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Abstract

Electrical signals generated by molecularly-distinct classes of lateral hypothalamus (LH) neurons have distinct
physiological consequences. For example, LH orexin neurons promote net body energy expenditure, while LH
non-orexin neurons [VGAT, melanin-concentrating hormone (MCH)] drive net energy conservation. Appropriate
switching between such physiologically-opposing LH outputs is traditionally thought to require cell-type-specific
chemical modulation of LH firing. However, it was recently found that, in vivo, the LH neurons are also
physiologically exposed to electrical oscillations of different frequency bands. The role of the different physiological
oscillation frequencies in firing of orexin vs non-orexin LH neurons remains unknown. Here, we used brain-slice
whole-cell patch-clamp technology to target precisely-defined oscillation waveforms to individual molecularly-defined
classes LH cells (orexin, VGAT, MCH, GADG65), while measuring the action potential output of the cells. By modulating
the frequency of sinusoidal oscillatory input, we found that high-frequency oscillations (y, ~30-200 Hz) preferentially
silenced the action potential output orexin,  cells. In contrast, low frequencies (8-6, ~0.5-7 Hz) similarly permitted
outputs from different LH cell types. This differential control of orexin and non-orexin cells by oscillation frequency was
mediated by cell-specific, impedance-unrelated resonance mechanisms. These results substantiate electrical oscil-
lations as a novel input modality for cell-type-specific control of LH firing, which offers an unforeseen way to control
specific cell ensembles within this highly heterogeneous neuronal cluster.
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Neurons that emit opposing control signals are physically intermixed in the mammalian hypothalamus. How
to achieve selective control of particular hypothalamic signals remains a fundamental unsolved question in
both basic science and clinical practice. Traditionally, such cell-selective control is only thought to be
possible by chemicals, while electricity is assumed to be too nonselective. We investigated this assumption
by exploring the effects of biologically-relevant electrical oscillations on signals emitted by specific types of
hypothalamic cells. Unexpectedly, some oscillation frequencies switched off certain hypothalamic signals
(orexin signals) while preserving others (non-orexin signals), via a cell-selective resonance mechanism.
KThese findings increase our understanding of how the hypothalamus can be controlled. /

ignificance Statement

Introduction
The lateral hypothalamus (LH) controls states of con-

sciousness, energy balance, and motivated behavior in
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mammals (Saper et al., 2001; Stuber and Wise, 2016).
Several molecularly and physiologically -distinct types of
LH neurons exist. Orexin/hypocretin,,; neurons promote
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generalized (cortical and sympathetic) arousal and net
energy use; their hypoactivity evokes energy conserva-
tion, weight gain, and pathologic intermixing of sleep and
wakefulness, and their hyperactivity is associated with
stress and anxiety (Chemelli et al., 1999; Hara et al., 2001;
Boutrel et al., 2005; Suzuki et al., 2005; Adamantidis et al.,
2007; Sakurai, 2014; Bonnavion et al., 2015). VGAT, 4
neurons promote consumptive behaviors leading to net
energy gain: their hypoactivity reduces body weight, eat-
ing, and arousal; and their hyperactivity promotes over-
eating and hyperarousal (Jennings et al., 2015; Herrera
et al., 2016; Venner et al., 2016). Melanin-concentrating
hormone (MCH, ) neurons promote memory-associated
brain states, suppress locomotion, and promote weight
gain (Shimada et al., 1998; Jego et al., 2013; Whiddon and
Palmiter, 2013). GAD65, ,; neurons, which do not overlap
with the orexin , and MCH, neurons and only partly
overlap with VGAT, cells, are necessary and sufficient
for normal locomotion (Kosse et al., 2017).

