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Abstract 

Background:  Phoronida is a small group of marine worm-like suspension feeders, which together with brachiopods 
and bryozoans form the clade Lophophorata. Although their development is well studied on the morphological level, 
data regarding gene expression during this process are scarce and restricted to the analysis of relatively few transcrip-
tion factors. Here, we present a description of the expression patterns of Hox genes during the embryonic and larval 
development of the phoronid Phoronopsis harmeri.

Results:  We identified sequences of eight Hox genes in the transcriptome of Ph. harmeri and determined their 
expression pattern during embryonic and larval development using whole mount in situ hybridization. We found that 
none of the Hox genes is expressed during embryonic development. Instead their expression is initiated in the later 
developmental stages, when the larval body is already formed. In the investigated initial larval stages the Hox genes 
are expressed in the non-collinear manner in the posterior body of the larvae: in the telotroch and the structures that 
represent rudiments of the adult worm. Additionally, we found that certain head-specific transcription factors are 
expressed in the oral hood, apical organ, preoral coelom, digestive system and developing larval tentacles, anterior to 
the Hox-expressing territories.

Conclusions:  The lack of Hox gene expression during early development of Ph. harmeri indicates that the larval body 
develops without positional information from the Hox patterning system. Such phenomenon might be a conse-
quence of the evolutionary intercalation of the larval form into an ancestral life cycle of phoronids. The observed Hox 
gene expression can also be a consequence of the actinotrocha representing a “head larva”, which is composed of 
the most anterior body region that is devoid of Hox gene expression. Such interpretation is further supported by the 
expression of head-specific transcription factors. This implies that the Hox patterning system is used for the positional 
information of the trunk rudiments and is, therefore, delayed to the later larval stages. We propose that a new body 
form was intercalated to the phoronid life cycle by precocious development of the anterior structures or by delayed 
development of the trunk rudiment in the ancestral phoronid larva.

Keywords:  Lophophorata, Spiralia, Biphasic life cycle, Intercalation, Life history evolution, Body plan, Indirect 
development, Lox2, Head, Brain
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Background
Hox genes encode a family of transcription factors pre-
sent in Bilateria and Cnidaria [1–4], which bind with their 
conserved homeodomain directly to regulatory regions of 
downstream genes and activate or suppress their expres-
sion (e.g. [5–7]). In many clades, Hox genes are differen-
tially expressed in the early developmental stages along 
the anterior–posterior axis of the developing embryo, 
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being one of the important components of molecular 
patterning of axial identities [4–6, 8–10]. The diversity 
of Hox genes present in extant Bilateria originated likely 
by multiple duplication events, which resulted in the 
physical linkage of Hox genes in the genomes of many 
Bilateria, the so-called Hox clusters (e.g. [9, 11, 12]. It is 
possible to discriminate organized, split and disorgan-
ized Hox clusters, depending on the level of their organi-
zation [7, 12] and in certain Bilateria the Hox genes are 
expressed in roughly the same order as they are located 
in the cluster: a phenomenon referred to as collinearity 
[6, 9, 11]. The correspondence between position of the 
gene in the cluster and onset of its expression might have 
a temporal (during development) or spatial (along body 
axis) character and accordingly it is possible to discrimi-
nate between the temporal and spatial collinearity. It has 
been proposed that collinearity, especially the temporal 
one, is a major factor responsible for conservation (or 

maybe even formation) of the ordered Hox cluster in the 
genome [9, 11–16].

Although expression of Hox genes has been described 
during embryonic and larval development of many ani-
mals representing diverse evolutionary lineages [4, 
16–49], there are still some clades for which informa-
tion about Hox expression during development is lack-
ing. Among them are phoronids, marine, sessile worms, 
which feed using a specialized filter apparatus, the so-
called lophophore (lp in Fig. 1a). Due to the presence of 
lophophore, Phoronida have been traditionally united 
with two other clades—Ectoprocta (Bryozoa) and Bra-
chiopoda—into the group called Lophophorata [50, 51], 
which recently gained support as a valid clade from sev-
eral transcriptomic and phylogenomic studies [52–55]. 
Although originally the Lophophorata were considered 
as deuterostomes [50, 51], molecular data showed their 
protostome affinity [56] and currently the lophophorates 

Fig. 1  Phoronopsis harmeri: morphology of the anterior part of living animal (a) and scheme of its life cycle (b). Hox clusters organization and Hox 
genes complement in various Spiralia (c), based on [16, 89, 107]. Metasomal sac and adult trunk originating from it are marked in red in b. Gene 
antp from Phoronis australis (marked with asterisk) was originally described as lox2 (see text for discussion). For Phoronopsis harmeri and Novocrania 
anomala only the Hox complement is available (data on cluster organization are missing). The vertical bars in C indicate boundaries of the particular 
scaffolds of the split Hox clusters. Abbreviations: dt digestive tract, lp lophophore, ms metasomal sac, te larval tentacles, tr adult trunk
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occupy a well-supported position within the clade of 
Spiralia [52–55, 57]. Most phoronids develop through 
a distinctive planktotrophic larval stage, called acti-
notrocha [58–61]. After a prolonged planktonic life, the 
actinotrocha larva settles and undergoes drastic meta-
morphosis (Fig.  1b), during which the rudiment of the 
body wall of the adult worm, the so-called metasomal sac 
(ms, Fig.  1b), is everted and the rudiments of the adult 
internal organs descent from the larval body to the newly 
formed juvenile worm (Fig. 1b) [60, 61]. The only excep-
tion from this pattern is Phoronis ovalis, which is a sis-
ter group to the remaining phoronids [62–64] and which 
develops through the creeping slug-like larva [60]. After 
a few days of development the active larva of P. ovalis 
settles and acquires a smooth hemispherical shape [60]. 
Unfortunately, the degree of the metamorphosis-related 
remodeling of internal structures in P. ovalis remains 
poorly examined.

The phoronid development has been well studied on 
the morphological level (e.g. [58–61, 65–85]), includ-
ing preliminary cell lineage, blastomere ablation and 
fate mapping studies [86–88]. However, information 
about the molecular patterning is limited to the single 
study of nine transcription factors (which include ante-
rior, posterior and endomesodermal markers) during the 
development of Phoronopsis harmeri [85]. Importantly, 
information about expression of Hox genes during devel-
opment of any phoronid species is still lacking [40, 59].

