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Abstract: The galvanic skin response (GSR; also widely known as electrodermal activity (EDA)) is a
signal for stress-related studies. Given the sparsity of studies related to the GSR and the variety of
devices, this study was conducted at the Human Health Activity Laboratory (H2AL) with 17 healthy
subjects to determine the variability in the detection of changes in the galvanic skin response among
a test group with heterogeneous respondents facing pleasant and unpleasant stimuli, correlating the
GSR biosignals measured from different body sites. We experimented with the right and left wrist,
left fingers, the inner side of the right foot using Shimmer3GSR and Empatica E4 sensors. The results
indicated the most promising homogeneous places for measuring the GSR, namely, the left fingers
and right foot. The results also suggested that due to a significantly strong correlation among the
inner side of the right foot and the left fingers, as well as the moderate correlations with the right and
left wrists, the foot may be a suitable place to homogenously measure a GSR signal in a test group.
We also discuss some possible causes of weak and negative correlations from anomalies detected in
the raw data possibly related to the sensors or the test group, which may be considered to develop
robust emotion detection systems based on GRS biosignals.

Keywords: stress; wearable; sensor; physiological signals; galvanic skin response; GSR; electrodermal
activity; EDA; pleasant and unpleasant stimuli; valence; correlation

1. Introduction

In recent decades, advances in data analytics techniques and sensor hardware develop-
ment have led to the emergence of new research fields such as activity recognition, taking
advantage of technologies such as smartphones, wearable devices, Internet of Things, and
any device with sensors or embedded systems and digital storage or streaming capacity [1].
All of this has generated a wide range of new applications, from computer science to other
fields such as elderly independent living [2,3], treatment of cognitive diseases [4], autism
lifestyles [5], and care [6], at which this work is motivated. Human activity recognition
(HAR) improves these fields, supported by specialized research and development on
posture, gesture, localization, occupancy, and emotion recognition [7].

Emotion recognition is a field of study historically related to sociology or psychology,
understanding human behavior through techniques based on subject observation, inter-
views, and spoken or written expression traditionally created by experts on the matter.
Nevertheless, computer science has boosted this field’s development capability by applying
machine learning techniques to video or physiological data. In this way, some literature,
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such as [8], has proposed three essential sources of emotion detection for a smart envi-
ronment: facial emotion, behavior detection, and valence/arousal detection. Nowadays,
wearable devices may help valence/arousal detection, incorporating measure features such
as electrocardiography (ECG), electromyography (EMG), electroencephalography (EEG),
galvanic skin response (GSR), photoplethysmography (PPG), and skin temperature (ST), as
per many literature reports [9-13]. Although multimodal measures to improve emotion
recognition performance are highly recommended [11], this study focuses on evaluating
the performance of GSR signals gathered from wearable sensors in different measurement
places. Recent advances in machine learning techniques in the last decade and the miniatur-
ization of hardware technologies have inspired researchers to keep working on new ways
to improve human activity recognition through emotion recognition using GSR sensor
technology. A quick overview of the scientific literature shows that GSR sensor technology
is attracting rising interest in development and research, especially regarding activity and
emotion recognition (see Figure 1).
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Figure 1. Trends in the scientific literature of human activity recognition (HAR), emotion recognition, and galvanic skin

response/electrodermal activity (GSR/EDA) sensors. Left graph: Individual publication topics. Right graph: Publications

involving the use of GSR/EDA in HAR or emotion recognition. *: a standard for searching queries in the scientific literature

database, it helps to search finding words that start with the same letters.

Many wearable devices are used to measure the GSR with various body places to
measure it. Finding a suitable place to measure GSR biosignals is a valuable contribution for
science and engineering to continue working on new technologies to improve quality of life,
as this physiological signal is commonly used for stress-related detection [14,15]. The above
impact is critical for specific populations, for example, autism spectrum disorder (ASD),
to which the computer science field has contributed to this stress detection through GSR
measurement for people with ASD working on computing techniques [5,16]. Moreover,
other researchers are working on developing ad hoc hardware wearable devices for the
ASD population. Some works for this population have proposed different measurement
places, such as the waist [17], the left and right wrists [18,19], and the middle, ring, or
index finger [20,21]. Nevertheless, no point of view has been established about the best
place to measure GSR signals in ASD and healthy populations, although we consider it
essential, for example, to measure levels of stress and to alert the people nearby or to
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stream information to parents or caregivers about the stress levels of people with ASD, as
the literature highlights [22,23].

