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Health care-acquired infections (HAIs) kill tens of thousands of people each year and add significantly to health care costs. Mul-
tidrug-resistant and epidemic strains are a large proportion of HAI agents, and multidrug-resistant strains of Klebsiella pneu-
moniae, a leading HAI agent, have caused an urgent public health crisis. In the health care environment, patient colonization by
K. pneumoniae precedes infection, and transmission via colonization leads to outbreaks. Periodic patient screening for K. pneu-
moniae colonization has the potential to curb the number of HAIs. In this report, we describe the design and validation of
KlebSeq, a highly informative screening tool that detects Klebsiella species and identifies clinically important strains and charac-
teristics by using highly multiplexed amplicon sequencing without a live-culturing step. We demonstrate the utility of this tool
on several complex specimen types, including urine, wound swabs and tissue, and several types of respiratory and fecal speci-
mens, showing K. pneumoniae species and clonal group identification and antimicrobial resistance and virulence profiling, in-
cluding capsule typing. Use of this amplicon sequencing tool to screen patients for Klebsiella carriage could inform health care
staff of the risk of infection and outbreak potential. KlebSeq also serves as a model for next-generation molecular tools for public
health and health care, as expansion of this tool can be used for several other HAI agents or applications.

Klebsiella pneumoniae has been a leading health care-acquired
infection (HAI) agent for decades (1, 2). The emergence of

multidrug-resistant K. pneumoniae, especially extended-spectrum
�-lactamase (ESBL) producers and carbapenemase producers,
has elevated the morbidity and mortality rates and health care
costs associated with K. pneumoniae to highly significant levels
(3–6). Health care- and outbreak-associated strain types of K.
pneumoniae that appear highly transmissible and have a propen-
sity for antimicrobial resistance (AMR) or virulence gene acquisi-
tion are a growing proportion of the K. pneumoniae species (7–
18). Sequence type 258 (ST258), the crux of the worldwide
carbapenemase-producing Enterobacteriaceae (CPE) threat, has
disseminated rapidly around the world’s health care systems de-
spite its recent emergence (17). Its progenitor strains in clonal
group 258 (CG258) also cause outbreaks and carry many impor-
tant ESBL- and carbapenemase-encoding genes (9, 19–21). Sev-
eral other strain types, such as those in CG14, CG20, and CG37,
also frequently appear as multidrug resistant and in outbreak sit-
uations (7, 10, 12, 15).

Host colonization is likely an important reservoir driving the
transmission of these strains. In the health care environment, in-
testinal colonization of K. pneumoniae is a risk factor for infection
(22–24), and carriers of CPE are at high risk for invasive disease
(25). Rates of CPE and ESBL-producing K. pneumoniae coloniza-
tion are rising in patient and health care worker populations,
increasing the size of the reservoir and increasing chances of trans-
mission (26, 27). Asymptomatic transmission of multidrug-resis-
tant strains is rapid (16, 28), and transmission events that lead to
outbreaks often go undetected (29, 30). Early detection of K. pneu-
moniae colonization of patients, especially multidrug-resistant K.
pneumoniae or epidemic strain type colonization, is now consid-
ered critical to infection control (24, 30–33).

Infection control programs that include the detection and iso-
lation of carriers have repeatedly been successful in markedly de-
creasing multidrug-resistant or epidemic strain infections (31,

34–37), but this practice is uncommon for several reasons. Many
of these programs use culture-based methods for detecting CPE or
ESBL producers, which have several limitations, including turn-
around time, narrow application, fair sensitivity and specificity,
and extensive labor for high-throughput screening (31, 38). PCR-
based assays are rapid but often use DNA from culture, and a
limited number of tests can be run simultaneously, potentially
missing important AMR genes not previously known to circulate
in a given locale (31, 39).

Next-generation sequencing has gained a foothold in health
care with whole-genome sequencing (WGS) for outbreak detec-
tion, transmission mapping, and source tracing (40, 41), micro-
biome sequencing (e.g., targeted 16S rRNA gene sequencing) to
understand microbial population structure (42, 43) and with met-
agenomic sequencing to attempt to determine all of the genetic
factors present (44). Although metagenomic sequencing does not
require an a priori understanding of the genetic targets in a clinical
sample, it does have significant drawbacks, limiting its translation
to the clinical microbiology laboratory. Chief among these are that
(i) the required amount of sequencing space increases the cost and
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time, (ii) limited coverage across targets lessens the confidence in
diagnostic calls, and (iii) the necessary computing power and
highly complex analysis limit the ability for local analysis. Tar-
geted amplicon sequencing, on the other hand, allows for rapid,
cost-effective, highly multiplexed, and accurate detection of nu-
merous clinically important targets directly in clinical samples
(45). Such assays have recently been approved by the FDA for
clinical diagnostics (46).

In this report, we describe a new amplicon sequencing tool,
KlebSeq, for screening and surveillance that detects and charac-
terizes Klebsiella bacteria in complex samples such as wound and
nasal swabs or fecal samples without culturing. KlebSeq includes a
sizeable panel of assays for species identification, strain identifica-
tion, and important AMR and virulence gene targets designed to
generate information for health care epidemiology and infection
prevention. KlebSeq also includes an analysis pipeline for instant
interpretation of the data. Results from the screening of a patient
population with this system would rule in or rule out the possibil-
ities of particular transmission events and identify patients carry-
ing high-risk strains like ST258 or other multidrug-resistant Kleb-
siella strains. The highly multiplexed nature of KlebSeq greatly
expands the capacity of a single sequencing run, minimizing costs,
and allows for high-throughput patient sample testing. This inno-
vation can also serve as a foundation system on which to build in
other HAI agents such as Escherichia coli or Staphylococcus aureus
and their multiple AMR mechanisms or as a model for many other
applications.

MATERIALS AND METHODS
Samples. Isolates for target identification and assay validation and DNA
extracted from clinical specimens were acquired through collaborations
with a large hospital reference laboratory that receives specimens from 10

system-wide medical centers in Arizona and from a high-volume private
reference laboratory that receives specimens from regional inpatient,
long-term care, and outpatient facilities. Isolates were identified with Vi-
tek 2 (bioMérieux). Clinical specimen types included various respiratory
specimens (nasal, ear, and throat swabs; sputum samples; tracheal aspi-
rates; and bronchial alveolar lavage samples), urine, and wound swabs or
tissue. DNA was extracted from isolates with the Qiagen DNeasy Blood
and Tissue kit with additional lytic enzymes when appropriate. DNA was
extracted from clinical specimens by NucliSENS easyMAG (bioMérieux,
Durham, NC). DNA from healthy donor fecal samples was acquired from
a family microbiome study; samples had been collected from members of
seven families over multiple time points. DNA was extracted in accor-
dance with the Earth Microbiome Project protocol (47). All of the samples
were obtained from studies approved by the institutional review boards of
the participating institutions.

