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Abstract

Background: Hyperconsolidation of aversive associations and poor extinction learning have been hypothesized to be crucial in 
the acquisition of pathological fear. Previous animal and human research points to the potential role of the catecholaminergic 
system, particularly noradrenaline and dopamine, in acquiring emotional memories. Here, we investigated in a between-
participants design with 3 groups whether the noradrenergic alpha-2 adrenoreceptor antagonist yohimbine and the 
dopaminergic D2-receptor antagonist sulpiride modulate long-term fear conditioning and extinction in humans.
Methods: Fifty-five healthy male students were recruited. The final sample consisted of n = 51 participants who were 
explicitly aware of the contingencies between conditioned stimuli (CS) and unconditioned stimuli after fear acquisition. 
The participants were then randomly assigned to 1 of the 3 groups and received either yohimbine (10 mg, n = 17), sulpiride 
(200 mg, n = 16), or placebo (n = 18) between fear acquisition and extinction. Recall of conditioned (non-extinguished CS+ vs 
CS−) and extinguished fear (extinguished CS+ vs CS−) was assessed 1 day later, and a 64-channel electroencephalogram was 
recorded.
Results: The yohimbine group showed increased salivary alpha-amylase activity, confirming a successful manipulation of 
central noradrenergic release. Elevated fear-conditioned bradycardia and larger differential amplitudes of the N170 and late 
positive potential components in the event-related brain potential indicated that yohimbine treatment (compared with a 
placebo and sulpiride) enhanced fear recall during day 2.
Conclusions: These results suggest that yohimbine potentiates cardiac and central electrophysiological signatures of fear 
memory consolidation. They thereby elucidate the key role of noradrenaline in strengthening the consolidation of conditioned 
fear associations, which may be a key mechanism in the etiology of fear-related disorders.
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Introduction
Heightened attention toward threat facilitates survival but can 
also contribute to clinical fear (Maddox et  al., 2019). Whereas 
fear conditioning is construed as a core learning process in the 
etiology of anxiety and trauma-related disorders (Pittig et  al., 
2018), extinction learning is critical for the success of exposure 
therapy (Ressler, 2020). Noradrenergic (norepinephrine [NE]) 
activation, as induced by emotionally arousing experiences, 
is crucial for the formation and consolidation of new memory 
traces (Roozendaal et al., 2009; LaLumiere et al., 2017; Clewett 
and Murty, 2019). Exaggerated noradrenergic stimulation of the 
amygdala, hippocampus, and prefrontal brain areas plays a piv-
otal role in pathological fear, presumably mediated through ab-
errant conditioning and extinction (O’Donnell et al., 2004; Bowers 
and Ressler, 2015). Notably, overconsolidation of memories about 
life-threatening events due to amplified noradrenergic trans-
mission may lead to intrusive memories (Nicholson et al., 2014), 
which are hard to extinguish (Miedl et  al., 2020; Visser, 2020). 
Heightened threat responsiveness in posttraumatic stress dis-
order (PTSD) is mediated by hyperactivity of the locus coeruleus 
(Naegeli et al., 2018), the principal site for NE synthesis in the 
brain (Schwarz and Luo, 2015).

Rodent research has shown that stress-induced NE is crit-
ical for the consolidation of emotional memories (McGaugh, 
2013; Bowers and Ressler, 2015). Optogenetic activation of locus 
coeruleus fibers leads to enhanced fear conditioning, presum-
ably via NE release into the amygdala (Sears et  al., 2013). The 
drug yohimbine acts as an antagonist at α2-autoreceptors in 
the locus coeruleus and stimulates NE release (Dunlop et  al., 
2012, 2015; Singewald et al., 2015). Of note, yohimbine facilitates 
fear consolidation (Gazarini et al., 2013) and generates a PTSD-
like fear memory in rodents (Davis et al., 1979; Gazarini et al., 
2015). In humans, yohimbine strengthens consolidation of fear-
conditioned startle responses (Soeter and Kindt, 2011, 2012), in 
line with a hyperconsolidation hypothesis in PTSD (Nicholson 
et al., 2014). Yohimbine-induced stimulation of the NE system 
during initial fear consolidation may have long-lasting effects 
and lead to more stable memories about threat (Krenz et  al., 
2021).

In addition to its facilitating effect on fear consolidation, yo-
himbine may also enhance extinction (Cain et al., 2004; Hefner 
et  al., 2008; Fitzgerald et  al., 2014). This could have important 
clinical implications for the augmentation of exposure therapy 
(Mueller and Cahill, 2010). However, the results of rodent studies 
have been contradictory (Holmes and Quirk, 2010), and there is 
even evidence that yohimbine may enhance fear relapse (Morris 
and Bouton, 2007). Studies in humans suggest that yohimbine 
facilitates exposure therapy in PTSD (Tuerk et al., 2018), social 
anxiety disorder (Smits et al., 2014), and claustrophobia (Powers 
et al., 2009). However, others failed to replicate these effects for 

patients with a fear of flying (Meyerbroeker et al., 2012, 2018) and 
acrophobia (Meyerbroeker et al., 2018).

As outlined above, there is evidence that yohimbine facili-
tates fear consolidation. In contrast, some researchers have 
used yohimbine as a pharmacological complement to aug-
ment extinction learning during exposure therapy, but studies 
yielded mixed results (Holmes and Quirk, 2010). Experimental 
and therapeutic studies have either focused on fear consolida-
tion or aimed at boosting extinction, but the 2 mechanisms have 
not been adequately differentiated. Here, we fill this gap by as-
sessing yohimbine effects in an established paradigm (Mueller 
et al., 2014b) that allows us to distinguish the mechanisms spe-
cific to fear consolidation and extinction recall.