The above insight was our primary motivation to conduct a preliminary technical
study, to determine the variability of different GSR measuring places in a healthy test group,
in preparation for conducting a more extensive study with a cohort from a specific group
(ASD) in subsequent phases in our research program in the Human Health Activity Lab
(H2AL) [24]. The present study aimed to locate a suitable body place for measuring GSR
signals among a non-homogenous population (as a real commercial device will do), using
two correlation analysis workflows for four signals gathered from different places (right
and left wrists, left fingers, and the inner side of the right foot). One of these workflows
analyzed each signal’s correlation in the test group, while the other analyzed the correlation
between the different respondents” GSR signals. We measured each signal with the same
sensor in the same place for all respondents, using video clips with pleasant and unpleasant
situations as a psychophysiological activating stimulus for changes in the galvanic skin
response. We used Pearson’s correlation to determine which body place is more reliable for
measuring GSR in the presence of pleasant and unpleasant stimuli in a test group, RStudio
as the data processing tool, and iMotion software to integrate and synchronize the data
gathered by the sensors.

The article is structured as follows: Section 2 provides an overview of the related
works of correlation studies of GSR signals and sensor location. Section 3 explains the
physiological signals measured and presents the sensors used and their body placements.
Section 4 describes our experiment conducted and explains the method used in the present
study. Section 5 presents the results from the two analysis approaches. Section 6 discusses
the results and analyzes some possible outliers. Section 7 provides the conclusions and
future works.

2. Related Work

GSR and other stress-related variables such as heart rate, and photoplethysmogram
(PPG) signal are usually studied to detect emotional valence and arousal. Portable sensors
for stress-related studies have hit the market, including measurement functions, resulting
in studies that are cost-effective and straightforward, making popular these devices among
researchers [14]. As mentioned in the introduction, the variety of affordable wearable
technology devices allows measuring the galvanic skin response in different body places.
Some studies have investigated the effects of GSR biosignal measurement location using
wearable devices during valence changes caused by visual-auditory stimuli. Others study
have investigated the measurement location or similarity and correlation measurements
of affordable wearable devices compared to well-calibrated or high-quality sensors, as
Table 1 shows.

Anusha et al. [25] focused on identifying the optimal configuration of dry electrodes
for monitoring GSR from the wrist, as, hypothetically, electrodes designed for GSR detec-
tion are influenced by parameters such as the anatomical location of the measurement, the
interelectrode distance, and the electrode material. The authors fabricated dry electrodes
from stainless steel, silver, brass, and gold materials, geometrically and dimensionally
similar to commercially available standard wet electrodes. They used 16 dry electrode
configurations with interelectrode separations of 2 cm and 4 cm, both on the wrist’s ventral
and dorsal surfaces at a 6 cm distance from the carpus. These configurations were sys-
tematically investigated, monitoring the galvanic skin response using an Analog Devices®
sensor unit to identify which position yielded the highest correlation with standard wet
electrodes using Pearson’s correlation coefficient in order to compare GSR signals. The
silver electrodes worn on the wrist’s dorsal surface with an interelectrode separation of
4 cm performed consistently well on all subjects, with an average Pearson’s correlation
coefficient of r = 0.899 £ 0.036.
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Table 1. A summary of the recent literature regarding GSR measurement places and physiological sensors.

