42) is equal to the convex optimization problem,
an optimal solution XL×N is necessary to minimize the function. Therefore, the optimal solution can be
gained through the existing convex optimization algorithm in MATLAB.

Therefore, the solving algorithm of energy decisions of SBSs can be gained (Algorithm 2).

Algorithm 2: Algorithm for Minimum Cost of Energy Decision

1. Initialize parameters
2. Implement the matching game algorithm for TE allocation and gain the optimal stable matching scheme

VN×K.
3. Gain the desired purchase power of SBSs from Equation (7)
4. The optimal bilateral stable matching scheme VN×K is brought into Equation (14), and a new model is

constructed (Equation (42)).
5. Recall the CVX function in MATLAB to gain the minimum optimal energy decision XL×N
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5. Results

In this section, a simulation study on the proposed bilateral random algorithm was carried out.
The mixed energy supply algorithm was compared with the traditional algorithm. The energy expense
costs of systems that were calculated through two algorithms under different quantities of TEs and
different prices of energy suppliers were judged by using the energy expense cost of a system as the
judgment standards. In the traditional algorithm, the system allocated TEs to different SBSs according
to the distance between SBSs and TEs. With respect to energy purchase, the system purchased energy
from all energy suppliers in average. All simulations are made using MATLAB on the personal
computing with Intel® Core i7-4790 CPU @ 3.6 Hz and 8 GB RAM.

Here, we hypothesized that the whole IoT system had N SBSs, and the service scope of each SBS
was a round area with a radius of 25 m. The coordinates of four SBSs in the Cartesian coordinate system
were SBS1 = (16, 16), SBS2 = (−16, 16), SBS3 = (−16,−16), and SBS4 = (16,−16). TEs distributed
randomly in the service scope of each SBS. In the system, all SBSs purchased energy sources from
L energy suppliers. Like [32], we use probability theory to randomly distribute the TEs within the
service scope of the system.

Table 1 shows the parameter setting in this study.

Table 1. Simulation parameters.

Parameters Values

Service radius of SBSs 25 m [33]
Gains of transmitting and receiving antennas (G) 10 [34]
Gaussian noise power spectral density (n0) −50 dBm/Hz [34]
Channel bandwidth (B) 100 MHz [35]
Maximum power limit of SBSs (Pmax) 200 W [34]
Renewable energy generation capacity of SBSs (gRE) 30 W
Bit rate of terminal equipment (Rk) 200–300 Mbps [36]
Charging price of SBSs (γn) 0.2–0.3 RMB
Energy suppliers (L) 3
SBSs (N) 4

Table 2 shows the number of gain exchanges and running time needed for the system to reach
stable matching under different numbers of TEs. Given that TEs distributed randomly in the service
scopes of SBSs, 100 tests under the same number of TEs were carried out to avoid errors of experimental
results caused by such distribution randomness, and the number of average gain exchanges to reach
the stable matching was chosen. With the increase of TEs, the number of gain exchanges that was
needed for the system to realize stable exchange achieved a linear growth.

Table 2. Number of gain exchange to reach stable matching under different numbers of TEs.

Number of TEs Average Number of Gain Exchanges Run Time (s)

100 3.4 0.816
200 4.3 3.081
300 5.5 8.781
400 7.8 19.586

Figure 2 shows the variation curves of utility functions of the system in the matching game
algorithm for TE allocation with number of exchanges when the number of TEs is K1 = 100 and
K2 = 300. With the increase of number of exchanges, the utility function of a system increased
continuously but remained unchanged when the system reached stable matching. In this process, SBSs
and TEs accomplished mutual selection through gain exchanges. This finding proves that the proposed
matching game algorithm for TE allocation is converging. When the algorithm proposed in [37] serves
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six terminal devices, the number of iterations required to achieve convergence is five. In contrast,
the number of iterations required to achieve convergence of the proposed system is acceptable.
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Figure 2. Variation curves of system utility functions at K1 = 100 and K2 = 300.

In addition, this study observed how the system applies the mixed energy supply algorithm to
reduce energy expense cost when the number of TEs is K = 200.