Furthermore, it remains unclear how yohimbine affects 
neural threat circuits in humans. Previous studies have tended 
to concentrate on peripheral measures (Soeter and Kindt, 2011, 
2012; Tuerk et al., 2018; Esser et al., 2020; Kuehl et al., 2020); in 
the current study, we combined peripheral (skin conductance, 
heart rate) and central (electroencephalogram [EEG]) physiology 
to measure the effects of yohimbine. We were interested spe-
cifically in the N170 component and the late positive potential 
(LPP). The LPP is a reliable marker of conditioned fear (Panitz 
et al., 2015; Bacigalupo and Luck, 2018; Sperl et al., 2021), and the 
N170 has also been amplified when faces served as conditioned 
stimuli (CS) (Levita et al., 2015; Camfield et al., 2016; Sperl et al., 
2021).

Besides its noradrenergic impact, yohimbine acts as an an-
tagonist at dopaminergic D2-receptors (Scatton et  al., 1980; 
Millan et  al., 2000; Holmes and Quirk, 2010). In particular, yo-
himbine may block D2-autoreceptors and lead to elevated cor-
tical dopamine (DA) levels (Gobert et  al., 1997, 1998; Holmes 
and Quirk, 2010). So far, it has not been ascertained whether 
the effects of yohimbine can be ascribed to noradrenergic or 
dopaminergic signaling. As with noradrenergic pathways, the 
dopaminergic system plays a crucial role in acquiring emotional 
memories (Likhtik and Johansen, 2019; Papalini et al., 2020). To 
disentangle effects of yohimbine on NE and DA, we applied a 
between-participants design with 3 groups. In addition to the 
yohimbine and placebo groups, a third group received the DA 
D2-receptor antagonist sulpiride. We reasoned that, if yohim-
bine effects are driven by NE (vs DA) transmission, the pharma-
cological effects on fear conditioning and extinction should be 
specific to the yohimbine group and should not generalize to the 
sulpiride group.

In sum, animal and initial human studies suggest that yo-
himbine can boost fear consolidation, but neurophysiological 
mechanisms have rarely been studied in humans. As has 
been noted, there is also tentative evidence that yohimbine 
may facilitate fear extinction and thus enhance the efficacy of 

Significance Statement
Hyperarousal (e.g., after traumatic events) leads to enhanced threat consolidation, which may play a crucial role in the etiology 
of pathological fear in posttraumatic stress and anxiety disorders. Rodent research has pointed to the important role of the 
noradrenergic system during hyperconsolidation of aversive associations. However, it is unclear whether noradrenergic arousal 
modulates neural markers of fear learning in humans. In the present study, we pharmacologically modulated central noradren-
aline release after fear acquisition in a 2-day fear conditioning paradigm. We show that the alpha-2 adrenoreceptor antagonist yo-
himbine, given to participants directly after fear acquisition, leads to elevated electrocortical and cardiovascular threat responses 
24 hours later. Heightened fear recall (for yohimbine) was indicated by potentiated amplitudes of the N170 and LPP event-related 
brain potentials (electroencephalography) and by elevated fear-conditioned bradycardia (electrocardiography). Our data suggest 
that yohimbine may provide a striking laboratory model to elucidate neural mechanisms in the etiology of clinical fear.
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exposure therapy. Our study aims to elucidate (1) how yohim-
bine differentially affects fear consolidation and extinction 
learning, (2) which brain correlates underlie these mechanisms, 
and (3) whether the effects of yohimbine are driven specifically 
by noradrenergic stimulation.

METHODS

Participants

We recruited 55 healthy male students who were then randomly 
assigned to the 3 above-mentioned groups (exclusion criteria 
in Supplement A). One participant did not complete the study. 
Three participants were excluded because they fulfilled our cri-
terion of “unlikely explicit contingency awareness” (i.e., higher 
awareness ratings for CS− than CS+ after acquisition, as defined 
by Sperl et  al., 2019). Therefore, the final sample consisted of 
51 participants (n = 17 yohimbine group, n = 16 sulpiride group, 
n = 18 placebo group). We tested males only because yohimbine’s 
neural effects are sex dependent (Schwabe et al., 2013) and es-
trogen levels modulate fear and extinction recall (Merz et  al., 
2018; Bierwirth et al., 2021). The study protocol was approved by 
the ethics committee of the German Psychological Society.

Experimental Paradigm

Participants underwent a well-established 2-day fear condi-
tioning/extinction paradigm (Mueller et al., 2014b) with acqui-
sition and extinction stages on day 1 and a recall test on day 
2 (Figure 1A). During acquisition, 2 CS+ (CS+E [extinguished 
CS+] and CS+N [non-extinguished CS+]) and 2 CS− (CS−E [extin-
guished CS−] and CS−N [non-extinguished CS−]) were presented 
60 times. Neutral faces (Ekman and Friesen, 1976) served as CSs 
(Supplement B). In differential fear conditioning paradigms, CS+ 
describes a CS that is paired with an aversive unconditioned 
stimulus (US). The CS− serves as a control stimulus that is never 
paired with the US. Both CS+ co-terminated with a white noise 
US (Sperl et  al., 2016) at a partial reinforcement rate of 50%. 
Three hours after acquisition, participants began extinction 
training. One of the 2 CS+ (CS+E) and 1 of the 2 CS− (CS−E) were 
presented 40 times each in random order to extinguish threat 
responses to the CS+E. The other 2 CSs (CS+N and CS−N) and 
the US were not presented during extinction to leave learned re-
sponses to CS+N and CS−N fully intact. A novel face was shown 
20 times to maintain some variability of stimuli.