Research Work Focus of Research Devices Used Position Measured Comparison Method
. Analog Devices®:
Optlmal dry electrode Ag/Ag(l, stainless Ventral and dorsal Pearson’s correlation
Anusha et al. [25] location for GSR ) . ..
steel, silver, brass, and surfaces of the wrist coefficient
measurement
gold electrodes
Correlation between Flexcomp Infinit Hierarchical linear

Kushky et al. [26]

palmar and non-palmar
GSR measurement sites

physiological
monitoring and data
acquisition unit

Fingers, toes, and arch
of the foot

model (random effect
model)

Kappeler-Setz et al. [27]

Correlation between GSR
measurements of the feet
and fingers

Emotion Board

Index and middle
finger and the inner
side of the foot

Pearson’s correlation
coefficient

Reliability measures of
the galvanic skin

Borrego et al. [28] response of a wristband Empatica E4 and Refa Wrist and fingers Spearm.an s ranlf .
. System correlation coefficient
against laboratory-grade
equipment
Microsoft Band 2,
Comparison of heart rate  Empatica E4, Health

Kutt et al. [29]

and GSR quality signals
among wearable devices

Sensor Platform,
BITalino, and a Polar
H6 as a reference

Wrist and fingers

Pearson’s correlation
coefficient

Sagl et al. [30]

Quantifying the accuracy
of low-cost wearable
devices in comparison to
high-quality laboratory
sensors

Wearable Zephyr
BioHarness 3, Empatica
E4, and VarioPort
laboratory recorder
bioelectric signals

Hand palm vs. wrist

Pearson’s r
correlation, Maximal
information
coefficient (MIC),
local time series
similarities, Fréchet
distance, and
dynamic time
warping (DTW)

Poh et al. [31]

Studying continuous
GSR measurement in
different places outside
of a laboratory setting

Flexcomp physiological
monitoring and a
wrist-worn GSR sensor
module developed by
the authors

Palmar and distal
forearm

Pearson’s correlation
coefficients

Kasos et al. [32]

Assessing the similarities
and differences in EDA
measured at alternate
and traditional
anatomical sites

Obimon EDA

Fingers, feet, wrists,
shoulders, and calves

Pearson’s correlation
coefficient

Kushki et al. [26] conducted a correlation study between palmar and non-palmar
measurement sites under cognitive and mental stressors from blood volume pressure (BVP)
and electrodermal activity (EDA) signal characteristics. They measured cognitive and
affective stimuli from three different body places (fingers, toes, and ear for BVP; fingers,
toes, and arch of the foot for skin conductance). They evaluated these signals’ correlations
using a hierarchical linear model (random effect model), gathered from a Flexcomp Infinity
physiological monitoring and data acquisition unit. In this model, the dependent variable
was the hand’s signal features, used as the independent and alternative sites. The results
indicated a significant correlation among the GSR signal features gathered from these
different body places. The cognitive and affective stimuli changes at non-palmar sites
were significant from baseline (fingers), suggesting these sites for affective computing and
human-machine interface measurements.
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Kappeler-Setz et al. [27] envisioned a sensor system in the shoe or sock as a promising
approach to long-term monitoring of GSR signals. They investigated the correlation
between GSR signals measured from the feet and measurements of the fingers (most
established sensing site) using an action movie as a psychophysiological activating stimulus
and limb movement. GSR signals were recorded using an emotion board, attaching the
electrodes to the index and middle finger’s medial phalanxes, the medial side of the foot
adjacent to the plantar surface, and midway between them the first phalanx and a point
beneath the ankle. The authors synchronized the two devices’ signals and calculated the
Pearson’s linear correlation coefficient to compare the signals recorded from the hand
and foot. This study showed changes in the galvanic skin response 88% of the time at
both sensing sites, but the foot’s GSR reactivity was weaker than in hand. The authors of
this study suggested foot recordings of GSR signals in daily life as a suitable location, as
moderate movement has low influence on this measurement and has similar effects on
both measurement sites.

Borrego et al. [28] conducted a study to compare the reliability of GSR measures from
the Empatica E4 wristband against the Refa laboratory-grade system, facing emotional
valence changes. The E4 is a wristband sensor with GSR electrodes located in the strap of
the wristband sampling at 4 Hz in the wrist, while the Refa system consists of two Ag/AgCl
sensors wired to an external amplifier sampling at 256 kHz on the fingers. Spearman’s rank
correlation coefficient was used in the analysis; the « level was set at 0.05 (two-sided). The
study showed low-to-moderate correlations for positive and negative images, while no
significant correlation was found for neutral stimuli.