Assay target identification and assay design. Figure 1 illustrates the
methodologies and resources, also described below, utilized to amass a
target library and develop several types of amplicon sequencing assays.

WGS, single nucleotide polymorphism (SNP) detection, and phylo-
genetic analysis. In-house genome libraries were prepared from 31 Kleb-
siella isolates and 6 non-Klebsiella isolates (to validate KlebSeq assays)
with a 500-bp insert size with the KAPA Library Preparation kit and Stan-
dard PCR Library Amplification (Kapa Biosystems, Wilmington, MA)
and sequenced on Illumina’s GAIIx or MiSeq. Additional in-house ge-
nomes that we have previously described were also included and com-
prised 111 K. pneumoniae, 1 K. quasipneumoniae, and 5 K. variicola ge-
nomes. Public genome sequence data from 256 K. pneumoniae, 18 K.
quasipneumoniae, and 13 K. variicola isolates were downloaded from the
SRA database (http://www.ncbi.nlm.nih.gov/Traces/sra/), and genome
sequence data from 177 K. pneumoniae, 4 K. quasipneumoniae, and 11 K.
variicola isolates were downloaded from the Assembly database (http:
//www.ncbi.nlm.nih.gov/assembly), and all passed filters for high quality;
i.e., assemblies and SRA data aligned with �80% of MGH 78578 or �88%
of the strict core genome multilocus sequence typing (scgMLST) refer-
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FIG 1 Workflow of the amplicon sequencing target library and assay development pipeline.
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ences (described below), SRA data at a �10� read depth. Accession num-
bers are listed in Tables S1 and S2 in the supplemental material.

NASP (48), developed for microbial genome analysis, was used to
detect SNPs among genomes (see Table S1 in the supplemental material).
In brief, reads were aligned with a reference genome, either one concate-
nated from scgMLST alleles (10) or MGH 78578 (GenBank accession no.
CP000647) with Novoalign V3.04.04 (Novocraft Technologies, Selangor,
Malaysia) and SNPs were called with GATK version 2.7-2 (49). Data fil-
tered out included SNP loci with �10� coverage or with �90% consen-
sus in any one sample, regions duplicated in the reference genome as
identified by Nucmer, and SNP loci that were not present in all of the
genomes in the data set. In NASP, results were output in a SNP matrix
from a core genome common to all of the isolates in the analysis. Phylo-
genetic trees were generated from the NASP SNP matrices with MEGA 6.0
(50) and subsequently plotted by means of ITOL v2 or v3 (51).

Genomic target identification. To find whole gene targets for assay
design, selected genomes were assembled with UGAP (https://github.com
/jasonsahl/UGAP), which uses the SPAdes genome assembler, version 3.6,
for this work (52). Assemblies were then run through LS-BSR (53), which
generates a list of open reading frames (ORFs) that have high identity
among target species genomes and that have low identity or are not pres-
ent in nontarget genomes. Alleles of the candidate target ORFs were col-
lected by BLAST, including alleles from nontarget genomes, if present.
Lastly, alleles of candidate ORFs were aligned for assay design. Canonical
SNPs (canSNPs) were identified from the SNP matrix generated by NASP.
Sequence flanking each SNP was collected from the NASP reference ge-
nome.

AMR and virulence gene target collection. AMR and virulence gene
sequences were identified and collected in several ways, including from
http://www.lahey.org/studies/other.asp#table1, http://www.lahey.org
/qnrstudies/, the Klebsiella BIGSdb at http://bigsdb.web.pasteur.fr
/klebsiella/, public literature, and the NCBI at http://www.ncbi.nlm.nih
.gov. Public literature included a paper by Holt et al. (54) in which a
species-wide analysis of K. pneumoniae genomes revealed several sidero-
phore systems and other virulence factors associated more with infectious
than with colonizing strains. AMR genes included the major ESBL and
carbapenemase genes and plasmid-mediated quinolone resistance deter-
minants, as well as the gyrA and parC chromosomal genes, several amin-
oglycoside resistance genes, trimethoprim-sulfamethoxazole, tetracy-
cline, streptomycin, chloramphenicol, and fosfomycin resistance genes,
and the recently discovered plasmid-mediated colistin resistance gene
mcr-1. Virulence targets included several siderophore systems, for which
multiple genes from each were used as assay targets; the regulator of the
mucoid phenotype (an indicator of hypervirulence); the wzi gene for cap-
sule typing, for which we used the previously published assay (55); and
two genes highly associated with invasive infection, pK2044_00025 and
pK2044_00325 (54). For genes that consist of highly diverse alleles, for
example, blaCTX-M, qnrB, or dfrA, phylogenetic trees based on nucleotide
sequences were generated in order to group similar alleles for assay design.

Assay design and validation. Gene-based target alleles were aligned in
SeqMan (DNAStar, Madison, WI) to identify conserved regions for primer
design, and assays were designed with guidance from RealTimeDesign
(Biosearch Technologies, Petaluma, CA), or gene-based assays were gen-
erated with AlleleID (Premier Biosoft, Palo Alto, CA), which designs as-
says to capture alleles in an alignment rather than individual sequences.
SNP assay primers were designed with RealTimeDesign, and primer se-
quences were checked for conservation in the NASP SNP matrix. Lastly,
assays were run through BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
to check for cross-reactivity with other relevant targets or species, includ-
ing human. Universal tails were added to each primer sequence for library
preparation as described below. The assays and their primer sequence are
listed in Table S3 in the supplemental material.

Individual assays were screened across positive controls when they
were accessible and screened across several isolate genomic DNAs
(gDNAs) to test robustness. Additionally, multiplex PCR was validated by

initial gene-specific PCR (described below), followed by PCR product
dilution and then screening of individual assays by Sybr green-based
quantitative PCR (qPCR). For this, 10-�l reaction mixtures of 1� Plati-
num SYBR green qPCR SuperMix (ThermoFisher Scientific, Waltham,
MA), 200 nM forward and reverse primers of one assay, and 1 �l of diluted
multiplex PCR product were run at 95°C for initial denaturation for 4 min
and then 40 cycles of 95°C for 15 s and 60°C for 1 min. Lastly, several
panels of known isolate DNAs were screened by the amplicon sequencing
method to test the sensitivity and specificity of the species and strain
identification assays. AMR and virulence gene assays were validated by
comparing amplicon sequencing results with WGS data.