Between acquisition and extinction, participants received (in 
a double-blind manner) an oral dose of either yohimbine hydro-
chloride (10 mg), sulpiride (200 mg), or a placebo. Yohimbine (45–
75 minutes) and sulpiride (3–4 hours) vary in the time they take 
to reach peak plasma concentrations (Supplement C). To ensure 
peak plasma levels at a similar time prior to extinction, each 
participant ingested 2 capsules (Figure 1B). We assessed salivary 
α-amylase activity (sAA; Supplement D) to confirm yohimbine’s 
successful influence on central NE (Ehlert et al., 2006; Nater and 
Rohleder, 2009; Ditzen et al., 2014).

During a recall test approximately 26 hours after extinction, 
all stimuli (CS+E, CS+N, CS−E, CS−N) were presented 60 times 
each without any US presentation. By computing differen-
tial responses for extinguished (CS+/−E) and non-extinguished 
(CS+/−N) stimuli separately, extinction recall could be distin-
guished from fear recall on day 2.  Participants were asked to 
rate each CS with regard to its associated arousal, valence, and 
perceived CS–US contingency (Supplement B).

Physiological Data

Peripheral physiological data (skin conductance and electrocar-
diogram) were collected during all stages. Participants received 
yohimbine, sulpiride, or a placebo between acquisition and ex-
tinction. We were interested specifically in the pharmacological 
influences on neural threat signatures during subsequent ex-
tinction and fear/extinction recall 26 hours later. Hence, in add-
ition to peripheral measures, we recorded EEG (64 channels) 
during the day 1 extinction and day 2 recall stages.

Recording and preprocessing details are described in 
Supplement E. Skin conductance response (SCR) scores 
(amplitude-sum within 1–5 seconds after CS onset) were calcu-
lated. To capture CS-evoked cardiac deceleration (Thigpen et al., 
2017; Panitz et al., 2018), the mean heart period change from 2 to 
5 seconds after CS onset was extracted. EEG data were high-pass 
(0.1 Hz) and notch-filtered (50 ± 2.5 Hz), corrected using in-
dependent component analysis (ocular artifacts), manually 
screened, and low-pass filtered (30 Hz). Afterward, we quantified 
N170 (145–185 milliseconds at left/right occipito-temporal elec-
trodes T7/8, TP7/8, TP9/10, P7/8, PO9/10) and LPP (400–800 milli-
seconds at parieto-occipital electrodes P1, Pz, P2, PO3, POz, PO4, 
O1, Oz, O2) amplitudes (Supplement E).

Statistical Analyses

Statistical tests were performed using SPSS 28 (IBM, Armonk, 
NY, USA), and P ≤ .05 (2-sided) was required to reach significance. 
Each experimental phase (day 1 acquisition, day 1 extinction, 
and day 2 recall test) was analyzed separately.
Affective CS Ratings and Peripheral Physiology—We expected 
higher ratings of arousal and negative valence after fear acqui-
sition for both CS+ (CS+E, CS+N) compared with both CS− (CS−E, 
CS−N), which was assessed by contingency (CS+, CS−) × later ex-
tinction status (E = extinguished, N = not extinguished) × group 
(yohimbine, sulpiride, placebo) ANOVAs. At the peripheral 
physiological level, successful fear conditioning should be ac-
companied by higher SCRs (Mueller et  al., 2014b) and relative 
cardiac deceleration (“fear-conditioned bradycardia”; Panitz 
et al., 2015) for both CS+ (CS+E, CS+N) compared with both CS− 
(CS−E, CS−N). For extinction, we computed contingency (CS+E, 
CS−E) × time (affective CS ratings: before/after extinction; skin 
conductance and heart period: first/last 10 trials) × group (yo-
himbine, sulpiride, placebo) ANOVAs because we expected a de-
crease of conditioned (CS+E vs CS−E) responses (Jentsch et al., 
2020; Seligowski et al., 2020). At the beginning of the day 2 re-
call, contingency × extinction status × group ANOVAs were car-
ried out. Successful fear and extinction recall on day 2 would 
be evident from larger affective and physiological responses for 
CS+N compared with CS−N, while responses following CS+E and 
CS−E should be similar. To achieve a sufficient signal-to-noise 
ratio for EEG recordings (Huffmeijer et al., 2014), we presented 
many CS trials during the day 2 recall stage (60 trials per CS 
type). Because of a rapid habituation of fear-conditioned SCRs 
(Sperl et al., 2019) and bradycardia (Panitz et al., 2018), peripheral 
measures of fear and extinction recall on day 2 were assessed 
during the first 10 trials.
Electroencephalography—As described above, we quantified N170 
and LPP amplitudes, which are sensitive to the strength of con-
ditioned threat (Camfield et al., 2016; Bacigalupo and Luck, 2018; 
Sperl et al., 2021). With regard to N170, an ANOVA including the 
within-participant factors contingency (CS+, CS−) × hemisphere 
(left, right) × electrode (T7/8, TP7/8, TP9/10, P7/8, PO9/10) and 
the between-participants factor group (yohimbine, sulpiride, 
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Figure 1. Experimental fear conditioning and extinction paradigm used in the present study. (A) Stimulus types and number of presentations during the 3 experimental phases. 