Kutt et al. [29] made a comparison of the quality of heart rate (HR) and GSR signals
among four wearable devices (Microsoft Band 2, Empatica E4, Health Sensor Platform,
and BITalino (r)evolution), with a professional fitness device used for HR tracking (Polar
H6) as a reference. MS Band 2, eHealth, and the reference Polar H6 provide direct HR
measurements. E4 and BlTalino do not provide direct HR information, as they record BVP.
To compare the devices, they used the Pearson’s correlation coefficient from the recorded
signals. The authors suggested focusing on BITalino combined with MS Band 2 in future
works. The correlation of HR signals was better between MS Band 2 and the data reference
measured from Polar H6. The authors also commented that the GSR measurements of
BlTalino and Empatica E4 are sensitive to device placement. The correlation factors for
BlTalino decreased with each experiment, most likely caused by reusing ECG electrodes,
as they should be replaced frequently. The authors also found a lower amplitude of skin
conductance response from Empatica E4 than eHealth and BITalino, which may have been
caused by different sensor locations (Empatica on the wrist and eHealth and BITalino
on fingers).

Sagl et al. [30] measured the physiological variables of heart rate, and galvanic skin
response, and derived heart rate variability. This was carried out simultaneously with
high-quality laboratory recorder bioelectric signals (VarioPort) and two wearable devices
(Zephyr BioHarness 3 and Empatica E4) while the participant was cycling on an ergometer.
The study sought to demonstrate an approach for quantifying the accuracy of low-cost
wearable devices compared to high-quality laboratory sensors. In the study, the authors
used Pearson’s r correlation, the maximal information coefficient (MIC), local time series
similarities, the Fréchet distance, and dynamic time warping (DTW). The authors reported
lower similarities in GSR correlations due to different measurement methods, placement of
the sensors on the palm of the hand vs. the wrist, the use of electrolyte gel or not for the
electrodes of VarioPort (but not with the other three devices).

Phitayakorn et al. [33] conducted a study to determine the practicality of the Bandu
wristwatch (manufactured by Neumitra Inc., Boston, MA, USA) to measure GSR in operat-
ing room team members during surgical simulations, wearing a sensor on the wrist and
the ankle. They used Pearson’s correlation to determine the relationship between sensor
data from the wrist and the ankle. The study reported a lack of a correlation between ankle
and wrist sensors. The study suggested that wrist sensors are more sensitive at measuring
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GSR fluctuations than ankle sensors, which may be because of the anatomic variations in
the eccrine gland concentration around the ankle.

Poh et al. [31] developed a wrist-worn wearable device. They conducted a study of
continuous GSR measurement at both the palmar and distal forearm sites in the long-term
outside of a laboratory setting, during physical, cognitive, and emotional stressors. The
study found that the ventral side of the distal forearm is a viable alternative to the traditional
palmar sites for GSR measurement. They calculated Pearson’s correlation coefficients and
the corresponding p-values to measure the similarity between the GSR signals recorded
from the right fingers with a Flexcomp physiological monitoring and data acquisition unit.
The wrist-worn GSR sensor module developed by the authors recorded the left fingers and
right distal forearm using Ag/AgCl electrodes and the left distal forearm using conductive
fabric electrodes.

Kasos et al. [32] used the Obimon EDA wearable sensor for five measurement sites
(fingers, feet, wrists, shoulders, and calves) to evaluate the galvanic skin response in
115 participants using emotion induction with music. The study confirmed that fingers and
feet are the most responsive to stimuli. The authors also concluded that the wrist responds
less to stimuli and shows a lower signal amplitude than the other two measurement sites,
recommending this measure site only if the fingers feet are unavailable. Shoulders and
calves are the less recommended sites by the authors.

In light of these, the literature review shows research interest in the measurement of
stress-related signal location. From the Human Health and Activity Laboratory (H2AL) [24],
we contribute to expanding the mass of knowledge about the galvanic skin response and
wearable technologies available on the market, correlating stress-related biosignals from
the right and the left forearm measured using Empatica E4 to those of the left fingers and
inner side of the right foot gathered from using Shimmer3GSR.