Amplicon library preparation and sequencing. Amplicon library
preparation with universal tails was described in detail previously (56).
Here, assays were combined into three assay pools for multiplex PCR (see
Table S3 in the supplemental material), requiring three initial PCRs for
each sample. The initial gene-specific PCR mixture comprised 12.5 �l of
Kapa Multiplex PCR Mastermix (Kapa Biosystems, Wilmington, MA), 10
�l of primer mix (final concentration of 200 nM each), and 2.5 �l of
template DNA from each sample and was denatured at 95°C for 3 min;
cycled 25 times at 95°C for 15 s, 60°C for 30 s, and 72°C for 1 min 30 s; and
subjected to a final extension at 72°C for 1 min. The three multiplex PCR
products from the same sample were combined, and PCR products were
cleaned with 1� Agencourt AMPure XP beads (Beckman Coulter, India-
napolis, IN). A second PCR with the universal tail-specific primers added
Illumina’s sample-specific index and sequencing adapters. This PCR mix-
ture comprised 12.5 �l of 2� Kapa HiFi HotStart Ready Mix (Kapa Bio-
systems), 400 nM each primer, and 1 to 10 �l of cleaned gene-specific PCR
product and was denatured at 98°C for 2 min; cycled 6 to 12 times at 98°C
for 30 s, 65°C for 20s, and 72°C for 30 s; and subjected to a final extension
at 72°C for 30 s. Final PCR products were cleaned with 0.8� Agencourt
AMPure XP beads (Beckman Coulter). Amplicon libraries from individ-
ual samples were quantified by qPCR with the Kapa Library Quantifica-
tion kit (Kapa Biosystems). Samples were then pooled in equimolar con-
centrations for sequencing on the Illumina MiSeq platform with the
2x250bp version 2 kit.

Analysis. Amplicon sequencing results were automatically analyzed
with a newly developed amplicon sequencing analysis pipeline (ASAP)
(45) that uses a JavaScript Object Notation (JSON) file customized to
describe all of the assays in a multiplex. The information in the JSON file
includes (i) a category for each assay (presence/absence, SNP, gene vari-
ant, or region of interest) that dictates how ASAP will report results and
(ii) reference sequences for read mapping. In ASAP, amplicon sequence
reads are first trimmed of adapter or readthrough sequences with Trim-
momatic (57) and then mapped to the reference sequences with an aligner
of choice. BAM alignment files are analyzed alongside the JSON file assay
descriptions to determine the presence, percent identity, and breadth and
depth of coverage of the reference and proportions of nucleotide poly-
morphisms for each amplicon. User-defined parameters for KlebSeq-pre-
pared samples included the bowtie2 aligner (58) for all of the assays except
for wzi, for which bwa (59) was chosen (because the reference sequence is
shorter than the expected amplicon and reads need to be clipped to align
[55]), and thresholds for determining results of screening included per-
cent identities listed in Table S3 in the supplemental material, 80%
breadth at 100� depth of coverage for isolate DNA, 80% at 20� (clinical
specimens) or 10� (fecal specimens) depth, and a �10% proportion of
polymorphism for informative SNP loci for complex-specimen DNA
(meaning that at least 10% of the reads had to share a SNP state at a given
locus for it to be reported). For WGS-prepared data, the parameters were
bwa aligner (for clipping) and 80% breadth at 5� depth. The ASAP out-
put includes an XML file containing details of the analysis of each assay
target for each sample, which can be converted into a webpage interface by
XSLT transformations. An example of a KlebSeq ASAP output for one
sample is shown in Fig. 2. SeqMan NGEN (DNAStar, Madison, WI) and
Tablet (60) were used to verify results.
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KlebSeq validation. Figure 3 and the following text outline the pro-
cesses used to validate KlebSeq, and Table S3 in the supplemental material
shows the extent to which each assay was validated in multiplex. First,
WGS data from 73 K. pneumoniae samples were analyzed for AMR genes,
subjected to MLST via SRST2 (61) and species identification confirmation
via phylogenetic analysis, and also analyzed by ASAP. gDNA from these
same 73 samples plus gDNA from 149 other species was screened with
KlebSeq. To validate KlebSeq’s K. pneumoniae strain identification and
AMR gene profiles in specimens, six isolates that had been cultured and
identified in six of the specimens were sequenced and analyzed. Addition-
ally, a PCR for MLST was performed with selected specimen DNAs by the
protocol from the Klebsiella BIGSdb. DNA libraries from the PCR prod-
ucts were prepared for sequencing by the same protocol as for whole
gDNA. Sequence data were run through SRST2 to determine the ST of the
K. pneumoniae present in the specimen.

RESULTS
Phylogenetic analysis and canSNP identification. With the Kleb-
siella scgMLST (10) assembly as a reference, SNPs among a diverse
set of genomes from K. pneumoniae and genomes from newly
defined K. quasipneumoniae (22 from the public databases and 1
from in-house isolates) and K. variicola (24 from the public data-
bases and 5 from in-house isolates) were identified with NASP.
canSNPs that differentiate K. quasipneumoniae and K. variicola
from K. pneumoniae were selected for assay development.

With the reference genome MGH 78578 and 547 diverse K.
pneumoniae genomes, NASP generated a SNP matrix from which
canSNPs for each of the major clonal groups were selected for
assay development. Clonal groups and locations of canSNPs
identifying 21 clonal groups and 12 STs in the context of the K.
pneumoniae species are illustrated in Fig. 4. Redundancy was
intentionally included in identifying canSNPs for the most ep-
idemic strains of K. pneumoniae, such as ST14, ST20, and strains
in CG258, in order to increase sensitivity and confidence in
positive results.