Recently, Luo et  al. have demonstrated that in phoro-
nid Phoronis australis a Hox cluster is highly organized 
with all of the eight phoronid Hox genes forming a single 
cluster that retains the ancestral spiralian order of genes 
([89], also Fig. 1c). This is in contrast to brachiopods, the 
putative close relatives of Phoronida, where various level 
of Hox cluster disorganization was  shown (Fig.  1c) and 
temporal and spatial collinearity is missing [16, 40, 89, 
90]. Therefore, it remains important to examine whether 
phoronid Hox genes are also expressed in the spatio-
temporally collinear manner during development, which 
would correspond with the retention of the organized 
Hox cluster shown in this clade.

Phoronids exhibit a biphasic life cycle with plankto-
trophic larvae that transform into the juvenile in a cata-
strophic metamorphosis event (Fig.  1b; e.g. [59, 60, 73, 
75, 81, 82]), which is much more drastic than relatively 
gradual metamorphosis of most Spiralia. Importantly, the 
A–P axis of the larva is profoundly altered during met-
amorphosis [60, 77, 81, 82] and results in the U-shaped 
organization of the internal structures of the juvenile 
worm (Fig.  1b). In animals with pronounced metamor-
phosis Hox genes might exhibit noticeable differences in 
the expression patterns during development of larval and 
adult bodies. In pilidiophoran nemerteans and indirectly 

developing hemichordates it has been demonstrated that 
Hox genes are involved in patterning of only adult bodies 
[37, 38], while in tunicates and sea urchins different sets 
of Hox genes are expressed during larval and adult body 
development [21, 22, 44, 47]. On the other hand, in ani-
mals with non-catastrophic metamorphosis (e.g. cepha-
lochordates, mollusks, annelids or brachiopods), the Hox 
genes seem to pattern both the larval and adult body 
plans in a relatively similar way [31, 39, 40, 46, 48]. How-
ever, studies focusing on metamorphosis-related differ-
ences of Hox gene expression in Bilateria are still limited 
to a relatively few evolutionary lineages [40, 91]. There-
fore, the comparison of Hox gene expression between 
the embryonic and larval development and the develop-
ment of the metasomal sac in phoronids might shed new 
light into the understanding of the evolution of differen-
tial genetic control of the axis patterning in animals with 
extreme metamorphosis.

In this study, we investigated the Hox genes comple-
ment and their expression patterns during the develop-
ment of the phoronid Phoronopsis harmeri, for which 
the extensive data on the morphological aspects of the 
development and some molecular data on the A–P axis 
are available [66, 72, 75–78, 80–82, 84, 85]). Our aim 
was to answer whether phoronid Hox genes show stag-
gered expression along the A–P axis at any of the devel-
opmental stages as well as to examine if there are traces 
of temporal collinearity that could hint to the presence of 
a Hox cluster as described for another phoronid P. aus-
tralis [89]. We also wanted to investigate whether there 
are differences in the Hox gene expression (and possibly 
in the patterning of the A–P axes) between the larva and 
the rudiment of the forming juvenile worm and com-
pare our findings with other species that exhibit extreme 
metamorphosis.

Results
Hox complement and gene orthology
We identified eight Hox genes in the transcriptome of 
Ph. harmeri and our phylogenetic analysis allowed their 
assignment to particular orthology groups (Fig. 2). Those 
genes represent orthologues of the genes labial (lab), 
proboscipedia (pb), hox3, deformed (dfd), lox5, antenna-
pedia (antp), lox4 and post2 (Figs. 1c and 2). Moreover, in 
addition to the paraHox gene cdx reported by Andrikou 
et al. [85], we identified two other paraHox genes in the 
transcriptome of Ph. harmeri—gsx and xlox. Most of the 
Hox orthologues form distinct clades in our phylogenetic 
tree (Fig.  2). Sequences from the three orthologues (pb, 
sex combs reduced (scr) and antp) do not form clades but 
rather grades of similar sequences (Fig. 2), which never-
theless allow the exact orthology assessment. We found 
that the gene identified by Luo et al. as lox2 in the genome 
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Fig. 2  Bayesian phylogeny under JTT + I + G substitution model of the amino acid sequences of spiralian Hox genes homeodomains, including 
phoronid sequences. Genes from Ph. harmeri are marked in red. Posterior probability values are shown for important clades. Full species names and 
sequences accession number are provided in Additional file 1: Table S1
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of P. australis [89] and its orthologue in Ph. harmeri do 
not fall into the clade containing lox2 sequences from 
other Spiralia, but instead they group in the grade con-
taining antp sequences. Accordingly, sequence of those 
two phoronid genes lack most of the residues proposed 
as signature of lox2 by de Rosa et  al. (Additional file  1: 
Fig. S1; [92]).

Embryonic and larval development of Ph. harmeri
Embryos and larvae of Ph. harmeri are relatively trans-
parent and many aspects of their morphology can be eas-
ily observed with the light microscope using Nomarski 
interference contrast (Fig. 3). At 9 °C the blastula stage is 
reached at about 6–8  h post-fertilization (hpf). Around 
12 hpf a swimming blastula with a large blastocoel (bc) 
is formed (Fig. 3A, A’). At 20 hpf the gastrulation process 

is initiated, which leads to the formation of the gastrula 
(Fig.  3B, B’) that displays a distinctive blastopore (bp), 
the archenteron (ar) and the anterior mesoderm (am). 
Subsequently, the embryo (including the archenteron) 
elongates along the A–P axis and the oral hood (oh) 
develops anteriorly leading to the formation of the early 
larval stage, at approximately 40 hpf (Fig. 3C, C’). In the 
posterior part of the early larva the proctodeum (pd) 
develops, which merges with the posterior midgut (mg), 
forming a larval digestive system. Ventrally to the proc-
todeum the first undifferentiated rudiment of the pro-
tonephridia is present (pr in Fig.  3C, C’). At 60  hpf the 
pre-tentacle larval stage is reached (Fig.  3D, D’), which 
possesses a through-gut (with esophagus, es; stomach, st; 
midgut, mg; and proctodeum, pd), an apical organ (ao), 
protonephridial rudiments (pr) and rudiments of the first 