During acquisition training on the first day, 2 conditioned stimuli (2 CS+: “extinguished” [CS+E] and “non-extinguished” [CS+N]) were reinforced with (“w/”) an aversive un-

conditioned stimulus (US), which consisted of an unpleasant white noise burst (contingency of 50%). Conversely, 2 other conditioned stimuli (2 CS−: CS−E and CS−N) were not 

paired with the US (“w/o”). Afterward, participants underwent extinction training, during which only 1 CS+ (CS+E) and 1 CS− (CS−E) were shown. The CS+N and CS−N were not 

presented during extinction training. A novel face (“dummy stimulus”) was shown to maintain some variability of stimuli. On the second day, all stimuli were presented during 

a recall test without US presentation. To identify effects specific to fear vs extinction recall, we compared differential responses for non-extinguished stimuli (CS+N minus CS−N) 

with differential responses for extinguished stimuli (CS+E minus CS−E). Electrocardiogram (ECG) and electrodermal activity (EDA) were assessed during all stages. In addition to 

these peripheral measures, we recorded an electroencephalogram (EEG) during the day 1 extinction and day 2 recall stages. (B) Pharmacological challenge. Between fear acqui-

sition and extinction stages, participants received an oral dose of either 10 mg of yohimbine hydrochloride (YOH, n = 17), 200 mg of sulpiride (SUL, n = 16), or a placebo pill (PLA, 

n = 18). All participants were tested at the same time of day to control for effects of circadian rhythms. Note that both substances (yohimbine and sulpiride) differ in the time they 

take to reach peak plasma concentration. Thus, sulpiride was administered at 9:40 am (= t1) and yohimbine at 11:55 am (= t2) to ensure that participants from both experimental 

groups reached peak plasma levels at a similar point. To guarantee successful blinding for experimenters and participants, each participant received 2 capsules. Participants in 

the sulpiride group received the active substance sulpiride 3 hours prior to extinction at t1 and a placebo pill at t2. Participants in the yohimbine group received yohimbine 45 

minutes prior to extinction at t2 and a placebo pill at t1. For participants in the placebo group, both capsules contained placebo pills. All participants received a standardized light 

breakfast (water and 1–2 bread rolls with jam, hazelnut cocoa spread, cheese, or sausage) between the 2 capsules.
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placebo) was computed for day 1 extinction. To analyze LPP 
during extinction, we performed a contingency (CS+, CS−) × elec-
trode (P1, Pz, P2, PO3, POz, PO4, O1, Oz, O2) × group (yohimbine, 
sulpiride, placebo) ANOVA. The N170 and LPP ANOVAs for day 2 
fear/extinction recall included the additional within-participant 
factor extinction status (E, N).

Significant effects of mixed-model ANOVAs (including 
the between-participants factor group and several within-
participant factors, as described above) were further ana-
lyzed using follow-up ANOVAs and t tests within groups. The 
Greenhouse-Geisser (1959) adjustment was used to correct for 
violations of sphericity.

Data and Code Availability

Deidentified data along with a code-book and analysis scripts 
are posted at https://doi.org/10.5281/zenodo.6833565.

RESULTS

Manipulation Check Drug Administration: Salivary 
α-Amylase

Yohimbine administration (vs placebo) increased sAA activity 
(Figure 2) directly before (t(32) = 2.34, P = .026) and after extinc-
tion (t(32) = 2.26, P = .032), confirming the successful manipulation 
of NE release. There was no difference between groups before 

ingestion of the first capsule (P = .820) and before day 2 recall 
(P = .871). Sulpiride did not significantly elevate sAA activity (at 
all time points Ps ≥ .147).

Day 1 Fear Acquisition

Affective CS ratings and peripheral physiological responses con-
firmed successful fear conditioning (see Supplement G for details). 
The 2 CS+ (CS+E and CS+N), relative to the 2 CS− (CS−E and CS−N), 
evoked larger SCRs (contingency main effect, F(1,48) = 15.87, P < .001) 
and stronger cardiac deceleration (“fear-conditioned brady-
cardia”; F(1,47) = 44.94, P < .001) and were assessed as significantly 
more arousing (F(1,48) = 27.36, P < .001) and unpleasant (F(1,48) = 23.46, 
P < .001).

Day 1 Fear Extinction

The contingency × time × group ANOVAs on CS arousal ratings 
and CS-evoked SCRs revealed significant contingency main ef-
fects. Specifically, the CS+E was still rated as significantly more 
arousing than CS−E (F(1,48) = 20,89, P < .001) and generated elevated 
SCRs (F(1,48) = 4.09, P = .049). ANOVAs on valence ratings, heart 
period, and N170/LPP did not yield significant effects involving 
contingency (Ps ≥ .081).

During extinction, we did not observe significant interactions 
with the group factor (Ps ≥ .081). This finding is in keeping with 
previous studies suggesting that yohimbine affects mainly con-
solidation processes (Soeter and Kindt, 2011, 2012), which occur 
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Figure 2. Between fear acquisition and extinction stages, participants received an oral dose of either 200 mg of sulpiride (SUL at t1; n = 16), 10 mg of yohimbine hydro-

chloride (YOH at t2; n = 17), or a placebo pill (n = 18). Salivary α-amylase activity (sAA) was assessed to confirm the successful influence of yohimbine on central nor-

adrenaline (NE) release. Saliva samples were collected by using the passive drool method on both days at several time points (day 1: 9:30 am, 11:30 am, 11:57 am, 12:07 

pm, 12:17 pm, 12:27 pm, 12:37 pm, 1:15 pm, and 2:15 pm; day 2: 3:00 pm). Compared with the placebo, yohimbine administration was associated with significantly elevated 

sAA activity directly before (12:37 pm) and after (1:15 pm) extinction training. Mean (± between-participants SEM) sAA activity values are displayed. All participants were 

tested at the same time of day to control for effects of circadian rhythms. *P ≤ .05.
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Figure 3. Fear-conditioned bradycardia (mean heart period change 2–5 seconds after the onset of conditioned stimuli [CS]) during day 2 recall. (A) The ANOVA for 