Assay development. The identification of genomic targets,
canSNPs, and AMR and virulence genes and subsequent assay
design resulted in two assays specific to K. pneumoniae (Kp-M1
and Kp-M2), one each for K. oxytoca (Koxy_UT), K. variicola
(Kvari_UT), and K. quasipneumoniae (Kquasi_UT), 37 assays to
identify clonal groups or lineages within clonal groups of K. pneu-
moniae, 76 AMR gene assays, and 15 virulence gene assays (see
Table S3 in the supplemental material). The canSNP states for
each strain identification assay are specific to that clonal group of
K. pneumoniae, except in the case of CG35, where the amplicon
must match the reference sequence 98%, allowing up to four ad-
ditional SNPs, in order to be called CG35. Otherwise, identity
thresholds for each strain identification assay are optional; they

KlebSeq ASAP Results for Sample: F4-Mom-TP2

Alignment statistics Analysis parameters
Total reads: 132184 Depth filter: 10x
Mapped reads: 70104 Breadth filter: 80%
Unmapped reads: 62080 Proportion filter: 10%
Aligner used: bowtie2

Summary for Sample: F4-Mom-TP2

Klebsiella species and strain
types detected

Antimicrobial resistance
determinants detected

Other phenotype
determinants detected

Klebsiella pneumoniae npmA (aminoglycoside resistance) Yersiniabactin siderophore
sul2 (TMP-SMX resistance)
aph3-I (aminoglycoside resistance)
strA (streptomycin resistance)
strB (streptomycin resistance)
fosA (fosfomycin resistance)

Species and strain identification assays for sample: F4-Mom-TP2

Assay Name Average
Read Depth

Coverage
Breadth Significance SNPs found

Kp_M1_UT1 814.01 100% Klebsiella pneumoniae present details...
Kp_M2_UT1 925.17 100% Klebsiella pneumoniae present
Kvari_UT 371.19 98.95% Not Klebsiella variicola details...

Antimicrobial resistance assays for sample: F4-Mom-TP2

Assay Name Average
Read Depth

Coverage
Breadth Significance SNPs found

npmA_UT 71.98 100% Resistant to all aminoglycosides details...
sul2_UT1 135.43 100% Resistant to trimethoprim-sulfamethoxazole
aph3-I_UT 2046.08 100% Resistant to kanamycin, neomycin details...

FIG 2 Partial sample output of KlebSeq ASAP report; some AMR gene assays and the virulence gene assays are hidden from view to limit the size of the image.
The top box shows a summary of what was detected according to selected ASAP filters. Details of each assay appear below that. If additional SNPs are detected
in comparison to the assay reference, hovering over “details. . .” expands a list of the SNPs. Clicking on an assay name pops up a graph of coverage depth across
the reference sequence.
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merely make the assays completely Klebsiella specific, regardless of
the canSNP state.

KlebSeq validation on isolate DNA. To validate the species
and clonal group identification assays, gDNA from 73 K. pneu-
moniae isolates whose whole genomes were sequenced (4 of which
were later identified as K. quasipneumoniae and K. variicola [see
below]), 22 K. oxytoca isolates, and 157 other enteric opportunis-
tic pathogen isolates, which included E. coli, Enterobacter aero-
genes, E. amnigenus, E. cloacae, E. hormaechei, Enterococcus faeca-
lis, E. faecium, an unknown Enterococcus species, Proteus mirabilis,
Providencia stuartii, and Serratia marcescens, and 1 Acinetobacter
baumannii isolate, were screened with KlebSeq. Sensitivity and
specificity results of the species identification assays compared
with clinical microbiological identification (Vitek 2) are in Table
1. With the redundancy built into the multiplex by including two
assays, Kp-M1 and Kp-M2, that target two different K. pneu-
moniae species-specific genes (M1 and M2), 100% sensitivity is
achieved. One isolate previously identified as K. pneumoniae was
identified as K. quasipneumoniae, and two were identified as K.
variicola. These isolates’ whole genomes were added to the phylo-
genetic analysis of these three species that was previously run to
find the species-specific canSNPs (see Materials and Methods).
The K. quasipneumoniae and K. variicola genomes identified by
our assay clustered with their respective species in the phylogeny
(Fig. 5). Clinical methods do not currently distinguish among all
three of these species, so assay sensitivity and specificity were not
calculated for K. quasipneumoniae and K. variicola (Table 1).

Table 2 shows the KlebSeq results of the K. pneumoniae clonal
group identification and capsule typing assays of isolate DNA.
Each isolate’s strain type was correctly captured by the appropriate
assays or not captured in cases where no assay was designed for
that clonal group. Included in Table 2 are results from partial
sequencing of the wzi gene for capsule typing. This gave surpris-
ingly clear results, given that approximately 75 bp of the informa-
tive region are missing from our sequence output, as the PCR
amplicon is approximately 580 bp (55), which is too long to cover
with the Illumina version 2 sequencing chemistry. However, full

capsule typing by wzi sequencing would be possible with longer-
read chemistry (i.e., Illumina version 3 chemistry, for 600-bp
reads). Results from screening of nontarget organisms showed
that several of the K. pneumoniae clonal group assays amplified
DNA from other organisms, as expected. An identity threshold
can be applied (see Table S3 in the supplemental material); how-
ever, all of the SNP states that define a particular clonal group are
specific to that clonal group, except for CG35, so the identity
threshold is optional except for this assay. Sequence analysis by
ASAP reports when a clonal group is present only if the defining
canSNP state is present and reports nothing if it is not.

AMR gene detection by amplicon sequencing was validated by
comparing ASAP results with AMR gene screening of WGS with
SRST2 (61) and with ASAP. Results showed an almost perfect
correlation between KlebSeq ASAP and WGS ASAP, indicating
that the KlebSeq PCRs are performing well. There were a few
discrepancies with SRST2, which reported uncertainty (SNPs or
low-coverage indicators) for most of the discrepancies. Some dis-
crepancies were in the presence of the dfrA gene. This group of
genes is very diverse, so it may be that KlebSeq does not capture
the full repertoire of dfrA genes. Virulence gene detection was
validated by comparing ASAP results from WGS data with those
from amplicon sequence data, and results showed concordance.
In addition, by targeting multiple genes that are part of the same
virulence factors (i.e., siderophore systems), sensitivity and con-
fidence in results were increased.

These results also confirm that KlebSeq is applicable to pure
isolates as well as complex specimens. Screening of isolate DNA
has the added benefit of traceability of the AMR and virulence
genes, which are often carried on mobile genetic elements, to their
host. Isolate screening could be used for surveillance and other
purposes for identifying or characterizing Klebsiella.