Fig. 3  Development of Phoronopsis harmeri. Blastula, 12 hpf (A, A’); gastrula, 24 hpf (B, B’); early larva, 42 hpf (C, C’); pre-tentacle larva, 56 hpf (D, D’); 
actinotrochae: 3 dpf (E, E’), 5 dpf (F, F’) and 7 dpf (G, G’). For each developmental stage the left panel shows embryo or larvae in dorso-ventral view 
and right panel (marked as’) in lateral view with ventral to the left; anterior is to the top on all panels. Scalebars 50 μm. am anterior mesoderm, ao 
apical organ, ar archenteron wall, bc blastocoel, bp blastopore, es esophagus, mg midgut, mo mouth opening, ms metasomal sac, oh oral hood, pd 
proctodeum, pm posterior mesoderm, pn protonephridium, pr protonephridial rudiment, rt tentacle rudiment, st stomach, te tentacle, tt telotroch
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three pairs of tentacles (rt). Three days post-fertilization 
(dpf) larvae can be already identified as early 6-tentacle 
actinotrocha (Fig.  3E, E’) due to the presence of three 
pairs of well-defined tentacles (te). At this stage the lar-
val protonephridia reach their definite branching form 
(pn, Fig.  3E), the rudiments of posterior mesoderm are 
morphologically distinguishable (pm, Fig.  3E) and the 
posterior telotroch starts to form around the anal open-
ing (tt, Fig. 3E’). At 5 dpf (Fig. 3F, F’) the telotroch is fully 
formed, while the posterior mesoderm forms rudiments 
of the posterior coelom compartment (metacoel). The 
actinotrocha reach the 8-tentacle stage at 7 dpf (Fig. 3G, 
G’). At this stage the post-tentacular region of the body 
(larval trunk) elongates and the metasomal sac, a rudi-
ment of the body wall of the prospective adult worm, is 
formed (ms, Fig. 3G, G’). The metasomal sac at this stage 
appears as an ectodermal thickening located on the ven-
tral side under tentacle bases.

The actinotrocha of P. harmeri develops further during 
a prolonged planktonic life (2 weeks up to few months). 
During this process subsequent pairs of tentacles are 
added on the dorsolateral sides, while metasomal sac 
extends, forming elongated structure on the ventral side 
of the larvae [76, 81, 82]. The actinotrocha of P. harmeri 
reaches metamorphosis competence at the 24-tentacle 
stage [76, 82]. The morphological details of the embry-
onic and larval development of Ph. harmeri are well 
described elsewhere [66, 72, 75–78, 80–82, 84, 85], there-
fore we did not examined further the embryonic and lar-
val morphology.

Hox gene expression
We did not detect expression of any of the Hox genes 
in blastula and gastrula stages (Additional file  1: Fig. 
S2), despite the fact that the expression of other genes, 
used as positive control, can be easily detected on those 
developmental stages (and was also reported elsewhere 
[85]). Additionally, the signal from the probes develops 
usually faster in embryos compared to larval stages. As 
we detected signal from all of our molecular probes on 
later larval stages (see below) we conclude that none of 
the Hox genes is expressed to a detectable degree before 
42 hpf.

Expression of the anterior Hox gene lab is detected for 
the first time during development at the late 6-tentacle 
actinotrocha stage (Fig.  4A g, h). The gene is expressed 
in the ventro-posterior ectodermal domain, between 
the tentacle bases and the telotroch (black arrowhead, 
Fig. 4A g and h) and in the paired domains of the dorso-
lateral posterior mesoderm (red arrowheads, Fig.  4A 
g and h). Both of the expression domains persist to the 
8-tentacle actinotrocha stage (Fig.  4A i and j). At this 
developmental stage the ectodermal domain is part of the 

metasomal sac, where lab is expressed in the cells of the 
anterior and bottom portion of the sac (Fig. 5a, a’).

The second anterior Hox gene, pb, is the earliest 
expressed among all Hox genes in Ph. harmeri as its 
expression can be already detected in the early larva stage 
(42 hpf) in some of the cells of the protonephridial rudi-
ment (blue arrowheads, Fig.  4B a, b). This expression 
domain remains in the pre-tentacle stage (56 hpf, 4B c, d) 
and early and late 6-tentacle actinotrocha (Fig. 4B e, f ). In 
late 6-tentacle actinotrochae the gene additionally labels 
a portion of the posterior mesoderm (red arrowheads, 
Fig. 4B g, h). In 8-tentacle actinotrochae pb is expressed 
in larval protonephridia (blue arrowheads, Figs.  4B i, j; 
5g) and in two mesodermal domains, surrounding the 
metasomal sac (red arrowheads, Figs. 4B i, j; 5g).

Hox3 expression is detected in the late 6-tentacle acti-
notrochae in an ectodermal domain between the tentacle 
bases and telotroch (black arrowhead, Fig.  4C g, h). At 
the 8-tentacle actinotrocha stage hox3 is uniformly and 
exclusively expressed in the ectodermal cells of the meta-
somal sac (black arrowheads, Figs. 4C i, j; 5b, b’).

Dfd expression initiates only at the 8-tentacle acti-
notrocha stage (Fig. 4D i, j), where the gene is expressed 
in a small, more proximal portion of the developing 
metasomal sac (Fig. 5c, c’).

Transcripts of the gene lox5 are detected first in the 
early 6-tentacle actinotrocha in posterior cells of the 
developing telotroch (green arrowhead, Fig. 4E e, f ). Later 
on, lox5 remains expressed in the telotroch, expanding its 
expression domain to the entire structure (green arrow-
heads, Fig.  4E g–j). Two additional expression domains 
of lox5 also appear: the metasomal sac rudiment (black 
arrowhead, Fig. 4E h), which later encompasses the entire 
metasomal sac (black arrowheads Fig.  4E j and inset 
between i and j; Fig. 5d, d’), and an asymmetric domain 
in the left ventro-lateral posterior mesoderm, located 
between metasomal sac, midgut and left body wall (red 
arrowheads Fig. 4i, j and inset between g, h; Fig. 5h, i).