CS-evoked heart period changes revealed a significant contingency × extinction status × group interaction. Only the yohimbine group showed stronger cardiac decel-

eration for the non-extinguished CS+N compared with CS−N, indicating enhanced recall of fear-conditioned bradycardia. Mean (± within-participant SEM, adjusted 

within each group; O’Brien and Cousineau, 2014) heart period changes after CS onset are displayed. (B) The waveform of CS-evoked heart period changes is shown for 

extinguished (CS+E, CS−E; upper panels) and non-extinguished (CS+N, CS−N; lower panels) stimuli, separately for the yohimbine (n = 17; left panels), sulpiride (n = 16; 

middle panels), and placebo groups (n = 18; right panels). The time series of the interbeat interval was segmented into epochs ranging from –1 to 8 seconds relative 

to the CS onset, baseline corrected (1 second pre-CS), and averaged across trials for each CS type. Gray-shaded areas indicate time windows for statistical analyses.
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contingency × extinction status × hemisphere × electrode × group interaction. Only the yohimbine group showed significantly larger (i.e., more negative) N170 amplitudes 

for the non-extinguished CS+N compared with CS−N, and effects were restricted to the electrodes TP10, P8, and PO10 over the right hemisphere. To illustrate (A) mean 
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Figure 5. Late positive potential (LPP) component evoked by conditioned stimuli (CS) during day 2 recall. The ANOVA on mean amplitudes (400–800 milliseconds 

post-CS) yielded a significant contingency  ×  extinction status  ×  group interaction. Only the yohimbine group showed significantly larger (i.e., more positive) LPP amp-

litudes for the non-extinguished CS+N compared with CS−N. As there was no significant interaction with the electrode factor, all parieto-occipital electrodes (P1, Pz, 

P2, PO3, POz, PO4, O1, Oz, and O2) were averaged to illustrate (A) mean voltage changes (± within-participant SEM, adjusted within each group; O’Brien and Cousineau, 

2014) and (B) event-related potential (ERP) waveforms. The electroencephalogram was referenced to the average of TP9 and TP10 (mastoids), which is consistent with 

the majority of LPP studies (Hajcak et al., 2012; Hajcak and Foti, 2020). The mastoid reference allows emotion-related LPP modulations to be better highlighted (Hajcak 
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predominantly during sleep (Pace-Schott et al., 2015); therefore, 
yohimbine effects would be expected especially on day 2.

Day 2 Recall: Affective Ratings and Peripheral 
Physiological Data

The contingency × extinction status × group ANOVA for arousal 
ratings at the beginning of day 2 recall showed a significant con-
tingency main effect (F(1,48) = 25.74, P < .001). Both CS+E and CS+N 
were rated as significantly more arousing compared with CS−E 
and CS−N. Likewise, we observed elevated SCRs for both CS+ 
compared with both CS− (contingency main effect, F(1,48) = 8.79, 
P = .005). The ANOVA on valence ratings did not yield any signifi-
cant effects (Ps ≥ .159). Contrary to our hypotheses, there were 
no significant interactions with the extinction status or group 
factors (Ps ≥ .215) for affective ratings and SCRs.

The ANOVA on heart period data (Figure 3), however, re-
vealed a significant contingency × extinction status × group 
interaction (F(2,48) = 4.27, P = .020, η2p =.151). To further assess the 
influence of the pharmacological manipulation on fear/extinc-
tion recall, we ran separate follow-up contingency × extinction 
status ANOVAs for each of the 3 groups. In contrast to prior 
studies (Panitz et  al., 2015, 2018), we observed no significant 
main effects or interactions within the placebo (Ps ≥ .261) and 
sulpiride (Ps ≥ .370) groups; this indicates an absence of fear re-
call. Importantly, only the yohimbine group showed a significant 
contingency × extinction status interaction (F(1,16) = 4.70, P = .046, 
η2p = .227). For the yohimbine group, differential fear responses 
were significantly greater for non-extinguished vs extinguished 
stimuli. In particular, the non-extinguished CS+N was associ-
ated with stronger cardiac deceleration than the CS−N (t(16) = 2.68, 
P = .016), reflecting successful fear recall. Conversely, there was 
no difference in the cardiac deceleration response between the 
extinguished CS+E and CS−E (t(16) = −0.17, P = .870). In conclusion, 
yohimbine administration on day 1 was associated with en-
hanced recall of fear-conditioned bradycardia on day 2.