Specimen sample results. KlebSeq was run on DNA from 87
respiratory specimens, 46 urine specimens, 40 wound specimens,
and 89 fecal samples from healthy individuals (see Table S4 in the
supplemental material). Sensitivity and specificity results of the
species identification assays compared with those of clinical mi-

Isolate
gDNA

Specimen
DNA

Species ID Strain ID AMR & Virulence
profile

KlebSeq

ASAP

MLST by PCR

NGS

WGS

MLST
SRST2

AMR
SRST2

Phylogenetic
analysis

n=6 n=11

n=73 K. pneumoniae

n=149 Other

n=73+6 paired
K. pneumoniae
n=6 Other

FIG 3 Workflow of the validation of KlebSeq. Dotted lines are methods used to confirm results from the workflow in solid lines (KlebSeq of specimen DNA).
Strain identification validation was performed for 73 isolates plus 6 isolates that were cultured from KlebSeq-tested specimens (Tables 2 and 3). MLST PCR and
sequencing were performed with 11 specimen DNA samples (Table 3). AMR gene detection validation is described in the text. The overall specimen KlebSeq
results are in Table S4 in the supplemental material. NGS, next-generation sequencing.
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crobiological methods are shown in Table 1. In most cases, sensi-
tivity was high, except in the wound specimens, where the one
sample clinically identified as K. pneumoniae was identified as K.
variicola. Some sensitivity and specificity calculations may be mis-
leadingly low, as amplicon sequencing identified some samples as
containing K. pneumoniae that actually contained K. quasipneu-
moniae or K. variicola, and several as containing Klebsiella that
went undetected by clinical microbiological methods, including
several in which clonal groups were also detected. In the healthy
donor specimens, K. oxytoca (n � 13) was more prevalent than K.
pneumoniae (n � 9). Sequencing read depth was low in some
samples (see Table S4 in the supplemental material); this may have
been due to dilution of the DNA samples before screening, as each
was diluted 1:10 in water.

Important Klebsiella clonal groups were detected in multiple
specimens (see Table S4 in the supplemental material). In the 17

urine samples positive for K. pneumoniae, clonal identifications
included CG34, ST20, CG45, CG392 (which includes the NDM
producer ST147 [62], though this sample was negative for
blaNDM), ST133, and CG111. In wounds, the only sample K. pneu-
moniae positive by KlebSeq was CG29. From respiratory speci-
mens, groups CG37 (n � 2), ST134 (n � 1), ST258 (n � 2), CG36
(n � 3), and inner ST14 (n � 1) were identified. Interestingly,
several clonal groups were identified in the healthy donor fecal
specimens as well. In the nine K. pneumoniae-positive samples, the
groups included ST20, CG37, and CG76, which are all members of
multidrug-resistant outbreak strain types (11, 12, 15), along with
ST133 and ST380. ST380 is associated with a K2 capsule type and
hypervirulence and causes pyogenic liver abscesses in healthy peo-
ple, especially those of Asian ethnicity (63). Many Asians are col-
onized by hypervirulent K1 or K2 capsule strain types; however,
the level of risk of subsequent liver infection is unknown (63). For
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FIG 4 Maximum-parsimony tree with 100 bootstraps of the SNPs among 548 K. pneumoniae genomes. Major clonal groups are colored, and locations of
canSNPs for strain identification assays are marked with stars. All of the branches labeled with canSNPs had �99% bootstrap support, except for the three
branches indicated.
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TABLE 1 Results of KlebSeq species identification assays of genomic DNA from isolates whose whole genomes were also sequenced, DNA from
specimens for which clinical culture results are known, and DNA from specimens with unknown content

DNA type (no. of
samples) and species
identified by clinical
methods or parametera Total no. screened

No. of isolates identified by amplicon sequencing assayb

Kp-M1 Kp-M2 Kp-M1 � Kp-M2 Kquasi_UT Kvari_UT Koxy_UT

Isolate DNA (252)
K. pneumoniae 69 68 67 69 0 0 0
K. quasipneumoniae 2 0 0 0 2 0 0
K. variicola 2 2 0 2 0 2 0
K. oxytoca 14 0 0 0 0 0 14
Nontarget species 149 2/88 0/88 2/88 0/155 0/155 0/135

% Sensitivity 99 97 100 100 100 100
% Specificity 98 100 98 100 100 100

Urine DNA (46)
K. pneumoniae 16 14 15 16 2 (1 mix)c 1 (mix)c 0
K. oxytoca 6 1 1 1 (CG34) 0 0 6
Other species 24 1 1 1 0 0 0
Unknown 0 0 0 0 0 0 0

% Sensitivity 88 94 100 100
% Specificity 90 93 93 100

Wound DNA (40)
K. pneumoniae 1 0 0 0 0 1 0
K. oxytoca 1 0 0 0 0 0 1
Other species 31 0 0 0 0 0 0
Unknown 7 1 1 1 (CG29) 0 0 1

% Sensitivity 0 0 0 100
% Specificity 100 100 100 100

Respiratory specimen
DNA (87)

K. pneumoniae 6 6 6 6 0 0 0
K. oxytoca 1 0 0 0 0 0 1
Other species 77 7 (1 ST258) 5 7 (2 CG36, 1 CG37) 0 0 1
Unknown 3 0 0 0 0 0 0

% Sensitivity 100 100 100 100
% Specificity 91 94 91 99

Fecal specimen DNA (89) 89 9 5 9 1 (mix)c 3 (2 mix)c 13

All specimens (isolates not
included) (262)

K. pneumoniae 23 20 21 22 2 2 0
K. oxytoca 8 1 1 1 0 0 8
Other species 132 8 6 8 0 0 1
Unknown 99 10 6 10 1 3 14

% Sensitivity 87 91 96 100
% Specificity 94 95 94 99

a K. quasipneumoniae is not distinguished from K. pneumoniae by the clinical identification method used (Vitek 2).
b Kp-M1 and Kp-M2 are K. pneumoniae species identification assays that detect targets M1 and M2 in the K. pneumoniae genome. Kquasi_UT, Kvari_UT, and Koxy_UT are K.
quasipneumoniae-, K. variicola-, and K. oxytoca-specific assays, respectively.
c These species were found as mixtures with K. pneumoniae on the basis of a proportion (�10%) of the sequencing reads containing the species-defining SNP.
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this sample, no wzi gene sequence was obtained; thus, the capsule
type is unknown. A majority of the K. pneumoniae isolates in
our samples did not fall into the major clonal groups targeted by
KlebSeq. These strains probably all belong to lesser-known clonal
groups, as more studies are showing that many K. pneumoniae
infections are caused by nonepidemic, sporadic strains (64, 65).