Expression of antp is not detected until the 8-tentacle 
actinotrocha stage. Transcripts of the gene are found in 
ectodermal cells around the opening of the metasomal 
sac (black arrowheads, Fig. 4F i, j; Fig. 5e, e’), which in a 
dorso-ventral view look like a ring on the ventral body 
surface between the tentacles base and the telotroch 
(Fig. 4F i).

Similarly, lox4 expression is not detected until the 
8-tentacle actinotrocha stage, where the gene exclusively 
labels the ring of the cells at the junction between midgut 
and proctodeum (magenta arrowheads, Figs. 4G i, j; 5j).

The only posterior Hox gene, post2, is expressed from 
the early 6-tentacle actinotrocha (3 dpf ) in the telotroch 
(green arrowheads, Fig. 4H e, f ), initially in the posterior 
portion of the organ but later on the expression domain 
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uniformly surrounds the anus (green arrowheads, Fig. 4H 
g–j). However, compared to lox5 expression (which also 
demarcates the telotroch), post2 labels only the inner ring 
of epidermal cells of the organ (compare Fig.  4E g–j, H 
g–j) and not the entire structure. At the 8-tentacle acti-
notrocha stage the gene post2 is additionally expressed in 
the small posterior portion of the metasomal sac (black 
arrowhead, Figs. 4H j, 5f, f ’).

Head‑specific genes
In addition to the investigation of Hox genes we tested 
expression of several head-specific genes in the early 
larva (42  hpf ) and advanced 8-tentacle actinotrocha. 
The genes, whose expression we investigated, were foxG 
(also known as brain factor-1 or BF-1), foxQ2, six3/6, 
otx and pax4/6, all commonly considered as head mark-
ers [38, 45, 89, 93–97]. One of the two foxG paralogues 

Fig. 4  Whole-mount in situ hybridization of each Hox gene during larval development of Phoronopsis harmeri. Name of each hybridized gene is 
shown on the left, while developmental stages are indicated on the top. All the stages are presented with anterior to the top. Larvae on panels a, c, 
e, g and i are in dorso-ventral view, whereas larvae on panels b, d, f, h and j in lateral view with ventral to the left. The black line indicates the onset 
of expression of each Hox gene based on in situ hybridization data. Black arrowheads indicate expression in the metasomal sac, blue arrowheads 
expression in the protonephridia, red arrowheads expression in the mesoderm, green arrowheads expression in the telotroch and magenta 
arrowheads expression in the digestive system. The detailed expression patterns are described in the text. Photographs are not to scale
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(see “Methods” section for details), whose expression 
we managed to detect, foxGa, is expressed in the early 
larva in the epidermal cells, from which the tentacles 
will develop (Fig.  6a–c). In 8-tentacle stage the gene 
expression was not detected (data not shown). We man-
aged to clone one of two foxQ2 paralogues, FoxQ2b, and 
detected its expression in the apical organ and the adja-
cent preoral coelom of both early and 8-tentacle stage 
larvae (Fig.  6d–g). In the 8-tentacle stage the gene was 
additionally expressed in two endodermal rings—one in 
the anterior stomach and another at the border between 
stomach and midgut (Fig.  6f, g). six3/6 is expressed in 
the early larvae in the apical organ, hood mesoderm, 
preoral coelom, postoral ectoderm and in the stomach 
(Fig. 6h, i) as previously reported [85]. In 8-tentacle acti-
notrocha six3/6 is expressed in the apical organ, hood 
muscles, preoral coelom and some cells along ventral 
side of anterior digestive system (Fig. 6j–m). In early lar-
vae otx is expressed in the apical organ, ventral preoral 
ectoderm, anterior portion of the digestive tract and in 
two spots in the ventro-posterior ectoderm, which lay 
in the prospective tentacular territory (Fig.  6n–p), fol-
lowing the expression pattern described before [85]. In 
the 8-tentacle stage, otx is expressed in the apical organ, 
rim of the oral hood, preoral coelom, anterior portion 
of the digestive tract and in the small spots close to the 

tips of each tentacle (Fig. 6q–u). pax4/6 is expressed in 
the early larvae in the two stripes of cells which extend 
along ventral side of the larva, from mouth to about half 
of the body length (Fig.  6v, w) and which correspond 
with the position to the tentacular neurite bundles [78]. 
In 8-tentacle stage pax4/6 expression is detected along 
frontal side of each larval tentacle (Fig. 6x, y), which also 
corresponds to the subset of tentacular innervation [78] 
and in the scattered neurons around the anterior diges-
tive tract (Fig. 6y). In general the head-specific genes are 
broadly expressed in both developmental stages in the 
body structures anterior to the Hox-expressing territory 
(Fig. 6Z).

Discussion
Hox gene complement in Phoronida
Similar to the results of the investigation of P. australis 
genome, we identified eight Hox genes in Ph. harmeri, 
which represent single copies of the conserved ortho-
logues of the spiralian Hox genes (Figs. 1c, 2). Luo et al. 
[89] reported that P. australis lacks scr and post1 ortho-
logues and we also did not identify orthologues of those 
two genes in the transcriptome of Ph. harmeri, strength-
ening the idea they were already absent in the common 
ancestor of all phoronids.