Day 2 Recall: Electroencephalographic Data

N170—EEG responses closely mirrored the influence of yohim-
bine on fear-conditioned bradycardia. The ANOVA on N170 amp-
litudes (Figure 4) revealed a significant contingency × extinction 
status × hemisphere × electrode × group interaction (F(8,192) = 2.60, 
P = .016, η2p  = .098). Unexpectedly (but in line with our heart 
period data), follow-up contingency × extinction status × hemi-
sphere × electrode ANOVAs for the placebo and sulpiride groups 
did not reach significance (with the exception of electrode main 
effects, Ps ≤ .001). However, in the yohimbine group, we observed 
a significant contingency × extinction status × hemisphere × 
electrode interaction (F(4,64) = 5.30, P < .001, η2p  = .249). Convergent 
with prior observations that N170 responses are usually more 
pronounced in the right brain hemisphere (Eimer, 2011; Rossion 
and Jacques, 2012), significant contingency × extinction status 
interactions were confirmed at 3 right hemispheric electrodes: 
TP10 (P = .013), P8 (P = .006), and PO10 (P = .040). The N170 ampli-
tude was significantly larger (more negative) for the CS+N com-
pared with CS−N (TP10: P = .033; P8: P = .008; PO10: P = .020). In 
contrast, there was no difference between the CS+E and CS−E 
(TP10: P = .517; P8: P = .496; PO10: P = .774).
LPP—For the LPP period (Figure 5), the ANOVA showed a sig-
nificant contingency × extinction status × group interaction 
(F(2,48) = 3.43, P = .041, η2p  = .125). Follow-up ANOVAs for the placebo 
and sulpiride groups indicated significant electrode main effects 
(Ps ≤ .024) but no further main effects or interactions (Ps ≥ .198). 
Only the ANOVA for the yohimbine group revealed a significant 
contingency × extinction status interaction (F(1,16) = 4.61, P = .047, 

η2p = .224); this complemented our N170 results. We observed 
larger LPP amplitudes for CS+N compared with CS−N (t(16) = 3.15, 
P = .006) within the yohimbine group. Conversely, there was no 
significant difference between LPP responses following CS+E 
and CS−E (t(16) = 1.25, P = .229).

Discussion

Noradrenergic hyperactivity plays a pivotal role in fear-related 
disorders (Krystal and Neumeister, 2009; LaLumiere et al., 2017; 
Giustino and Maren, 2018). Our primary goal was to elucidate 
NE effects on brain correlates of fear and extinction consolida-
tion. Between conditioning and extinction, participants received 
either the α2-adrenoreceptor antagonist yohimbine (which leads 
to increased noradrenergic stimulation), the D2-receptor antag-
onist sulpiride (at low dose, which is thought to increase dopa-
minergic transmission), or a placebo. Sulpiride was added to 
exclude the possibility that yohimbine effects might be driven 
by DA because yohimbine (besides causing marked NE actions) 
also shows considerable affinity at D2-receptors (Scatton et al., 
1980; Millan et al., 2000). The next day, we assessed peripheral 
and neural responses associated with fear and extinction recall. 
Notably, post-conditioning noradrenergic—but not dopamin-
ergic—stimulation facilitated fear recall 1  day later, as mani-
fested by fear-conditioned bradycardia and larger N170 and LPP 
amplitudes.

During day 2 recall, we compared differential responses to 
non-extinguished (CS+N minus CS−N) with extinguished (CS+E 
minus CS−E) stimuli to identify effects specific to fear vs ex-
tinction recall. Importantly, only participants who received 
yohimbine showed relative cardiac deceleration (bradycardia) 
for stimuli that had been fear conditioned and not extin-
guished (CS+N compared with CS−N). No effects for this con-
trast emerged for the placebo and sulpiride groups. Responses 
after extinguished CS+E were similar to CS−E in each of the 3 
groups. Together, these results indicate that yohimbine select-
ively strengthened fear consolidation, resulting in robust fear 
recall on the second day.

Remarkably, neural responses during day 2 closely resembled 
the effects we observed on fear-conditioned bradycardia. Only 
participants in the yohimbine group showed significantly larger 
(more negative) amplitudes of the face-sensitive N170 compo-
nent for the non-extinguished CS+N compared with CS−N, re-
flecting fear recall. This effect was absent in the sulpiride and 
placebo groups. The N170 component is a mid-latency, negative-
going event-related potential component maximal over occipito-
temporal scalp regions, which is particularly large in response 
to fear-conditioned (Pizzagalli et  al., 2003; Dolan et  al., 2006; 
Steinberg et  al., 2012; Levita et  al., 2015; Camfield et  al., 2016; 
Mueller and Pizzagalli, 2016; Sperl et al., 2021) faces (Eimer, 2011; 
Schweinberger, 2011; Rossion and Jacques, 2012). Under the as-
sumption that the N170 component is sensitive to variations in 
attention allocation (Eimer, 2000, 2018), elevated fear recall in the 
yohimbine group may thus indicate enhanced recruitment of 
attentional resources to faces that have been fear conditioned, 
consolidated under high levels of noradrenergic arousal, and 
not extinguished on the previous day. Interestingly, we observed 
larger N170 amplitudes for CS+N vs CS−N only at sensors over 
the right hemisphere, converging with the lateralization effects 
reported in previous fear-conditioning studies (Pizzagalli et al., 
2003; Levita et al., 2015; but see Camfield et al., 2016). N170 ampli-
tudes are typically larger over the right hemisphere (Eimer, 2011; 
Rossion and Jacques, 2012). This accords with the hypothesis of 
a right hemispheric advantage in face (Frässle et al., 2016) and 
danger-related emotion processing (Gainotti, 2019).
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Like N170 effects, LPP amplitudes were enhanced for the 
CS+N vs CS−N, specifically in the yohimbine group. There was no 
significant difference between CS+N and CS−N in the sulpiride 
and placebo groups. The LPP is a late-latency parieto-occipital 
positivity (Hajcak et al., 2012, 2018), indicating sustained atten-
tion and elaborated neural processing (Wieser and Keil, 2020) 
due to stimulus significance (Hajcak and Foti, 2020). It is reliably 
elevated in response to fear-conditioned stimuli (Panitz et  al., 
2015; Bacigalupo and Luck, 2018; Seligowski et  al., 2018; Stolz 
et al., 2019; Sperl et al., 2021) and is even sensitive to NE-related 
genetic influences on fear conditioning (Javanbakht and Poe, 
2016; Panitz et  al., 2018). LPP activity appears to be generated 
through the locus coeruleus NE system, which potentiates re-
sponding to arousing and motivationally significant stimuli 
(Nieuwenhuis et al., 2005; Hajcak et al., 2010; Hajcak and Foti, 
2020). Collectively, our findings suggest that the administration 
of yohimbine strengthens neural signatures of conditioned fear 
that are linked to motivational NE circuits in the brain.