Differential control of these physiologically-distinct LH
drives is presumably required for proper physiological
regulation and for avoiding co-occurrence of contradic-
tory drives. This control has been a subject of intense
research, revealing cell-type-specific modulation of the
LH by chemical agents such as nutrients, hormones, neu-
rotransmitters, and gasses (Li et al., 2002; Yamanaka
et al., 2003; van den Pol et al., 2004; Burdakov et al.,
2005; Williams et al., 2007; Karnani et al., 2011; Burdakov
et al., 2013; Karnani et al., 2013). Apart from these chem-
ical signals, many brain regions, including the LH, contain
electrical oscillations (Gray and Singer, 1989; Salinas and
Sejnowski, 2001; Buzsaki and Draguhn, 2004; Carus-
Cadavieco et al., 2017). These oscillations are thought
to control brain states and behaviors in a frequency-
dependent manner, for example, fast oscillations (y fre-
quencies, ~30-200 Hz) orchestrate arousal, memory,
sensory processing, and decision-making (Cardin et al.,
2009; Colgin et al.,, 2009; Buzsaki and Wang, 2012;
Yamamoto et al., 2014). In the LH, vy oscillations, con-
trolled in part by inputs from the lateral septum, were
recently found to be associated with food approach be-
havior, and differentially affect subthreshold membrane
potential of MCH, ; and VGAT,  cells (Carus-Cadavieco
et al., 2017). However, it remains unknown whether dif-
ferent oscillations frequencies differentially modulate the
physiologic output (action potential firing rate) of orexin
Versus non-orexin neurons.

Oscillations shape the synaptic inputs onto individual
neurons, which collectively results in sinusoidal oscilla-
tions of current input at varying frequencies in neurons
recorded intracellularly in vivo (Leung and Yim, 1986;
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Soltesz and Deschénes, 1993). Neurons control long-
range targets by action potentials fired in response to the
input signals. Understanding how the firing rates of
molecularly-defined LH neurons respond to oscillatory
input currents may thus reveal a new dimension of LH
output tuning and input-output information transfer. Using
experimental paradigms established for studying the ef-
fects of oscillations on neuronal firing in other brain re-
gions (Pike et al., 2000), here we explored how the firing of
individual, molecularly-defined LH neurons is modulated
by the frequency of oscillatory current inputs.

Materials and Methods

Identification of molecularly-distinct cell classes by
transgenic labeling

All procedures followed United Kingdom Home Office
regulations and were approved by local welfare commit-
tees. Adult male and female mice (at least eight weeks
old) were kept on a standard 12/12 h light/dark cycle and
on standard mouse chow and water ad libitum. Mice were
anaesthetized with isoflurane and injected with Meloxi-
cam (2 mg/kg bodyweight, s.c.) for analgesia. After plac-
ing into a stereotaxic frame (David Kopf Instruments), a
craniotomy was performed and a borosilicate glass pi-
pette was used to inject viral vectors into the LH bilaterally
with pressure (coordinates AP/DV/ML = —1.3/-5.15 to
—5.25/1.0, —1.0 mm; infusion speed = 75 nl/min, injec-
tion volume 75 nl). Mice were allowed to recover for at
least two weeks after surgery while single housed. To
study LH MCH cells, we labeled them with mCherry by
injecting into the LH a lentiviral vector specifically ex-
pressing mCherry in MCH neurons VSVG.HIV.MCH.m-
Cherry(p2428) (3.16 x 10" gc/ml, vector described and
validated in Apergis-Schoute et al., 2015). To study LH
orexin neurons, we used either the previously character-
ised and validated orexin-eGFP mice (Burdakov et al.,
2006), or labeled LH orexin cells by injecting into the LH
an orexin promoter-dependent adeno-associated vector
specifically expressing GCaMP6s in orexin cells (AAV1.hORX.
GCaMP6s.hGH, 2.53 x 1072 gc/ml, vector described
and validated in Gonzélez et al., 2016). To study LH VGAT
or GADG5 cells, we used GAD65-GFP mice (Karnani et al.,
2013) crossed with VGAT-Ires-Cre mice (Vong et al.,
2011) and CAG-tdTomato mice (Madisen et al., 2010);
and made recordings from GFP(+)/tdTomato(-) or GFP(-
)/tdTomato(+) cells that corresponded to GADG65(+)/
VGAT(-) and VGAT(+)/GADG65(-) cells, respectively (Kosse
et al., 2017).