Fig. 5  Details of the expression of some of the Hox genes in the actinotrocha larvae of Phoronopsis harmeri. Expression of the Hox genes in 
the metasomal sac of 8-tentacle actinotrochae (a–f) and schematic interpretation of those expression patterns (a’–f’). Expression of pb in the 
8-tentacle actinotrocha (g). Expression of lox5 in the left mesoderm of late 6-tentacle (h) and 8-tentacle actinotrocha (i). Expression of lox4 in the 
digestive system of 8-tentacle actinotrocha (j). Scale bars 25 μm. ms metasomal sac, iw intestinal wall. Blue arrowheads indicate expression in the 
protonephridia, red arrowheads expression in the mesoderm and magenta arrowhead expression in the digestive system
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Fig. 6  Expression of head-specific genes in early larva (a–e, h, i, n–p, v, w) and 8-tentacle stage actinotrocha (f, g, j–m, q–u, x, y) of Phoronopsis 
harmeri and comparison of expression of head-specific and Hox genes in both larval stages (z). For each panel the name of hybridized gene is 
shown in the white box above micrographs. Entire larvae in the dorso–ventral (a, d, f, h, j, n, o, q, v, x) and lateral (b, c, e, g, i, k, p, r, w, y) views. 
Details of expression in 8-tentacle stage larvae in oral hood and anterior body region (l), hood musculature (m), apical organ, preoral coelom and 
rim of the hood (s) and tips of the tentacles (t, u). Black arrowheads point to the particular expression domains (see text for details), while asterisks 
indicate unspecific background staining. Scalebars 25 μm
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In their paper Luo et al. [89] suggested that scr, which 
is expressed in the shell forming tissues of brachiopods 
[16, 40], might be lost in Phoronida due to the evolution-
ary reduction of the shell in this clade. Such interpreta-
tion is in accordance with paleontological data, as a fossil 
cambrian tommotiid, Eccentrotheca sp., which has been 
proposed as a stem group phoronid [98, 99], possessed a 
mineralized external tube-shaped skeleton. Recent stud-
ies favor a sister group relationship between phoronids 
and ectoprocts [52–55, 100], the latter of which possess 
a mineralized external skeleton, similar to brachiopods. 
However, the Hox gene survey using degenerate polymer-
ase chain reaction primers in the ectoproct Crisularia 
(Bugula) turrita did not retrieve a scr sequence [101], 
which questions the possible correlation between loss of 
this gene and the reduction of shell secreting tissues in 
phoronid lineage. Yet, since it is difficult to recover the 
full hox complement with degenerate polymerase chain 
reaction, further studies on bryozoan hox genes, utilizing 
genomic or transcriptomic data, are needed to ascertain 
whether scr is truly missing.

The gene that was identified as lox2 by Luo et al. [89] 
in the genome of P. australis (and its orthologue in Ph. 
harmeri) was recovered in our gene orthology analysis 
as orthologue of antp (Fig.  2). Inspection of the phylo-
genetic tree available in Luo et al. shows that the assess-
ment of the orthology of this gene was tentative, since 
the gene was actually placed outside of the well-defined 
clade of lox2 in their analysis [89]. Identification of this 
gene as antp instead of lox2 is further supported by its 
position in the genome of P. australis, which corresponds 
to the antp position in the spiralian species with con-
served, organized Hox clusters (Fig.  1c). Additionally, 
alignment of those phoronid genes with antp and lox2 
shows that they lack typical signatures of lox2 [92] and 
instead are more similar to the antp sequence (Additional 
file 1: Fig. S1). Consequently, both phoronid species lack 
an orthologue of lox2, an absence, which is apparently 
shared by Phoronida with other Lophophorata [16, 89, 
90, 101] as well as with some other Spiralia—i.e. Rotif-
era [34, 102] and Platyhelminthes [42, 103]. Lox2 was 
originally described from leeches [104, 105] and later 
proposed as an evolutionary innovation of Lophotro-
chozoa ([92], sensu = Spiralia [106]). However, its ortho-
logues are so far identified only in annelids (e.g. [27, 46, 
92, 104, 105, 107, 108]), nemerteans [89], molluscs (e.g. 
[30, 36, 41, 92, 107, 109–112]) and possibly kamptozoans 
[113] (however, in the latter the lox2-like sequence lacks 
most of the residues considered as lox2 signature; Addi-
tional file 1: Fig. S1). This indicates that lox2 evolved only 
after split of the common ancestor of those clades from 
remaining Spiralia and does not belong to the ancestral 
hox complement of all Spiralia [16]. Whether the absence 

of lox2 in lophophorates is plesiomorphic or represents 
an evolutionary reversal depends on the position of 
Lophophorata within Spiralia, which is still debatable and 
not fully resolved [52–55, 100].

Hox genes in Phoronida do not show traces of collinear 
expression
When assuming the presence of a similar gene order 
in the Hox cluster of Ph. harmeri as in P. australis then 
the former does not show any traces of temporally or 
spatially collinear expression of Hox genes (Fig. 4). This 
is in stark contrast to other Spiralia, in which at least 
some of the Hox genes show staggered expression along 
A–P axis (e.g. [16, 23, 27, 31, 35–37, 39, 41, 45]). The 
lack of collinear Hox expression in phoronids is espe-
cially intriguing taking into account that P. australis has 
highly organized Hox cluster and collinear expression 
(especially in its temporal aspect) has been proposed as 
a main evolutionary factor responsible for conservation 
of Hox cluster organization [9, 11–16, 49]. Therefore, 
either another mechanism is responsible for Hox cluster 
conservation in Phoronida or the two discussed phoro-
nid species vary greatly in the cluster organization and/or 
Hox gene expression patterns.

Six out of eight identified Hox genes are expressed in 
the metasomal sac (pb and lox4 being the only two, whose 
expression was not detected in the structure) and already 
at the stage of 8-tentacle actinotrocha some of those 
genes (lab, dfd, antp, post2) show differentiated expres-
sion in a particular region of the sac (Fig.  5), although 
without any clear pattern along the future A–P axis. 
However, it is possible that in the competent larvae (at 
the 24-tentacle stage, when the metasomal sac is a fully 
formed, elongated structure [81, 82]), the expression of 
particular Hox genes is restricted to the different regions 
of the trunk rudiment and shows some traces of stag-
gered expression along the future A–P axis of the worm 
body. Hence, the future investigation of Hox expression 
in competent larvae and freshly metamorphosed juve-
niles can reveal spatial collinearity obliterated in the early 
stages of metasomal sac development or eventually con-
firm a lack of collinear Hox expression throughout entire 
development of phoronids.