Numerous and variable AMR genes were detected in the spec-
imens, including different variants of the same gene that confer
different phenotypes (see Table S4 in the supplemental material).
With sequence-based information, we demonstrate that seven of
the K. pneumoniae had key mutations in the gyrA gene known to
confer resistance to fluoroquinolones. Additionally, several sam-
ples contained the aac(6=)-Ib gene for aminoglycoside resistance,
and five of those contained the sequence variant aac(6=)-Ib-cr for
fluoroquinolone resistance; mixtures of these two genes were also
detected. Many of the infection specimens (nonhealthy donor
specimens), both positive and negative for K. pneumoniae, were
positive for other aminoglycoside resistance genes, as well as tet-
racycline, trimethoprim-sulfamethoxazole, streptomycin, fosfo-
mycin, and chloramphenicol resistance genes. A few contained
plasmid-mediated quinolone resistance genes. Several samples,
especially the respiratory specimens, were also positive for KPC

and CTX-M group 1 and 9 genes. Most of the healthy donor
specimens were positive for trimethoprim-sulfamethoxazole
resistance genes, and many were positive for streptomycin,
aminoglycoside, tetracycline, and fosfomycin resistance genes.
Interestingly, 39 of the 89 were positive for npmA, a relatively
recently described pan-aminoglycoside resistance gene (66).
These specimens were the only samples positive for this gene.
Three specimens contained plasmid-mediated quinolone resis-
tance genes. Fortunately, none were found to contain ESBL or
carbapenemase genes. No complex specimens in this study were
positive for genes encoding the important carbapenemases OXA-
48, VIM, and NDM, and none were positive for the plasmid-me-
diated colistin resistance gene mcr-1 (see Table S4 in the supple-
mental material).

These sets of samples did not appear to contain especially vir-
ulent strains of K. pneumoniae. The yersiniabactin siderophore
genes were, by far, the most prevalent of the virulence genes tested,
although positive samples made up less than half of the K. pneu-
moniae-positive samples. No specimens were positive for rmpA,
the regulator of mucoid phenotype gene, including the ST380-
containing sample, and few were positive for the salmochelin sid-
erophore genes, which are associated with invasive K. pneumoniae
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FIG 5 Neighbor-joining tree with 100 bootstraps of the SNPs in the diverse set of K. pneumoniae, K. variicola, and K. quasipneumoniae genomes used in this
study. Unknown isolates that were identified as K. variicola and K. quasipneumoniae are boxed.
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infection (54). One respiratory specimen that contained an ST14
strain was positive for a K2 capsule type by partial wzi sequencing.
K2 strains of K. pneumoniae are associated with hypermucoviscos-
ity and hypervirulence, as previously mentioned. However, this
respiratory sample was not positive for rmpA, and a recent study
proposed that the presence of multiple siderophore system genes
(linked to K1 or K2 capsule genes) explains hypervirulence rather
than capsule type (54). In our data, K. pneumoniae-containing
samples were positive for multiple siderophores or other viru-

lence-associated genes only 15% of the time. Sequencing of wzi
revealed a variety of capsule types and cases in which the same
clonal groups had different wzi genotypes and in which they had
the same genotype. This character would help identify or rule out
a transmission event when patients carrying the same strain are
found.

On an interesting note, in the healthy donor fecal samples col-
lected from members of the same families over time, out of the
nine K. pneumoniae-positive samples, only two came from the

TABLE 2 Isolates used for assay validation and results of strain typing by amplicon sequencinga

Isolate ST No. of isolates ASAP strain typing assay result(s)
Capsule typing result(s) by partial wzi
sequencingb

ST11 3 CG258, CG258 without 395 wzi-39 or -75, wzi-74, not typeable
ST14 5 CG14, ST14, inner ST14 All wzi-2
ST14 SLVd 1 CG14 wzi-16
ST15 2 CG14, ST15 All wzi-24 or -45
ST20 2 CG20, ST20 wzi-84, wzi-118
ST23 8 ST23 wzi-1
ST34, ST34 SLV 2 CG34 wzi-114, wzi-12
ST36 2 CG36 All wzi-27 or -79
ST37 2 CG37 wzi-50, wzi-39 or -75
ST39 1 No group wzi-2
ST42 2 CG42, inner CG42 All wzi-29
ST43 1 CG43 wzi-30
ST45 1 CG45 wzi-133
ST65 1 CG25 wzi-72
ST101 2 CG43 wzi-29, wzi-137
ST107 1 No group wzi-74
ST111 1 CG111 wzi-63
ST147 1 CG392 wzi-64
ST152 1 CG105 wzi-150
ST228 1 CG34 wzi-116c

ST234 1 No group wzi-114
ST249 2 No group All wzi-128
ST258, no clade 6 CG258, CG258 without ST395, ST258 All wzi-154
ST258, clade 1 3 CG258, CG258 without ST395, ST258, clade 1 All wzi-29
ST258, clade 2 2 CG258, CG258 without ST395, ST258, clade 2 All wzi-154
ST277 1 No group wzi-97 or -185
ST334 1 K. quasipneumoniae wzi-68
ST340 2 CG258, CG258 without ST395, ST340 wzi-50, wzi-173
ST376 1 CG42, inner CG42 wzi-2
ST380 1 ST380 wzi-203
ST437 1 CG258, CG258 without 395, ST437 wzi-109
ST636 1 No group wzi-155
ST719 1 No group wzi-192
ST776 1 No group wzi-39c or -75c or -193c

ST833 1 CG258, CG258 without 395 wzi-50
ST978 1 K. quasipneumoniae wzi-212c

ST1401 1 No group wzi-96
ST82 2 No group All wzi-128
ST260 1 No group wzi-1
ST360 SLV 1 K. variicola wzi-53
ST427 SLV 1 No group wzi-64
ST513 SLV 1 No group wzi-87
ST815 SLV 1 No group wzi-114c

ST244 SLV 1 No group wzi-162c

ST2006 1 K. variicola wzi-227
ST2055 1 No group wzi-14
a Table S2 in the supplemental material lists the genome accession numbers of the isolates.
b The Illumina version 2 chemistry used provides approximately 500 bp of sequence data. The amplicon size for the wzi assay is approximately 580 bp (55).
c The wzi allele represents the best match; one or more SNPs were present.
d SLV, single-locus variant.
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same person over time. The characterization assays suggest that
the same strain of K. pneumoniae was present at both time points.
K. pneumoniae-positive samples were found in multiple members
of two of the seven families. In one of these families, the positive
members carried strains different from one another, and in the
other, it appears that two members had CG37 isolates with the
same capsule type. The sample set is too small to draw conclusions
from these data; however, the data raise interesting questions
about community K. pneumoniae carriage.