Chemicals and solutions

For brain slice recordings, artificial CSF (ACSF) and
ice-cold slicing solution were gassed with 95% O, and
5% CO,, and contained the following ACSF: 125 mM
NaCl, 2.5 mM KCI, 1 mM MgCl,, 2 mM CaCl,, 1.2 mM
NaH,PO,, 21 mM NaHCO;, 2 mM D-(+)-glucose, 0.1
mM Na+-pyruvate, and 0.4 mM ascorbic acid. Slicing
solution: 2.5 mM KCI, 1.3 mM NaH,PO.H,0, 26.0 mM
NaHCOg, 213.3 mM sucrose, 10.0 mM D-(+)-glucose, 2.0
mM MgCl,, and 2.0 mM CaCl,. For standard whole-cell
recordings, pipettes were filled with intracellular solution
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Table 1. Passive electrical properties of neurons analyzed in this study
MCH Orexin GAD65 VGAT
Membrane resistance (M(}) 474.8571 = 54.2614, 463.0385 = 56.76324, 619.2471 + 49.09955, 724.4438 = 92.54686,
=14 n=13 n=17 =16
Membrane time constant (ms) 40.60857 * 6.530006, 43.24915 * 7.335909, 32.42376 + 4.217719, 32.54188 = 3.505608,
n=14 n=13 n =17 n=16

containing the following: 120 mM K-gluconate, 10 mM
KCI, 10 mM HEPES, 0.1 mM EGTA, 4 mM K,ATP, 2 mM
Na,ATP, 0.3 mM Na,GTP, and 2 mM MgCl,, pH 7.3 with
KOH. All chemicals were from Sigma or Tocris Biosci-
ence.

Acquisition and analysis of electrophysiological data

Standard whole-cell slice patch-clamp recordings were
conducted as described in detail in our previous studies
(Schone et al., 2014). Briefly, LH slices were prepared at
least two weeks after the virus injection. After gluing a
block of brain with cyanoacrylate glue to the stage of a
Campden Vibroslice, coronal brain slices (250-um thick-
ness) containing the LH were cut while immersed in ice-
cold slicing solution. Slices were incubated for 1 h in

ACSF at 35°C, then transferred to a submerged-type
recording chamber. Living neurons containing fluorescent
markers were visualized in acute brain slices with an
upright Olympus BX61WI microscope equipped with an
oblique condenser and appropriate fluorescence filters.
Data were acquired with HEKA Patchmaster and analyzed
with HEKA Fitmaster, GraphPad Prism and Matlab.

To determine the frequency preference for action po-
tential firing, a protocol of 5-s-long sinusoidal currents at
the following fixed frequencies was applied: 0.5, 1, 2, 3, 5,
7,10, 15, 20, 30, 50, 70, 100, and 200 Hz. A minimum of
20-s stable baseline recording was obtained before the
sinusoidal stimulations, and the stimulations were applied
with an interval of 5 s. Membrane time constants (7) were
calculated from fitting a single exponential function to the
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Figure 1. A, Overview of experimental strategy. Cell types were genetically tagged with a fluorophore to target patch-clamp
recordings. During whole-cell recordings, 5-s-long oscillatory current at fixed frequencies were injected into the cells to obtain an
action potential output corresponding to each frequency. B, Individual example raw traces of single cells of the investigated cell types

at three different input frequencies.
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Figure 2. Effects of input oscillation frequency on LH cell population firing rates (spike output, red) and impedances (blue). Bandwidth
bars (purple) denote oscillation frequencies at which there was significant (non-zero) spike output (calculated by one-sample t tests
and corrected for multiple comparisons by controlling the false discovery rate, see Materials and Methods). Values are mean = SEM.
Cell numbers for MCH, orexin, GAD65, and VGAT neurons are 14, 13, 17, and 16, respectively.

initial part of a voltage response to a small hyperpolarising
current pulse, and input resistances (R;) were derived from
Ohm'’s law by fitting a linear function to the current—volt-
age relationship of voltage responses to hyperpolarising
current pulses (Table 1). From these values, the input
frequency (f) dependence of membrane impedance (2)
was calculated as follows (based on Gutfreund et al.,
1995; Pike et al., 2000):

1zl = R, Vi2@af? + 1)

Experimental design and statistical analysis

Cells were randomly recorded throughout the anatomic
extent of the LH, by choosing fluorescent neurons using
an objective that blinded the experimenter to intra-LH
location of the cell due to its small field of view (a high-
magnification 40X objective). After recording, the intra-LH
locations of recorded neurons were confirmed using a
large-field (low magnification) objective. Statistical tests
and descriptive statistics were performed as stated in the
figure legends. Before performing parametric tests, data
were assessed for normality with a D’Agostino—Pearson
omnibus test or Kolmogorov-Smirnov test and variances
were assessed for homogeneity with a Brown-Forsythe
test. To compare interactions within data with repeated
measurements, ANOVA was used, and if significant inter-
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actions were found, multiple comparison tests followed.
Normalizations were performed on a single cell basis by
dividing by the largest value obtained per cell. Cells were
deemed active if a paired t test comparing normalized
firing and impedance values was significant after control-
ling for the false discovery rate (which was set to 5%) by
a two-stage step-up method of Benjamini, Krieger, and
Yekutieli. Analysis was performed with GraphPad Prism
and Matlab.