Germ layer‑specific expression of Hox genes in Spiralia
Although Hox genes in Bilateria are predominantly 
expressed in the ectoderm (including nervous sys-
tem) and their ectodermal expression is often con-
sidered as an ancestral feature [14, 28, 34], in various 
spiralian species certain Hox genes are also expressed 
in mesoderm, endoderm and clade-specific structures 
like chaetal sacs or shell fields (e.g. [16, 23, 24, 27, 29, 
31, 35, 36, 39–41, 46]; Table 1). Inclusion of the data on 
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Hox expression in Phoronida gives some new insight 
into the understanding of the evolution of germ layer-
specific Hox expression in Spiralia. Ph. harmeri, similar 
to two investigated brachiopod species [16, 40], seems 
to lack expression of any of the Hox genes in the nerv-
ous system, a peculiarity that might actually represent 
an apomorphy of Lophophorata (Table 1). Three of the 
Hox genes—pb, hox3 and dfd—were shown to be dif-
ferentially expressed along the A–P axis in the meso-
derm of brachiopod larvae [16]. Out of those three 
genes, only pb (which mesodermal expression is actu-
ally lacking in craniiformean Novocrania anomala 
[16]) is expressed mesodermally in Ph. harmeri, indi-
cating that cooption of hox3 and dfd into mesoderm 
patterning occurred after the split of brachiopods and 
phoronids. Comparison of Hox gene expression across 
Spiralia (Table 1) allows the observation that pb is mes-
odermally expressed in many species and it is likely that 
mesodermal expression of pb represents an ancestral 
condition in Lophotrochozoa (sensu stricto [106]). On 
the other hand, the expression of lox4 in the digestive 
system of Ph. harmeri is a peculiar and derived feature 
as this gene is expressed in other Spiralia in ectoderm, 
nervous system or mesoderm. In general, among inves-
tigated Spiralia, the Hox genes are rarely expressed in 
the digestive system (Table 1).

Hox gene expression and the nature of actinotrocha larvae
We showed that in Ph. harmeri Hox genes are not 
expressed during embryogenesis, when the larval body 
is formed, but instead they are expressed mainly in pro-
spective adult structures, namely in the metasomal sac 
(which will contribute to the adult trunk epidermis), 
posterior mesoderm (which contributes to the mesoder-
mal structures in the adult trunk), the small posterior 
portion of the endoderm (which during metamorpho-
sis descent into the trunk rudiment forming the loop 
of the U-shaped intestine) and the larval telotroch. In 
most of the investigated Bilateria, Hox genes are already 
expressed during early developmental stages and, if a 
biphasic life cycle is present, they are involved in the for-
mation of both larval and adult body plans (e.g. [16, 27, 
29–31, 40, 41, 45, 46, 48]). However, there are some ani-
mals that, similar to phoronids, deviate from this general 
pattern. Specifically, in pilidiophoran nemerteans [37] 
and indirectly developing hemichordates [38], the larvae 
develop without expressing any of the Hox genes, which 
instead patterns only the adult body rudiment.

Two evolutionary processes have been proposed to 
explain these observations. According to the first hypoth-
esis, based on the results from pilidiophoran nemerteans, 
the new larval form, a pilidium, was intercalated into to 
the ancestral life cycle of gradually developing nemer-
tean [37, 45]. This intercalation of a larval form caused 

Table 1  Expression of Hox genes in spiralian species

Hox gene

species clade reference lab pb hox3 dfd scr lox5 antp lox4 lox2 post2 post1
Phoronopsis 
harmeri Phoronida this study

ectoderm, 
mesoderm

mesoderm,
nephridia ectoderm ectoderm

gene 
absent

ectoderm, 
mesoderm ectoderm intes�ne

gene 
absent ectoderm

gene 
absent

Terebratalia 
transversa Brachiopoda (16, 40) chaetal sac

ectoderm, 
mesoderm

ectoderm, 
mesoderm

ectoderm, 
mesoderm shell field ectoderm ectoderm ectoderm

gene 
absent ectoderm chaetal sac

Novocrania 
anomala Brachiopoda (16) chaetal sac ectoderm

ectoderm, 
mesoderm

ectoderm, 
mesoderm shell field ectoderm ectoderm unknown

gene 
absent unknown

gene 
absent

Capitella teleta Annelida (46)

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system chaetal sac

Ali�a virens Annelida (27, 31)

ectoderm, 
chaetal sac, 
nervous 
system

ectoderm, 
mesoderm ectoderm

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system, 
mesoderm

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system, 
mesoderm, 
endoderm chaetal sac

Chaetopterus 
variopedatus Annelida (23)

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system, 
mesoderm

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
nervous 
system unknown unknown unknown unknown unknown unknown

Acanthochitona 
crinita Mollusca (35, 36)

ectoderm, 
mesoderm mesoderm mesoderm

ectoderm, 
mesoderm mesoderm

ectoderm, 
mesoderm mesoderm

ectoderm, 
mesoderm mesoderm

ectoderm, 
mesoderm

gene 
absent

Antalis entalis Mollusca (39)

shell field, 
nervous 
system

ectoderm, 
nervous 
system

ectoderm, 
shell field, 
nervous 
system, 
mesoderm

nervous 
system, 
mesoderm

nervous 
system, 
mesoderm

ectoderm, 
nervous 
system

gene 
absent

ectoderm, 
nervous 
system, 
mesoderm unknown

ectoderm, 
nervous 
system

ectoderm, 
shell field, 
nervous 
system

Lo�a 
goschimai Mollusca (41)

shell field, 
nervous 
system

shell field, 
nervous 
system

shell field, 
nervous 
system

shell field, 
nervous 
system

shell field, 
nervous 
system

shell field, 
nervous 
system

nervous 
system

shell field, 
nervous 
system

ectoderm, 
shell field, 
nervous 
system

shell field, 
nervous 
system

nervous 
system

Brachionus 
manjavacas Ro�fera (34)

gene 
absent (?)

nervous 
system

nervous 
system

nervous 
system unknown

nervous 
system

gene 
absent (?)

gene 
absent (?)

gene 
absent (?)

gene 
absent (?)

gene 
absent (?)
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Hox gene patterning to only be retained during develop-
ment of the adult worm. In contrast the new larval form, 
in which the body axis is not aligned with the adult one, 
uses another molecular mechanism to provide primary 
positional information to the cells of the developing body 
[37, 45].