In contrast to some studies reporting threat responses with 
regard to N170 and LPP (Camfield et  al., 2016; Bacigalupo and 
Luck, 2018; Sperl et al., 2021), we did not find N170/LPP threat 
modulations on day 2 in the placebo group. However, this ob-
servation is in line with previous studies that have applied very 
similar 2-day conditioning paradigms. In 2 prior datasets (Panitz 
et al., 2015; Muench et al., 2016), for example, we were unable 
to detect reliable conditioning effects on N170 or LPP ampli-
tudes on the second day. In another study (Panitz et al., 2018), 
LPP amplitudes and fear-conditioned bradycardia on day 2 were 
elevated for CS+N compared with CS−N, but only in individuals 
of the Val/Val genotype of the COMT Val158Met polymorphism. 
Taken together, these findings suggest that robust threat re-
sponses can only be observed on day 2 after sufficient fear con-
solidation (e.g., as induced through NE release).

Regarding extinction recall, heart period, N170, and LPP re-
sponses did not differ between the CS+E and CS−E in any of the 3 
groups. The lack of yohimbine effects on extinction learning adds 
to the considerable heterogeneity of findings from animal (Morris 
and Bouton, 2007; Holmes and Quirk, 2010) and human (Powers 
et al., 2009; Meyerbroeker et al., 2012, 2018; Smits et al., 2014; Tuerk 
et al., 2018) studies. While there is converging evidence that NE 
strengthens fear consolidation, it has been discussed that NE may 
have bidirectional (i.e., facilitating and inhibiting) effects on ex-
tinction (Giustino and Maren, 2018; Likhtik and Johansen, 2019; 
Giustino et al., 2020). Nevertheless, we may speculate as to why 
we did not observe yohimbine effects on extinction. Specifically, 
animal research suggests that yohimbine leads to faster fear 
extinction, that is, fewer trials are needed for successful fear re-
duction (Cain et al., 2004). We used a relatively high number of 
extinction trials to ensure a sufficient signal-to-noise ratio for the 
event-related potential computation (Huffmeijer et al., 2014). This 
may have resulted in a ceiling effect, so there may have been little 
left to be augmented by yohimbine (Meyerbroeker et  al., 2018). 
Furthermore, in contrast with typical animal paradigms (Holmes 
and Quirk, 2010), acquisition and extinction took place on the 
same day. A  longer interval between both experimental stages 
might be required to allow for sufficient fear memory consolida-
tion before extinction (Maren, 2014; Dudai et al., 2015).

As discussed earlier, the pharmacology of yohimbine includes 
noradrenergic but also dopaminergic effects (Scatton et al., 1980; 
Millan et al., 2000; Holmes and Quirk, 2010). After yohimbine in-
take, sAA activity increased and was significantly larger relative to 
the placebo group, reflecting elevated release of central NE (Ehlert 
et al., 2006; Nater and Rohleder, 2009; Ditzen et al., 2014). To dis-
entangle putative NE and DA effects of yohimbine, another group 
received the DA D2-receptor antagonist sulpiride. The absence 

of sulpiride effects, together with elevated sAA activity for the 
yohimbine group, suggests that yohimbine facilitated fear con-
solidation presumably through heightened NE release. By using 
sulpiride, we tried to mimic the effect of an increase in brain 
DA levels without the noradrenergic component of yohimbine. 
Nevertheless, we cannot exclude the possibility that concomitant 
facilitation of noradrenergic and dopaminergic release might be 
necessary to achieve the effect of yohimbine on fear consolida-
tion. To rule out this alternative explanation, it would be necessary 
to include another experimental group, which receives a joint ad-
ministration of yohimbine combined with a broad DA-receptor an-
tagonist. In line with these interpretations, rodent studies showed 
that the combined DA and NE reuptake-blocker methylphenidate 
facilitates fear acquisition (Carmack et al., 2014b) and extinction 
(Abraham et al., 2012), but effects seem to depend on the chosen 
dose (Carmack et al., 2014a, 2014b). Haaker et al. (2013) demon-
strated that administration of the DA precursor L-DOPA after fear 
extinction reduces the return of fear in both mice and humans. 
Together, these findings support the hypothesis that DA does in-
deed modulate fear learning, but dose and time of drug adminis-
tration (e.g., before/after extinction) may be relevant. Sulpiride has 
been reported to facilitate extinction learning in mice (Ponnusamy 
et al., 2005), but another study has found attenuated fear extinc-
tion after sulpiride injection into the rat amygdala (Shi et al., 2017). 
These divergent findings (Ponnusamy et al., 2005; Yim et al., 2009; 
Dubrovina and Zinov’eva, 2010; Mueller et al., 2010; Stockhorst and 
Antov, 2015; Shi et al., 2017) may be explained by a recent study in 
rats suggesting that sulpiride can reduce fear expression but has 
no effect on acquisition/extinction learning (de Vita et al., 2021). 
Furthermore, depending on the chosen dose, sulpiride can lead 
to opposing effects due to pre- vs postsynaptic actions (Holmes 
and Quirk, 2010; Crockett and Fehr, 2014). In the present study, we 
used a relatively low dose of 200 mg, which is assumed to block 
primarily presynaptic autoreceptors, resulting in a net stimulatory 
effect on dopaminergic transmission (Tagliamonte et  al., 1975; 
Mereu et al., 1983; Kuroki et al., 1999). Nevertheless, presynaptic 
and postsynaptic effects of sulpiride are not completely separable. 
In particular, it is not entirely clear where in the brain DA levels 
are increased by oral administration of low-dose sulpiride (Dodds 
et al., 2009; Ford, 2014; Brandão and Coimbra, 2019). Furthermore, 
the effects of sulpiride may vary between individuals depending 
on DA-related personality traits (Mueller et al., 2014a; Wacker and 
Smillie, 2015).