3. Physiological Parameters and Sensors
3.1. Galvanic Skin Response (GSR)

Also known as EDA, GSR is a measuring unit of surface resistance skin or conductivity.
It can be measured by passing a microcurrent of electricity through a pair of electrodes
located near one another, amplifying and registering current variation. This variation is
possible as the skin resistance depends on skin humidity (sweating), the thickness of the
outer layer of the skin (epidermis), and vasoconstriction, among other things [34]. Sweating
behavior is sensitive to emotional stimulation due to the sweat glands being controlled by
the autonomic nervous system (ANS) [35], which controls the body’s other physiological
responses such as heart rate, temperature, and pupil diameter. The physiological response
of the ANS can increase in the presence of stress and multiple stimuli [36]. The higher
the sweat response, the higher the conductivity (uSiemens) and the lower the resistance
(kOhm). This physiological response behavior links the galvanic skin response to measures
of emotional valence, facing pleasant (positive valence) or unpleasant (negative valence)
stimuli [28,37].

3.2. GSR Sensors

We used four sensors for the present study—two wearable Shimmer3GSR+ and two
E4 wristbands from Empatica. Both sensors are specially designed for physiological data
streaming and visualization, widely known in the scientific field of physiological data
analytics. Shimmer3GSR is a wearable sensor technology that offers a variety of devices to
measure different physiological parameters. Shimmer3GSR+ measures the skin’s electrical
conductance using finger belt electrodes or pre-gelled electrodes placed on the foot, as per
this study [38]. This sensor can record raw data on SD memory cards and the data can
be downloaded via desktop software. The wristband Empatica E4 is CE medical-certified
in the United States and can save the raw data in a cloud account, which plots the data
every time the user connects the E4 to desktop software or a mobile app [39]. Table 2 shows
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the signals gathered from each sensor used for the study, their units, sample rates, and
body position.

Table 2. Sampling characteristics of the sensors and their place of measurement.

Sensor Unit Sample Rate Measurement Place
Shimmer GSR 1 uSiemens (uS) 128 Hz Left finger
Shimmer GSR 2 uSiemens (uS) 128 Hz Right foot

Empatica 1 uSiemens (uS) 4Hz Left wrist
Empatica 2 uSiemens (uS) 4 Hz Right wrist

We measured the GSR signals from the usual sensor placing. Figure 2a shows how
this sensor was placed on the study subject. Both sensors can also be paired through
a Bluetooth link—this hardware feature allows synchronizing all the raw data through
iMotion software. A video clip of pleasant and unpleasant sensations was configured
as stimuli. iMotion software also gathered the data from the four sensors via Bluetooth,
labeling the registers by signal, sensors, and time stamps each millisecond; according to
each sensor’s sample rate, the register had a value or not. The advantage is that iMotion
stores all raw data in one data file per respondent per study, and the timestamp marks the
time series. Figure 2b shows the streaming data being gathered in iMotion software from
all sensors during the setup study for one subject.

(b)

Figure 2. Placing the GSR sensors on a subject from the test group (a); checking the streaming data in
iMotion software (b).

4. Material and Methods
4.1. Study Setup and Participants

Our study included 17 subjects, comprising 3 females within the age range of 30-39 years
and 14 males within the age range of 23-53 years, some recruited via e-mail and others just
asking to participate in an experiment. We carried out the study approved by the ethics
board of the Department of Computer Science, Electrical and Space Engineering at Lulea
Tekniska Universitet in Sweden. All participants provided informed written consent.

Each participant was recruited for the study at different times. We gave general
instructions to the respondents, explaining the purpose of the study and how it will be
conducted, asking them to read and sign the informed written consent. The areas where
the sensors were to be placed were cleaned with alcohol wipes to help the sensors adhere
better to the skin’s surface. After placing the sensors, the participants were asked to choose
the best comfortable chair and to establish a set point of comfortability for sitting in front
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of a screen to avoid unnecessary movement during the experiment. Then, they were asked
to put on a headset to test the sound and video; afterward, data sensor acquisition was
checked, asking the participant to be calm while checking that the iMotion software was
receiving all data well. It took approximately 5 min to reach this point, at which the sensors
were placed to start recording the data and the stimuli were run simultaneously by the
iMotion software. The staff exited the room while the subject watched the video.