Another concept was proposed to explain the phenom-
enon observed during larval development of a hemichor-
date Schizocardium californicum [38, 91]. Although 
metamorphosis in this species is not so drastic [114] and 
the body axes of both stages are congruent, the larva 
develops without expression of any Hox genes. Instead, 
they are expressed only late during larval development 
and only in the most posterior region of the competent 
larvae, from which the trunk of the juvenile worm will 
develop during metamorphosis [38, 114]. Because the 
larva expresses genes that are usually expressed in the 
bilaterian head throughout its body, the so-called “head 
larva”-hypothesis was proposed which states that the 
larval body represents the homologue of only the head 
region of the future animal, while the trunk is added 
later during post-larval development [38]. It has been 
proposed that ancestrally in Bilateria Hox genes were 
involved only in the patterning of the trunk, while head 
developed from the anterior, Hox-free region, the condi-
tion, which is still retained in numerous bilaterian line-
ages [38, 45, 89, 93, 94]. That would explain why tornaria, 
as a larva composed solely of the head, develops without 
expression of the Hox genes, which become activated 
only after the onset of trunk development and pattern 
only the adult body [38].

Both of those hypotheses (intercalation and “head-
larva”) might be applied to explain the Hox expression 
patterns we observed in Ph. harmeri. According to the 
first hypothesis, the specific actinotrocha larva would 
represent an evolutionary novelty in the life cycle of 
phoronids, which was intercalated in the phoronid line-
age and that is why it is not patterned by an ancestral Hox 
gene system. Such an idea is supported by the fact, that 
the actinotrocha body plan does not bear obvious homol-
ogy to those of any other spiralian larvae [80, 115–117]. 
Additionally, similar to the case of pilidium, most of the 
larval tissues are lost during the drastic metamorphosis 
event and the larval A–P axis is not aligned with the juve-
nile one [60, 72, 77, 81, 82]. Moreover, the actinotrocha 
is lacking in P. ovalis [60], which is the sister species to 
all remaining phoronids [62–64], suggesting that the acti-
notrocha was not even present in the most recent ances-
tor of all Phoronida, but instead appeared after the split 
between P. ovalis and the remaining phoronids.

On the other hand, from the morphological point of 
view, the tentacles of actinotrocha larvae correspond, in 
case of Ph. harmeri, to the tentacles of the lophophore 

in the adult worm ([73, 82, 116]; Fig. 1b), and the adult 
lophophore exhibits the molecular signature of a bila-
terian head [89]. As tentacles are positioned posteri-
orly in the early actinotrocha, one can conclude that on 
a morphological basis the early actinotrocha is mostly 
composed of the head region. Following such interpreta-
tion, all of the Hox genes are expressed in the structures 
that will contribute to the adult trunk tissues but are not 
expressed in the developing future head (and hence in 
the largest portion of the larval body). Accordingly, based 
on a body region specific transcriptome, it has been dem-
onstrated that in adults of P. australis Hox genes are not 
expressed in the lophophore, while their expression is 
detectable in the trunk and posterior ampulla [89]. Simi-
larly, in rhynchonelliformean and craniiformean brachio-
pods none of the Hox genes are expressed in the larval 
anterior lobe [16, 40], which contributes to the lopho-
phore after metamorphosis [40, 116]. A lack of Hox 
expression in the adult lophophore tissue (as opposed to 
the remaining body regions) was also shown for the lin-
guliformean Lingula anatina, based on the tissue-specific 
transcriptomics [89]. Additionally, our study shows that 
two of the Hox genes (lox5 and post2) are expressed in 
the telotroch, which represent a truly larval structure, 
that is lost during metamorphosis [73, 82], therefore Hox 
genes are indeed, albeit to only a limited degree, involved 
in larval development. Hox gene expression in the larval 
telotroch is a result of the telotroch representing a truly 
“posterior” structure, which belongs to the post-head 
body region even in the earliest, “head dominated” acti-
notrocha. The “head larva” interpretation is additionally 
strengthened by our results of the expression of several 
head-specific genes in Ph. harmeri. Those genes are 
broadly expressed in the early larvae and 8-tentacle stage, 
but only in the structures located anteriorly to the Hox-
expressing territory (Fig.  6z), resembling conditions in 
developing tornaria [38].

Conclusions
Hox gene expression is activated late during the devel-
opment of Ph. harmeri. The larval body develops with-
out expressing any of the Hox genes, which instead are 
expressed in the tissues of the prospective rudiment of 
the adult worm and in the telotroch. Such expression 
might result either from the intercalation of actinotrocha 
larva into the ancestral life cycle of phoronids or from the 
fact that the early larva of phoronids represents a “head 
larva”, which develops without expressing any Hox genes. 
Our investigation of head-specific genes expression 
profiles confirms that most of the larval body exhibits 
head-specific gene expression profile. Those two expla-
nations are not mutually exclusive and we propose that 
actinotrocha was intercalated into the phoronid life cycle 
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by precocious development of the anterior structures 
or by delayed development of the trunk rudiment in the 
ancestral phoronid larva. Such hypotheses can be tested 
by the investigation of the Hox gene expression during 
the development of Phoronis ovalis, a sister species to all 
remaining Phoronida, which lacks the actinotrocha larva 
stage and develops through a creeping, worm-like larva.

Methods
Animal collection and fixation
Gravid females of Ph. harmeri Pixell, 1912 were collected 
in Bodega Bay (38° 18′ 51.9012″ N 123° 3′ 12.3012″ W) 
in California during April and May. Although the Cali-
fornia population of Phoronopsis is sometimes referred 
to as separate species Ph. viridis [84, 118], we followed 
the widely accepted interpretation of Joan Rattenbury 
Marsden, that Ph. viridis is in fact a younger synonym of 
Ph. harmeri [119]. The animals were opened in the labo-
ratory and eggs (fertilized during dissection by sperm 
stored in the coelom of females) were transferred to the 
clean cultures with filtered see water (as described in, e.g. 
[78, 84, 85]). Embryos are initially lecithotrophic, but, 
after formation of the gut, larvae require feeding, hence 
concentrated Rhodomonas or Rhinomonas algae were 
added to the cultures. Water in the larval cultures was 
exchanged every 2–3  days, followed by the addition of 
fresh algae. Embryos and larvae on desired developmen-
tal stages were relaxed with 8% MgCl2, fixed in 3.7% for-
maldehyde and subsequently washed in phosphate buffer 
with 0.1% Tween-20. Fixed animals were stored in 100% 
methanol in − 20 °C.