Figure 3 shows the final distribution of TEs after the system implemented the minimum cost
algorithm of energy decision under K = 200. The connecting lines implied that TEs were served by the
connected BSs. The BS that served for TE 1 was changed from the initial SBS4 into SBS1. This change
is because the distances of TE 1 to SBS4 and SBS1 were similar, and TE 1 preferred SBS1 with a lower
charge of unit bit rate. In the matching exchange between TE 2 and 3, the latter chose SBS2, although it
was closer to SBS4 because the reduction of service charges to the TE 3 after choosing SBS2 was higher
than the reduction of the channel gain. For SBS4, although the TE 2 increased the transmitted power,
the service gains of SBS4 were higher than the increase of transmitted power, thereby resulting in
successful exchanges. This change will increase the utility function of SBS4. After the matching game
algorithm for TE allocation was implemented, the total energy consumption of the system decreased
by approximately 44% from 554.35 W at the initial state to 308.51 W. The resulting energy consumption
was roughly 23% lower than that (403.85 W) of the traditional algorithm of distance-based TE allocation.

Figure 4 depicts the energy purchase schemes of different BSs after the system implemented the
minimum cost algorithm based on energy decision under K = 200. Table 3 shows the energy prices and
maximum energy supply amounts of different energy suppliers. According to the simulation results,
BSs in the system preferred energy suppliers with low prices to low energy expense cost of the system.
After the proposed matching game algorithm for TE allocation and minimum cost algorithm based on
energy decision, the energy expense cost of the system was 115.31 RMB, which was approximately 24%
lower than that of the terminal algorithm (86.52 RMB).

Subsequently, the energy expense costs of the system by using the proposed mixed energy supply
algorithm under different numbers of TEs were observed.

Figure 5 shows the differences between the total energy consumption of the initial system under
different numbers of TEs with the traditional algorithm of distance-based TE allocation and the
proposed matching game algorithm for TE allocation. When the system used traditional algorithm,
TEs were allocated simply according to their distances to SBSs, without considering the exchange
of TEs among SBSs. When TEs were served by different SBSs, the desired transmitted powers were
different, influencing the total energy consumption of the system. However, the proposed matching
game algorithm for TE allocation can lower the transmitted power of the SBS by exchanging the serving
SBS while assuring QoS of TEs. The proposed matching game algorithm considered the preferences of
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SBS to transmitted power of TEs through simulation results, thereby enabling the lower total energy
consumption of the system while assuring QoS of TEs.
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Figure 3. Terminal equipment allocation after minimum cost algorithm based on energy decision under
K = 200.
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Figure 4. Energy purchase schemes of BSs under K = 200.

Table 3. Parameters of energy suppliers.

Energy Suppliers Maximum Energy Supply Amounts Energy Price

A 75 W 0.34 RMB/W
B 100 W 0.21 RMB/W
C 150 W 0.30 RMB/W
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Figure 5. Energy consumption of the system under different numbers of terminal equipment.

Figure 6 shows the energy expense costs of the system after using the traditional and mixed energy
supply algorithms under different numbers of TEs. The proposed mixed energy supply algorithm
first decreased the total energy consumption of the system by using the matching game algorithm
for TE allocation. Later, this algorithm applied the minimum cost algorithm based on the energy
decision when energy suppliers with different prices existed to change the energy purchasing ratios of
SBSs from suppliers, aiming to decrease the total energy expense cost of the system. According to
the simulation results, the proposed algorithm achieved a lower energy expense cost of system than
the traditional algorithm. Taking K = 400 as an example, the energy expense cost of the proposed
algorithm was 169.77 RMB, which was approximately 52% lower compared with that of the traditional
algorithm (359.41 RMB).
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6. Conclusions

This study mainly discusses the energy expense cost optimization problem of the IoT system.
A bilateral random model of TE allocation and energy decision in the IoT is designed by targeting
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the minimum energy expense cost of the IoT system, and a mixed energy supply algorithm based on
the matching game and convex optimization is proposed. This algorithm is composed of two parts.
First, the algorithm models the TE allocation in the IoT into a multiple-to-one matching game problem.
Different preferences of SBSs and TEs, including gains from SBS service to TEs, transmitted power of
SBSs to TEs, channel gain that TEs gained from SBSs, and service charges that TEs must pay for, are
introduced. In this way, the TE-matching scheme with the minimum total energy consumption of the
system is gained while meeting the QoS constraint of different TEs. Second, the proposed algorithm
considers energy suppliers with different energy prices and maximum energy supply amounts in the
smart grid and gains the energy purchase scheme for SBSs to minimize the energy expense costs of the
system through the convex optimization algorithm. According to the simulation results, when K = 300,
the proposed mixed energy supply algorithm in this paper reduces the total energy consumption of
the system by about 42% and the energy cost of the system by 46%. In future, we will simulate and test
the algorithm in the Software Defined Radio (SDR) based on the radio frequency integrated chip and
Field Programmable Gate Array (FPGA).
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