Validation of KlebSeq strain identification in specimens. Ta-
ble 3 shows MLST results from WGS data of six isolates cultured
from specimens run on KlebSeq and from MLST PCR and se-
quencing of 11 specimens run on KlebSeq. In each case, KlebSeq
appears to have identified the correct strain. Two isolates for
which no strain type was identified by KlebSeq have novel STs.
Sample TG75900 was identified as K. quasipneumoniae by KlebSeq
and typed as ST196 on the basis of whole-genome data. This ge-
nome was added to the phylogeny of the three species and clus-
tered with K. quasipneumoniae (Fig. 5). MLST of the specimen
DNA did not yield results for all of the MLST loci of all 11 samples,
which is to be expected given the complexity of the specimen DNA
sample. In cases where only partial data were retrieved, at least
three alleles from each match the strain identified by KlebSeq.

DISCUSSION

In the United States, HAI is estimated to affect 1 in 25 hospital
patients, totaling hundreds of thousands of patients, with signifi-
cant mortality (2). HAIs have a significant impact on health care
costs; a 2009 CDC report estimated upwards of $45 billion in
annual additional cost (67). Infections with AMR organisms cause
significantly higher mortality rates, significantly more intensive
care unit (ICU) admissions, and significant excess costs, including

hospitalization, medical care, and antimicrobial therapy, than do
infections with susceptible strains (5, 68). HAI prevention mea-
sures, although costly in and of themselves (69), have the potential
to save thousands of lives and billions of dollars (67). Periodic
patient screening and isolation of AMR organism carriers have
proven successful in controlling transmission and outbreaks in
several hospitals (31, 34–37). Use of a highly informative screen-
ing and surveillance tool such as KlebSeq has cost-effective and
life-saving potential.

Early detection of colonization of health care patients by K.
pneumoniae, especially multidrug-resistant K. pneumoniae, would
allow health care staff to make more informed patient manage-
ment decisions. In outbreak situations, rapid identification of
transmissions before subsequent infections would allow for pro-
active measures to curb an outbreak. In nonoutbreak situations,
identification of particular strains and AMR genes would help to
assess the risk of K. pneumoniae carriage to the host patient, as well
as to other patients, as some strains are more closely associated
with adverse outcomes (e.g., outbreaks, HAI, AMR, and treatment
failure) than others (7-13, 70). Although our understanding of
many Klebsiella virulence factors is limited, identification of viru-
lence genes gains us understanding of the correlations between
particular virulence factors and the risk of disease (54). Addition-
ally, many K. pneumoniae infections, including HAIs and non-
multidrug-resistant infections, are caused by nonepidemic, lesser-
known strain types (64, 65). Classifying the K. pneumoniae isolate
in each patient sample would help an institution to decide when
and which intervention procedures should be enacted and also to
understand more about transmission dynamics and local strain
type circulation.

KlebSeq has several characteristics that make it attractive as a
health care screening approach. With a single assay, enough infor-

TABLE 3 Results of KlebSeq strain identification validation by MLST of isolates cultured from specimens tested by KlebSeq and MLST of specimens
tested by KlebSeq

Sample Type KlebSeq identification of original specimen
No. of loci retrieved from
sequence data ST by MLST

TG69923 Isolate CG29 7 Novel; DLVa of ST29
TG75899 Isolate CG392 7 ST392
TG75900 Isolate K. quasipneumoniae 7 ST196
TG75901 Isolate ST133 7 Novel; SLVb of ST133
TG75902 Isolate No strain ID 7 Novel; DLV of ST248
TG75911 Isolate Mixture of K. pneumoniae with no strain ID and

K. variicola
7 Novel; TLVc of ST633

TG69737 Urine CG34 7 Novel; 4 alleles match ST34
TG69766 Urine CG45 6 6 alleles match ST45
TG69776 Urine CG111 7 Novel; DLV of ST111

TG69861 Respiratory No strain ID 7 Novel; SLV of ST393
TG69865 Respiratory ST134 6 5 alleles match ST134
TG69871 Respiratory CG37 3 3 alleles match ST37
TG69883 Respiratory ST258 7 Novel; 3 alleles match ST258
TG73885 Respiratory CG36 7 Novel; 3 alleles match ST36
TG73911 Respiratory Mixture of K. pneumoniae with no strain ID and

CG36
6 4 alleles match ST36

TG73916 Respiratory Inner ST14 7 Novel; 4 alleles match ST14
TG74003 Respiratory Mixture of K. pneumoniae no strain ID and CG36 7 Novel; DLV of ST461
a DLV, double-locus variant.
b SLV, single-locus variant.
c TLV, triple-locus variant.
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mation is garnered about a patient’s Klebsiella carriage status to
contribute greatly to patient management and to infection control
decisions. Indexing samples by means of the universal tail during
sample preparation allows the characterization of a large number
of specimens in one run, minimizing sequencing costs per speci-
men and allowing for high-throughput screening of hundreds of
patient samples simultaneously at a cost of tens of dollars per
patient. KlebSeq uses DNA extracted directly from a specimen, so
targets from entire populations of a species are analyzed to capture
different strains in the same sample, which can be numerous (71,
72). If culture-based methods are used for screening, different
strains are missed when one genotype (i.e., colony) is chosen for
characterization, and the resulting information is limited. Addi-
tionally, culture-based methods can miss “silent” multidrug-re-
sistant K. pneumoniae strains that test negative for carbapen-
emases in vitro (16), and if used for high-throughput screening,
they can be laborious, time-consuming, costly, and subjective (31,
38). If screening of large numbers of patients by amplicon se-
quencing is cost-prohibitive, it can be limited to the highest-risk
groups of patients, i.e., long-term care facility patients (31, 73),
travelers returning from regions where Klebsiella carriage is en-
demic (74, 75), ICU patients (28), patients with previous K. pneu-
moniae carriage (75–77), patients who have shared a room with a
known carrier (78) or case contacts of carriers (79), those who
have recently taken antibiotics (80, 81), or patients on mechanical
ventilation or enteral feeds or who have had prior Clostridium
difficile infections (82). Additionally, using ASAP makes the anal-
ysis in KlebSeq streamlined and results are easily interpretable.
Lastly, the amplicon sequencing and ASAP package is customiz-
able and updateable (45). Individual assays can be added or re-
moved, adding only the cost of new primers.