Hox genes identification and orthology assessment
We searched the transcriptome of Ph. harmeri with 
reciprocal TBLASTN using eight Hox protein sequences 
from Phoronis australis. The top ten homeodomain-con-
taining BLAST hits from each search were blasted back 
against the protein database at NCBI (http://blast​.ncbi.
nlm.nih.gov/) and if any Hox gene was among top recip-
rocal hits, the sequence was considered to be a putative 
Hox gene. We identified eight sequences, which passed 
this reciprocal test and translated them to the protein 
sequences using CLC Main Workbench 7. Orthology of 
particular phoronid Hox genes was assessed based on the 
results of phylogenetic analysis. In order to construct the 
alignment, amino acid sequences of Hox transcription 
factors and nucleotide sequences of Hox genes from sev-
eral spiralian species were obtained from GenBank (https​
://www.ncbi.nlm.nih.gov/genba​nk/), the ENSEMBL 
genome data base (https​://www.ensem​bl.org/index​.html) 
and the website of Marine Genomics Unit of Okinawa 
Institute of Science and Technology (http://marin​
egeno​mics.oist.jp). For the nucleotide sequences, ORFs 

were determined based on BLAST results at NCBI and 
sequences were translated into proteins using CLC Main 
Workbench 7. All spiralian sequences used in this study 
with their source and accession number are provided in 
the Additional file 1: Table S1.

The spiralian Hox protein sequences, including puta-
tive Hox genes of Ph. harmeri, were aligned in CLC 
Main Workbench 7 and then the alignment was manu-
ally trimmed to contain the conserved homeodomain (60 
amino acids), five aa 5′ of the homeodomain, and eight 
aa 3′ of the homeodomain (the trimmed alignment in 
FASTA format is available in the Additional file 1). Addi-
tionally, several spiralian Evx sequences were added as 
an outgroup. ProtTest3 [120] was used to determine 
the best-fitting substitution model (JTT+I+G). Bayes-
ian analysis was run in MrBayes v3.2.6 [121, 122] with 
the JTT+I+G substitution model in two independent 
runs, each with four Markov chains (three heated and 
one cold) with 3.000.000 generations sampled every 500 
generations. The first 25% of samples were discarded as 
burn-in and the remaining trees were used to calculate 
posterior probability values and construct the consensus 
tree, which was visualized and adjusted in FigTree v1.4.3.

All new sequences obtained and identified in this study 
were uploaded to the GenBank (accession numbers 
MN443105–MN443114).

Gene cloning and probe synthesis
Fragments of each Hox gene were amplified from cDNA 
libraries from mixed larval and adult tissues using gene-
specific primers (provided in Additional file 1: Table S2) 
designed in MacVector 11.0.4 based on the sequences 
found in the transcriptome. PCR products were cloned 
into pGEM-T Easy vectors (Promega, USA) and then 
transformed into competent Escherichia coli cells. Plas-
mid DNA was isolated and sequenced in both forward 
and reverse directions using T7 and SP6 primers. Labeled 
antisense RNA probes were transcribed from linearized 
DNA using digoxigenin-11-UTP (Roche, USA) according 
to the manufacturer’s instructions.

Head‑specific genes
Additionally, we searched the transcriptome of Ph. 
harmeri in order to identify head-specific genes—foxG, 
foxQ2 and pax6. We identified two potential paralogues 
of both foxG and foxQ2 and called them correspond-
ingly foxGa, foxGb, foxQ2a and foxQ2b. The vertebrate 
genes pax4 and pax6 originated through the vertebrate-
specific duplication [123–125] and accordingly their pro-
tostome orthologue should be called pax4/6, same as in 
case of the other invertebrate Pax genes (pax3/7, pax1/9 
and pax2/5/8). Therefore, despite the fact that pax6 
is often used to refer to this gene in other protostomes, 

http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
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http://marinegenomics.oist.jp
http://marinegenomics.oist.jp
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we decided to name the identified gene pax4/6 in order 
to stress its co-orthology to both vertebrate genes [124]. 
We ran phylogenetic analyses to make sure that identi-
fied phoronid genes truly represent orthologues of the 
genes of interest. For Fox genes we aligned phoronid Fox 
sequences with a published alignment of Fox domains 
[97], while for Pax4/6 we assembled alignment from 
sequences available in GenBank (see Additional file 1 for 
alignments and list of used sequences). The alignments 
were trimmed in trimAl software [126] (using the gap-
pyout option) and the phylogenetic trees were calculated 
with FastTree v2.1 [127] (using the LG amino acid substi-
tution model). The obtained trees where visualized and 
adjusted in FigTree v1.4.3 and confirmed identity of all 
identified phoronid genes (Additional file 1: Figs. S3 and 
S4). Sequences of phoronid Fox genes and pax4/6 were 
deposited in GenBank (accession numbers MN734372–
MN734376). Probes against head-specific genes were 
synthesized in the same way as described for Hox genes 
(although we did not manage to clone foxQ2a). Addition-
ally we used the same dig-labeled probes against otx and 
six3/6 as in Andrikou et al. [85] (see “Method” section in 
there for more details regarding orthology of those genes).

In situ hybridization and light microscopy
Single whole-mount in situ hybridization was performed 
following an established protocol [128] with proteinase 
K digestion time of 2  min. Probes were hybridized at a 
concentration of 1 ng/μl at 67 °C for approximately 72 h, 
detected with anti-digoxigenin-AP antibody in 1:5000 
concentration in blocking buffer and visualized with 
nitroblue tetrazolium chloride and 5-bromo-4-chloro-
3-indolyl phosphate. Embryos and larvae were mounted 
in 70% glycerol and examined with Zeiss Axiocam HRc 
connected to a Zeiss Axioscope Ax10 using bright-field 
Nomarski optics.

Image processing and figure preparation
Light micrographs were adjusted in Adobe Photoshop 
CS6 for contrast and assembled in Adobe Illustrator CS6. 
All figures and drawings were prepared in Adobe Illustra-
tor CS6.
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