The video watched by the subjects was built based on several video clips available on
the web, chosen carefully by the study team to influence pleasant and unpleasant feelings
to stimulate changes in valence emotions, according to Russell’s Circumplex Model of
Affect [40,41]. The video clip started with a relaxing sound and video of a Caribbean beach
as a pleasant stimulus, followed by a countback clip showing danger or an accident as the
unpleasant stimulus, and then a tender babies or puppies video clip as another pleasant
stimulus. Then, another countback appeared announcing an expectation; again, the pattern
of unpleasant and pleasant stimuli was followed, as shown in Table 3. iMotion software
finished recording the data when the video stimuli had finished. It was expected that
the participants would manifest negative feelings as stress about the videos of crashes,
babies in danger, and breaking bones, while the babies laughing and puppies would
cause positive feelings as contentment and relaxation compared to the unpleasant videos.
The foregoing according to a unidimensional valence approach in this experiment, to the
extent that the generated emotions become positive or negative to stimulate galvanic skin
responses [42,43].

Table 3. Descriptions of the pleasant and unpleasant stimuli video clips.

Time Slots Emotion Stimulus Description

0-32s Pleasant Intro beach

33-34s - Countback transition from pleasant to unpleasant
35-42s Unpleasant Crash accident

43-58s Pleasant Baby with lemon

59-60 s - Countback transition from pleasant to unpleasant
61-87s Unpleasant Baby in building windows

88-109 s Pleasant Baby laughing

110-111s - Countback transition from pleasant to unpleasant
112-172 s Unpleasant Baby jumping from a building

173-237 s Pleasant Puppies

238-239 s - Countback transition from pleasant to unpleasant
240-270's Unpleasant Breaking bones

271-281s Pleasant Looney Tunes end

282-285s Pleasant Credits

4.2. Data Pre-Processing

We integrated and synchronized the data gathered by the sensors in the iMotion
software. This software extracted all of the experiment’s raw data in one data file per subject
with a timestamp per millisecond. The sensors streamed the data, since they synchronized
with the iMotion software, but they did not link in the same milliseconds. Thus, the data
started to record when the respondent selected “start” on the screen (timestamp zero),
as the stimuli ran into the iMotion software. Therefore, these raw data returned by the
software did not need any temporal alignment or transformation, as all sensors provided
a signal in uSiemens (uS) (skin conductivity) and in the same format. The results were
time series per signal with a resolution in 1 ms, in which any missing data should have
been due to differences in the sampling rates. Thus, we filled these by spline interpolation,
used for the correlation study of GSR signals [44,45]. For comparison purposes, the data
were resampled at 250 ms, starting for the timestamp 250, as the sensors’ low sample rate
was 4 Hz. As all signals were of the same type, we worked with these GSR datasets from
this point, as did Sagl et al. [30]. Figure 3 shows the time series of each signal dataset for
the respondents.
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Figure 3. Time series of each signal dataset for the respondents.

4.3. Statistical Analysis of the Signals

We adopted two analysis approaches: one analyzing each signal’s correlation in the
test group to determine the behavior of the signals in a heterogeneous test group, as any
GSR signal-based stress detection system should work, the other analyzing the correlation
between the signals measured in each respondent and comparing them among the test
group. The literature documents that the Pearson’s correlation method fits with time series
data analysis for physiological signals [46], so this was used for both workflows. We carried
out all of the data processing and plots in the statistical computing software RStudio. The
analysis was based on a visual examination of the Pearson’s correlation coefficient (r) using
clustered correlograms, histograms, boxplots, and some statistical dispersions such as
the mean, standard deviation, and coefficient of variation as the statistical estimates of
variability in the detection of changes in the galvanic skin response among the test group
with heterogeneous respondents.