The results we present here show that KlebSeq is effective with
DNA from numerous sample types, including pure organism
culture, or complex, multiorganism samples and swab samples
with low-level microbial DNA in a presumably high human
DNA background without culture methods. In addition to
clinically important clonal lineages of K. pneumoniae, KlebSeq
also reliably distinguishes among the Klebsiella species, two of
which, K. quasipneumoniae and K. variicola, are continuously mis-
identified as K. pneumoniae (as exemplified in our study) and
cause invasive disease (83, 84). Additionally, we highlight several
instances where culture methods failed to produce a positive K.
pneumoniae result, including one sample that contained the crit-
ical ST258 strain. The sensitivity of KlebSeq is superior to that of
culture-based methods for complex specimens, lowering the risk
of false negatives in patient screening. We identified dozens of
AMR and virulence genes within individual samples, demonstrat-
ing the additional function of profiling for clinically important
characteristics, and were able to distinguish minor genotype dif-
ferences that confer different phenotypes, such as the gyrA gene,
aac(6=)-Ib versus aac(6=)-Ib-cr, and the wzi gene.

Notably, our data show that healthy individuals may carry clin-
ically important strains of K. pneumoniae and frequently K. oxy-
toca, as well as many AMR genes and siderophore virulence sys-
tems. For our purposes, these healthy donor fecal DNA samples
were used to validate the use of our amplicon sequencing ap-
proach with highly complex fecal metagenome samples. Much
more study is needed to elucidate the implications of healthy host
carriage of known pathogenic strains of K. pneumoniae and their
virulence factors. Furthermore, the fact that we observed carriage

of the hypervirulence-associated ST380 strain from a healthy per-
son and the hypervirulence-associated K2 capsule type in an ST14
strain from a respiratory infection lends credence to the idea that
we need much more information about K. pneumoniae carriage
strains to be able to draw conclusions about these associations.
Aside from these important observations, other observations
from these data raise questions about the dynamics of K. pneu-
moniae carriage and microbiome sharing. The fact that there were
not more cases of positive results from the same person at multiple
rather than single time points is interesting. This could be due to
intermittent shedding of K. pneumoniae in feces, intermittent col-
onization by K. pneumoniae, or heterogeneity in the sample itself,
underrepresenting the full microbial community when a small
sample is taken; this observation further warrants periodic rather
than one-time screening of patients at risk. Of the two instances
where two family members carried K. pneumoniae, each tells a
different story about microbiome sharing. An amplicon sequenc-
ing-based diagnostic approach would facilitate longitudinal pa-
tient screening because of ease of use and limited costs.

Among the many pathogens encountered in health care insti-
tutions, we focus only on Klebsiella because of its high priority in
public health and the high risk of CPE establishment in a facility.
Additionally, although many other HAI agents cause devastating
and costly infections, directing a complex assay such as KlebSeq at
a subset of those agents greatly simplifies the validation process
and speeds the availability of assay results (especially in the case of
validation for FDA approval [85]). KlebSeq is an important step
toward a comprehensive yet accessible tool for all pathogen iden-
tification and characterization. Metagenomic analysis is attractive
in its breadth of coverage capabilities, but its current costs and
complexities are prohibitive. Amplicon assays targeting the other
ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter species) pathogens and more AMR determinants
could relatively easily be added to the tool described here, with a
step-by-step validation process. We have not found the limit of the
multiplexing capacity. (We run three multiplexed PCRs merely be-
cause the PCR volume limits the number of primers that can be add-
ed; future assays will utilize primers at a higher concentration to test
the multiplexing limit.) The multiplexing limit is also presumably
dependent on the number and sizes of targets that are present in a
sample, potentially exhausting the polymerase or sequencing space.
These pieces are unpredictable for specimens of unknown content.
Lastly, our report serves as evidence in favor of the concept that highly
multiplexed amplicon sequencing is one good answer to the call for
early detection tools in infection control.

Overall, the KlebSeq method was able to accurately and con-
sistently identify and characterize Klebsiella from complex speci-
mens. A limitation of our study is that clonal group identification
in the complex specimens was not confirmed by isolation and
WGS of the Klebsiella isolate from the specimen. Additionally,
profiling of complex specimens directly for AMR and virulence
genes, most of which are on mobile elements, can be confounding,
as it cannot be known which organism carries the genes of interest.
Third, our validation efforts focused on the detection of targets
but did not characterize the limits of that detection, and we saw
evidence that KlebSeq may not find all of the variants of all of the
AMR genes. However, KlebSeq is designed for screening and pe-
riodic surveillance in high-risk situations with a rule-in/rule-out
determination of the possibility of transmission events and
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through identification of high-risk multidrug-resistant or epi-
demic strains of Klebsiella. For these purposes, KlebSeq is ideal.
The specimen types used for validation could be considered a
limitation, as we did not test rectal swabs, a specimen type com-
monly used for CPE surveillance. However, we show that KlebSeq
works with different swab types and fecal specimens, which ad-
dresses the challenges of detection in rectal swabs. The turn-
around time from sample collection to result is dependent only on
current technology (not organism culture), and we recently con-
ducted a proof-of-concept study of a 24-h sample-to-answer test
with different targets (data not shown). This test was done on an
Illumina MiSeq with only 60 cycles. Other platforms and upcom-
ing technology may allow this turnaround time to be decreased
even further.

Rapid amplicon sequencing with automated analysis and re-
porting is a promising response to the need for constant surveil-
lance for highly transmissible or highly drug-resistant pathogens.
Our model system, directed at Klebsiella, can easily be adapted to
multiple other pathogens and to different purposes, such as envi-
ronmental sampling and community host screening and, as
smaller, more on-demand next-generation systems become avail-
able, to diagnostics and individual patient monitoring. The tar-
geted, highly multiplexed nature of amplicon sequencing and the
ability to interpret the data instantly make it an applicable tool for
health care facility surveillance. As these technologies are adopted,
considerable coordination within the health care facility is para-
mount to the success of infection and outbreak prevention, with
the integration of isolation and barrier precautions, excellent
communication, and good stewardship. Nevertheless, several in-
stitutions have shown that the combination of surveillance and
systematic response reduces outbreaks and multidrug-resistant
infections (31, 33–37).
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