

POSTER PRESENTATION

Cardiovascular magnetic resonance myocardial feature tracking for the measurement of myocardial twist and untwist at rest and during dobutamine stress in healthy volunteers

Pablo Lamata^{1,7}, Shazia T Hussain², Shelby Kutty³, Michael Steinmetz⁴, Jan M Sohns⁵, Martin Fasshauer⁵, Wieland Staab⁵, Christina Unterberg-Buchwald^{5,6}, Joachim Lotz⁵, Andreas Schuster^{6*}

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

CMR feature tracking (CMR-FT) is a method of assessing strain from routinely acquired steady- state free precession (SSFP) cine images similar to echocardiographic speckle tracking. However, its application to determine myocardial twist and untwist has never previously been explored. We sought to determine the feasibility of measuring twist and untwist from routine cine images in healthy volunteers at rest and during inotropic stimulation.

Methods

Ten healthy volunteers had routine SSFP cine images acquired at rest and after inotropic stimulation (10 and 20 micrograms of dobutamine). The rotation of the basal and apical slices, both subendocardial and subepicardial, was measured and global LV twist θ was calculated as the

difference between the counter-clockwise (positive) rotation at the apex (ϕ apex) and clockwise rotation at the base (viewed from apex), $\theta = \phi$ apex- ϕ base. Peak twist and untwist-rate and the respective times to peak were calculated using MATLAB software for both the subepicardial and subendocardial layers and compared between rest and stress.

Results

The peak and time to peak myocardial twist and untwist-rate are displayed at the endocardial (Table 1) and epicardial levels (Table 2). Twist and untwist-rate significantly increased with faster time to peak during dobutamine stimulation at the endocardial level (p < 0.05, significance measured with a paired t-test after logarithmic transformation of the sample). These changes were paralleled by a trend towards increased twist at the epicardial

Table 1	l Mean	values of	f peak	and	time	to p	peak	twist	and	untwist-rate	at t	he	endocardia	l level	•
---------	--------	-----------	--------	-----	------	------	------	-------	-----	--------------	------	----	------------	---------	---

Mean ± SD	Peak twist endocardial (degrees)	Time to peak twist (ms)	Peak untwist-rate endocardial (degrees/s)	Time to peak untwist-rate (ms)
Volunteers at rest	17 ± 11	393 ± 180	-140 ± 58	495 ± 194
Volunteers at 10 mcg of dobutamine	26 ± 7 (p = 0.03)	247 ± 49 (p = 0.007)	-282 ± 100 (p = 0.01)	342 ± 56 (p = 0.03)
Volunteers at 20 mcg of dobutamine	$30 \pm 15 (p = 0.001)$	238 ± 54 (p = 0.003)	-356 ± 179 (p = 0.005)	324 ± 57 (p = 0.01)

⁶Department of Cardiology and Pneumology and German Centre for Cardiovascular Research, Georg-August-University, Göttingen, Germany Full list of author information is available at the end of the article

© 2014 Lamata et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Mean ± Standard	Peak twist epicardial	Time to peak	Peak untwist-rate epicardial	Time to peak
Deviation	(degrees)	twist (ms)	(degrees/s)	untwist-rate (ms)
Volunteers at rest	12 ± 9	325 ± 106	-119 ± 57	449 ± 91
Volunteers at 10 mcg of	17 ± 8	257 ± 65	-157 ± 78	366 ± 78
dobutamine	(p = 0.09)	(p = 0.03)	(p = 0.2)	(p = 0.03)
Volunteers at 20 mcg of	18 ± 11	204 ± 72	-226 ± 110	277 ± 82
dobutamine	(p = 0.14)	(p = 0.08)	(p = 0.03)	(p = 0.03)

Table 2 Mean values of peak and time to peak twist and untwist-rate at the epicardial level

level and significantly increased untwist-rate associated with faster time to peak twist and untwist-rate during dobutamine stimulation (table 2).

Conclusions

It is feasible to derive myocardial twist and untwist and respective times to peak, both at rest and dobutamine stress using CMR-FT. Application of these new measures of deformation by CMR-FT should next be explored in disease states.

Funding

German Centre for Cardiovascular Research (DZHK Partner Site Göttingen).

Authors' details

¹Department of Computer Science, University of Oxford, Oxford, UK. ²Papworth Hospital NHS Trust, Papworth Everard, Cambridgeshire, UK. ³Children's Hospital and Medical Center, University of Nebraska College of Medicine, Omaha, Nebraska, USA. ⁴Department of Pediatric Cardiology and Intensive Care Medicine and Heart Research Center, Georg-August-University, Göttingen, Germany. ⁵Institute for Diagnostic and Interventional Radiology, Georg-August-University, Göttingen, Germany. ⁶Department of Cardiology and Pneumology and German Centre for Cardiovascular Research, Georg-August-University, Göttingen, Germany. ⁷Dept. of Biomedical Engineering, St Thomas' Hospital, King's College, London, UK.

Published: 16 January 2014

doi:10.1186/1532-429X-16-S1-P14

Cite this article as: Lamata et al.: Cardiovascular magnetic resonance myocardial feature tracking for the measurement of myocardial twist and untwist at rest and during dobutamine stress in healthy volunteers. Journal of Cardiovascular Magnetic Resonance 2014 16(Suppl 1):P14.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central