In addition to noradrenergic and dopaminergic actions, yo-
himbine also has significant affinity for serotonergic receptors 
(Millan et al., 2000), which has been largely ignored in the fear-
conditioning literature (Holmes and Quirk, 2010). In the present 
study, we tried to control for dopaminergic mechanisms, but we 
cannot draw any conclusions about serotonergic actions of yo-
himbine. Several studies suggest that, in addition to NE and DA, 
modulations of the serotonergic system affect fear conditioning 
and extinction (Bauer, 2015). In light of the limited specificity of 
yohimbine, future studies should try to replicate our findings 
with a higher affinity and more selective α2-adrenoreceptor an-
tagonist, such as atipamezole or MK-912 (Pettibone et al., 1989; 
Pertovaara et al., 2005; Proudman et al., 2022).

Hypervigilance is a core symptom of PTSD and other fear-
related disorders (Javanbakht and Poe, 2016). It is character-
ized by abnormally elevated arousal and hyperactivity of the 
noradrenergic system (Morris et  al., 2020). Yohimbine experi-
mentally mimics the effects of noradrenergic arousal (Schwabe 
et al., 2013; LaLumiere et al., 2017). The NE system is highly vul-
nerable to sustained and uncontrollable stress, resulting in sen-
sitization and persistent hyperarousal (Krystal and Neumeister, 
2009; Kapfhammer, 2013). These processes lead to enhanced 
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consolidation of emotional memories, which are more robust, 
detailed, vivid, and longer-lasting (Weymar and Hamm, 2013; 
McGaugh, 2013, 2015). Classical conditioning is an etiological 
mechanism, but not everybody who experiences traumatic 
events develops a mental disorder (Beckers et  al., 2013; Duits 
et  al., 2015; De Houwer, 2020). Notably, it has been suggested 
that high arousal levels after traumas play a key role in potenti-
ated consolidation of CS–US associations, ultimately contrib-
uting to the development of pathological fear (Kapfhammer, 
2013; Javanbakht and Poe, 2016). Specifically, higher heart rate 
shortly after a traumatic event has been reported in individuals 
who subsequently developed PTSD (Shalev et al., 1998; Bryant 
et al., 2000), which is consistent with overconsolidated memory 
networks due to heightened arousal (Javanbakht and Poe, 2016; 
Clewett and Murty, 2019; Krenz et  al., 2021). Our data support 
this hypothesis; they demonstrate that noradrenergic hyper-
activity after conditioning boosts fear consolidation. Translating 
this knowledge into clinical practice, this model would suggest 
that keeping arousal levels low in the aftermath of traumatic 
events might be a promising way to prevent later transition to 
PTSD or other fear-related psychopathology (Kapfhammer, 2013; 
Visser et al., 2015). Although our study proposes a notable model 
to stimulate innovative interventions for reducing pathological 
hyperconsolidation (Hoge et al., 2012; Astill Wright et al., 2019), 
clinical studies are needed to evaluate their efficacy.

To control for potential influences of gonadal hormone fluc-
tuations on NE (Bangasser et  al., 2016) and fear conditioning 
(Merz et  al., 2018; Bierwirth et  al., 2021), female participants 
were excluded. However, it is important to keep in mind that 
women are at twofold risk of developing PTSD and other fear-
related disorders (Ramikie and Ressler, 2018; Christiansen and 
Berke, 2020); sex differences in the locus coeruleus NE system 
may explain elevated arousal levels in females (Bangasser et al., 
2016). Further research is needed to clarify whether gonadal 
hormones modulate our findings.

EEG has limited spatial resolution. Its excellent temporal ac-
curacy allowed us to capture yohimbine effects on brief neuro-
physiological processes during N170 and LPP periods, but little is 
known about brain circuits mediating noradrenergic actions in 
humans (Giustino and Maren, 2018). In rats, NE injection into the 
amygdala immediately after fear conditioning causes PTSD-like 
memory (Liu et al., 2019). Projections from the locus coeruleus 
might release NE into the amygdala (Likhtik and Johansen, 
2019), or (vice versa) rapid amygdala processing may initiate 
locus coeruleus responses (Liddell et al., 2005). Although amyg-
dala responses might explain threat-evoked potentiation of the 
N170 (Levita et al., 2015) and LPP (Bunford et al., 2018), electro-
physiological methods have difficulties isolating neural sig-
nals from deep structures (Buzsáki et al., 2012; Keil et al., 2014; 
Jackson and Bolger, 2014). Future studies should combine our 
approach with functional magnetic resonance imaging to clarify 
the localization of underlying brain processes.

In conclusion, NE facilitates fear memory consolidation 
as quantified with cardiac deceleration and brain responses 
during the N170 and LPP time windows. Our results offer im-
portant neural evidence for yohimbine’s noradrenergic effects 
on fear consolidation in humans. Yohimbine provides a striking 
laboratory model to elucidate neural mechanisms in the eti-
ology of clinical fear, which may open up promising paths for 
treatment.

Supplementary Materials

Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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