Results

Distinct frequency preferences of molecularly-
distinct LH subnetworks

To explore how different LH neurons respond to oscil-
latory inputs, we selectively targeted fluorescent reporters
to LH orexin, VGAT, MCH, or GADG65 cells (see Materials
and Methods) and recorded the membrane potential re-
sponses of individual genetically-defined LH cells to sinu-
soidal input currents at a broad range of physiological
frequencies (0.5-200 Hz; Fig. 1). To facilitate comparisons
between neurons, and to previous studies of neuronal
responses to oscillations in other brain areas (Pike et al.,
2000), the recordings were performed at the membrane
potentials close to threshold for spike generation. This
was achieved by superposing an oscillatory current on the
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maximum step current that itself did not elicit spikes, and
using a small (20 pA) peak-to-peak sinusoidal current
(based on Pike et al., 2000).

Low input frequencies (=0.5-20 Hz) resulted in robust
spiking activity in all LH neuronal types (Figs. 1, 2). In
contrast, higher frequencies selectively silenced orexin
neurons (cessation of significant firing at inputs above 7
Hz; Fig. 2A), while preserving significant firing in non-orexin
cell types (Fig. 2B-D). These differences in frequency-
preferences of LH neuron firing did not appear to be
related to their maximal firing rates or spike-rate adapta-
tion. Specifically, the firing of non-orexin neurons stayed
relatively invariant across oscillation frequencies, irre-
spective of whether their maximal firing rates were fast
(VGAT, GADBGS5 cells) or slow (MCH cells), and irrespective
of whether their spike-rate adaptation was high (MCH
cells; van den Pol et al., 2004; Burdakov et al., 2005) or
low (GADG65 cells; Karnani et al., 2013). In turn, orexin cell
firing had higher frequency-dependent decay than non-
orexin cell firing, although their initial firing was faster than
MCH cells but slower than VGAT or GAD65 cells (Fig. 2),
and their spike-rate adaptation was lower than that of
MCH cells (Burdakov et al., 2005). Thus, there are distinct
frequency-bandwidths for optimal firing of orexin and
non-orexin LH neurons, which cannot be accounted for
by previously-studied differences in their intrinsic excit-
ability.

These distinct frequency dependencies of firing in
orexin and non-orexin neurons could, in theory, emerge
from distinct frequency dependencies of the passive
membrane impedances (Pike et al., 2000). Higher mem-
brane impedance would produce greater membrane po-
tential fluctuations in response to oscillatory inputs and
thus produce greater membrane excitation and firing (Pike
et al., 2000). To investigate whether such passive mem-
brane resonance could account for the differences in
spike frequency preferences (Fig. 2, red plots), we used
our data to compute impedances of RC equivalent cir-
cuits at each input frequency for individual LH neurons
(Fig. 2, blue plots; see Materials and Methods). Al-
though maximum impedances differed between cell
types (orexin = MCH < GAD65 < VGAT neurons; Fig.
2), all impedances decayed similarly with input oscilla-
tion frequency, and this decay and did not follow the
associated frequency-tuning of firing (Fig. 2, compare
red and blue plots).

To compare the frequency-tuning of firing and imped-
ances between different LH cell types, independently of
differences of absolute values in these parameters, we
normalized each neuron to its own maximal firing and
impedance (Fig. 3; see Materials and Methods). Similar to
raw data (Fig. 2), this revealed that orexin cell firing de-
cayed more steeply with oscillation frequency than that of
non-orexin cells (Fig. 3A; within these normalized data,
the decay was significantly different between orexin and
VGAT or GADG5 cells, but not between orexin and MCH
cells; Fig. 3B). This difference between orexin and VGAT/
GADG65 cells emerged sharply at >7 Hz and persisted at
higher frequencies (Fig. 3B). In contrast, there was an
almost perfect overlap in the frequency dependence of