5. Experimental Results

In this experiment, we measured GSR signals in 17 respondents with four sensors
located on different parts of the body: the right and left wrists, left fingers, and the inner
side of the right foot, gathered from the sensors Shimmer3GSR and Empatica E4. For
each measurement location, one dataset was created, each containing the data of the
signal measured (uSiemens (1S)) in the same place in 17 different respondents, and every
respondent dataset had 1142 registers of GSR measures from 258 s every 250 ms (see
Section 4). Every respondent watched the same pleasant and unpleasant video to stimulate
changes their galvanic skin response.
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In the first analysis approach, the Pearson’s coefficient (r) provided an associative
measure between two respondents to determine if the GSR measurement locations cor-
related with the other measurement locations or between two respondents, as well as
to measure this relationship’s strength. This association indicates how many changes or
variations that occurred in one respondent also occurred in the other. This association
does not imply causality; instead, there could be a strong correlation between two signals
and a linear response between one another, but one does not cause the other. Thus, this
experimental study was based on a relational hypothesis: how strongly correlated could
a GSR signal measured in specific body locations be in a heterogeneous test group? We
used Pearson’s correlation to compare each signal measured between every respondent as
a paired comparison, generating a correlation matrix per GSR measurement location. Each
correlation matrix was plotted in a clustered correlogram using the R function hclust() for
the correlation plots (see Figure 4), providing a visual image of how much a GSR signal
from a particular place of measurement can be measured homogeneously in a test group,
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Figure 4. Correlation matrix of each GSR measurement location.
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In the correlation matrix shown below (Figure 4), blue represents positive correlations
(Pearson ‘s coefficient, r = 0 < 1), which means, if a respondent’s signal increased or
decreased, the other tended to increase or decrease, respectively. Meanwhile, red represents
negative correlations (Pearson’s coefficient, r = —1 < 0), which means that if, in a respondent,
a signal increased, the other signal tended to decrease (and vice versa). Each cluster in
the correlograms (black frame) agglomerated the respondent’s group, with more positive
correlations between one another. A quick visual analysis shows that the GSR signal
measured in the left fingers had a bigger group of respondents with a positive correlation,
followed by the signal measured in the right wrist, left wrist, and then right foot. However,
it is visually remarkable that the left wrist demonstrated the strongest correlations in the
group. The bigger the group, the better the chance to detect homogeneous changes in the
galvanic skin response in a heterogeneous test group from the signal measured in that
place. Nevertheless, groups with strong blue correlations could mean that the matrix’s
signal has a better chance of being measured with similar increasing behavior.

Each signal measured from a particular place of measurement was correlated among
the 17 respondents, providing a total of 136 correlations calculated for each GSR measure-
ment site. The difference in the number of positive correlations was not too big in the four
locations—60% on average, which means the GSR measurements in the right wrist, the left
wrist, the right foot, and the left fingers could have an approximately 60% probability of
detecting increasing or decreasing of galvanic skin responses in a test group linearly. Nev-
ertheless, the coefficient’s magnitude indicates how strong or weak this linear relationship
of the signal is between the test groups. In order to determine this, some statistics were
calculated. Table 4 shows these statistics for each positive or negative correlation of each
measurement location.

Table 4. Statistics of the correlation matrices of each GSR signal.

Measurement  Correlation o p-Value  p-Value Mean SD cv
Location (r) ? AS Test K-S Test (r) (r) (r)
Rieht Wrist Positive 61.8% 0.37 0.53 0.38 +0.25 0.65
& Negative 38.2% 0.53 0.52 -0.45 +0.27 0.61
Left Wrist Positive 52.9% 0.004 0.02 0.59 +0.31 0.53
creyvns Negative 47.1% 0.005 0.01 061  +032 052
Rieht Foot Positive 61.8% 0.59 0.64 0.42 +0.23 0.56
& Negative 38.2% 0.94 0.42 0.40 +0.23 0.57
Left Fineers Positive 69.9% 0.87 0.90 0.45 +0.22 0.49
8 Negative 30.1% 0.37 0.64 -0.34 +0.22 0.65

We used the Anderson-Darling (A-D) and Kolmogorov-Smirnov (K-5) tests as the
goodness-of-fit tests to determine if the correlations of each GSR measurement location
follow a normal distribution. The positive correlations of the GSR signals measured in the
right wrist, right foot, and left fingers had a normal distribution, as their p-values (K-S test)
were higher than 0.05 of statistical significance. Statistically, if measuring a GSR signal in a
test group, there is a probability of 90% of the left fingers having a positive linear correlation
and a weak-moderate strength association, due to the Pearson’s coefficient being between
0.23 and 0.67; a probability of 64% of the right foot having a positive linear correlation
and a weak-moderate strength association due to the Pearson’s coefficient being between
0.18 and 0.65; a probability of 53% of the right wrist having a positive linear correlation
and a weak-moderate strength association due to the Pearson’s coefficient being between
0.13 and 0.62. Although these three signals had a normal distribution in their negative
correlations, we did not consider them in the analysis, as some physiological factors among
respondents can cause a decrease in the GSR signal while others can cause an increase,
which will be discussed in the next section.