January/February 2018, 5(1) e0012-18.2018
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Figure 3. A, Effect of input oscillation frequency on LH cell
population spike outputs (same spike data as in Fig. 2, but
normalized to the maximum spike output in each cell, to facilitate
comparisons of oscillation frequency effects between cell classes).
Values are mean = SEM. B, Differences in population spike outputs
across oscillation frequencies. The y-axis shows adjusted p values
of a two-way repeated-measures ANOVA with Tuckey’s multiple
comparison correction, for the four cell types and 14 input
oscillation frequencies (ANOVA: interaction, Fgeg70) = 1.907;
p = 0.0013). C, Effect of input oscillation frequency on LH cell
population membrane impedances (same impedance data as in
Fig. 2, but normalized to the maximum impedance in each cell).
Values are mean = SEM.

normalized membrane impedances in the four LH cell
types (Fig. 3C).
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Figure 4. A, left, Pie charts depicting the percentage of actively-tuned cells (cells whose normalized spike frequency significantly
differs from its normalized impedance magnitude), and passively-tuned cells (cells whose normalized spike frequency did not
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continued

significantly differ from its normalized impedance magnitude). To group neurons into these categories, firing and impedance profiles
of each individual cell were compared using a paired t test with correction for multiple comparisons by controlling the false discovery
rate (two-stage step-up method of Benjamini, Krieger, and Yekutieli). Middle, Examples of individual actively-tuned cells. Right,
Examples of individual passively-tuned cells. B, Activeness of cell populations (statistical difference between normalized spike
frequency and normalized impedance of each cell type, across input oscillation frequencies, n numbers for each cell type are as
indicated in A. The y-axis shows adjusted p-values from paired t tests with correction for multiple comparisons by controlling the false
discovery rate (two-stage step-up method of Benjamini, Krieger, and Yekutiel).

Frequency preference variation of individual cells
within each molecularly-defined subnetwork

We next investigated the differences between the im-
pedance-predicted and experimentally-observed frequ-
ency-tuning of LH cell firing at the level of individual
neurons. Within each molecularly-distinct class, individual
neurons displayed similar frequency-tuning of impedance
(as was the case also between classes; Fig. 3C), but
differed substantially in frequency-tuning of firing (Fig.
4A). As the input oscillation frequency increased, the firing
rate decay mirrored the impedance decay in some cells
(Fig. 4A, typical examples in right column), but strikingly
deviated from impedance in other cells (Fig. 4A, typical
examples in middle column). By quantifying and analyzing
the difference between normalized impedance and firing
in each cell (see Materials and Methods), we estimated,
within each cell type, the percentage of cells that were
tuned passively (i.e. firing tuning similar to impedance
tuning) or actively (firing tuning significantly deviating from
impedance tuning; Fig. 4A, left column). This revealed that
within each cell type, the majority of cells were actively
tuned, but some cell classes contained more “active” cells
than others (MCH > orexin > GADG65 > VGAT; Fig. 4A).

Finally, we analyzed how “cell activeness” (difference
between observed and impedance-predicted firing) varies
as a function of input oscillation frequency within each cell
type (Fig. 4B). Active tuning (significant difference be-
tween observed and impedance-predicted firing) was
present in all cell types at low frequencies (<1 Hz), where
firing was lower than expected from impedance (Fig. 4B).
However, as input oscillation frequency increased, the
frequency dependence of orexin population firing became
indistinguishable from the frequency dependence of orexin
cell impedance, with both sharply decaying as oscillation
frequency increased (Fig. 4B). In contrast, VGAT and
GADG65 populations (and to a lesser extent the MCH
population) maintained substantial firing in the y-fast fre-
quency range (30-200 Hz; Fig. 4B). Thus, orexin neuron
firing is subject to steep impedance-associated decay
during vy input, but non-orexin neurons resist this decay
and maintain firing during vy input.

Discussion

Cell-type-specific control of LH firing is important for
normal physiology (avoiding contradictory LH outputs),
for basic research (studying the role of specific LH out-
puts), and potentially for clinical applications (controlling
sleep and appetite in obese or insomniac patients). In this
study, we found that such cell-type-specific control can,
unexpectedly, be achieved by varying the frequency of
electrical oscillations in the LH. Specifically, we found

January/February 2018, 5(1) e0012-18.2018

significant differences in frequency dependence of orexin
and non-orexin cell firing (Fig. 2), which were especially
striking in orexin versus VGAT or GAD65 neurons (Fig.
3B), and were not explained by cell-type-specific variation
in passive membrane impedances (Fig. 3C). Thus, distinct
cell classes in the LH network show distinct frequency
preferences for spike generation. Orexin neurons show a
preference for low frequencies (<10 Hz), while non-orexin
neurons are significantly driven by low and high (10-200
Hz) frequencies.

The monotonic decay in membrane impedance that
occurs as oscillation frequency is increased would be
expected to produce concurrent monotonic decay in fir-
ing (Pike et al., 2000). We observed significant deviations
of LH firing rates from this impedance-predicted decay
(Fig. 4). Understanding the origins of these deviations is
an important, but complex, problem for future study. In
theory, these deviations can arise from differential expres-
sion of many different types of voltage-gated ion channels
(calcium, sodium, potassium, or nonselective channels
may all contribute: Puil et al., 1986; Hutcheon et al., 1996),
as well as from differences in dendritic geometry (Mainen
and Sejnowski, 1996). Only a limited knowledge of these
parameters currently exists for the different LH cell types
(Li et al., 2002; van den Pol et al., 2004; Schone et al.,
2011; Karnani et al., 2013; Romanov et al., 2017). To fully
define these parameters in future studies, a comprehen-
sive transcriptomic, pharmacological, and structural com-
parison of LH cell types and circuits would be necessary,
together with modeling approaches.

In terms of physiological significance, the oscillation
literature has focused largely on concepts such as input
selection and plasticity, consolidation of learned informa-
tion, representation of phase information, or binding cell
assemblies (Buzsaki and Draguhn, 2004). Our results
could be considered an example of assembly binding,
where, as oscillation frequency is increased, the LH func-
tional assembly shifts from VGAT-GAD65-MCH-orexin to
VGAT-GAD65-MCH. Based on known properties of
orexin and non-orexin neurons, it is possible to speculate
about possible benefits of this shift. One benefit could be
to remove an orexin-associated stress state. Orexin ac-
tivity evokes physiologic hallmarks of stress and creates
behavioral aversion (Suzuki et al., 2005; Johnson et al.,
2010; Heydendael et al., 2014; Bonnavion et al., 2015). In
some contexts, for example eating or formation of food
preference driven by VGAT,, and MCH,,, neurons, re-
spectively (Domingos et al., 2013; Jennings et al., 2015), it
may be important not to associate a stress/aversion sig-
nal with food. Consistent with this, in vivo recordings from
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orexin cells show that they are relatively inactive during
eating (Gonzalez et al., 2016). Another, related, benefit
would be to create an optimal body state for energy
storage. Based on body weight phenotypes resulting from
inactivation of the different LH cells, one can view orexin
neurons as a natural signal for weight loss, because their
inactivation produces weight gain (Hara et al., 2001;
Gonzalez et al., 2016). In contrast, non-orexin neurons
can be viewed as a natural signal for weight gain, because
MCH and VGAT cell inactivation produces weight loss
(Shimada et al., 1998; Whiddon and Palmiter, 2013; Jen-
nings et al., 2015); while chemogenetic LH GADG5 cell
activation does not change body weight (our unpublished
data). By removing the energy-expending orexin drive, y
oscillations may shift LH output to favor weight gain. An
important direction for further research probing causal
importance of y-control of LH cells would be to use some
(yet unknown) methods for abrogating the influence of y
oscillations on orexin neurons in vivo.

In summary, our study demonstrates an unexpected way
of controlling the firing of orexin versus non-orexin LH neu-
rons. Such cell-type-specific LH control was previously
thought to be achievable only by cell-type-selective
chemical signals, but our results now show that nonse-
lective electrical input can create cell-type-specific effects
on hypothalamic firing. This insight opens up new ave-
nues for future research on how this novel control mode
can be utilized physiologically via internally-occurring hypo-
thalamic oscillations (Carus-Cadavieco et al., 2017), or, in
theory, therapeutically, via a deep-brain-stimulation par-
adigm promoting a particular oscillation (Maling et al.,
2012; Sun et al., 2015). Considering the pivotal role of the
LH in physiology and behavior, this reveals an important
dimension of controlling the functions and malfunctions of
this brain region.
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