The GSR measure on the left wrist also failed the goodness-of-fit test in its negative
and positives correlations. Its p-value was less than 0.05 (statistical significance), which
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This measurement location has a very disperse correlation among the test group, so we
could not achieve statistical inference as we did for the other three GSR measuring sites. A
visual inspection to check the symmetry of the positive correlations of each signal (Figure 5)
allowed us to observe that, unlike the GSR signals from the right wrist, right foot, and
left fingers, the signal from the left wrist had a remarkable asymmetric distribution in its
correlations among the test group. Several correlations fit the different correlation scales,
which implies non-homogeneous behavior in this GSR measurement location.
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Figure 5. Distribution of positive correlations from the correlation matrices of each GSR signal. The bottom part is the

strength of the association scale of Pearson’s correlation coefficient.

Despite GSR signals from the right wrist, right foot, and left fingers all having weak-
moderate positive correlations, the mean of the positive correlations of each measurement
location provided a better idea about which could have better reliability for detecting
increasing or decreasing of galvanic skin responses homogeneously in a test group. As
shown in the box plots in Figure 6, the signals from the left fingers and the right foot have
better reliability than the other signals, as the mean (black point) and median (the line that
divides the box into two parts) are close and both have certain symmetry in the standard
deviation. The GSR signal from the left fingers followed by the right foot have better
skewness, which means that there is a better probability that measurements of GSR in these
sites have a moderate linear positive relationship in the test group. The signals measured
from the right wrist have a more extensive dispersion than the two mentioned above; the
mean and median tend toward a low—moderate positive correlation in the test group.
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Figure 6. Box plot distributions of the positive coefficient correlations from the correlation matrices
of each GSR signal.

From Figure 6 above, despite the whiskers of each signal denoting dispersion of
positives correlations in all of the strength association scales, the statistical analysis did
not indicate any positive correlation outlier; the coefficient of variation (CV in Table 4)
offers a better understanding of which signals have a lower tendency of dispersion in their
positive correlations. Less dispersion means a better chance that the GSR measurements in
a test group fit a specific probability correlation of the strong correlation scale. The lower
the coefficient of variation, the less the dispersion, the better the chance than if the GSR
signal increases, will do in another respondent simultaneously in a particular association
strength interval. The statistics from Table 4 show that the lowest correlation dispersion
in the test group is in the signals from the left fingers (CV = 0.49), followed by the right
foot (CV = 0.56) and then the right wrist (CV = 0.65). The above has a significant effect
on reliability, providing some insight between these four measurement locations. Despite
the above, even based on Figure 6, the right wrist’s GSR signal cannot be considered the
strongest positive linear relationship between the four measurement sites. As mentioned
above, it has an asymmetric distribution in its positive correlations (Figure 5), and it does
not meet a normal distribution (Table 4; the p-value is less than 0.05).

Although the statistical analysis pointed out no positive correlation outliers, possible
sources of correlation variability were inquired in order to see which errors or bias in the
sampled data of each respondent may lead to a non-homogeneous response of the galvanic
skin response in the test group in a particular measurement location, especially in the
signal from the left wrist. We conducted a visual inspection of the signal time plots of each
respondent. To illustrate the findings, we only show some representative graphics from
the experiment. The first impression was that the GSR signals from the left and right wrists
registered relatively small values compared to the GSR signals from the right foot and left
fingers. The first two signals were measured with Empatica E4 sensors, while the other
two with Shimmer3GSR sensors (Figure 7a), so it is remarkable that these sensors tended
to measure in a range of uSiemens (uS) higher than Empatica E4 (by 3-5 in most cases).
Moreover, 89% of the time, the measurements from the right foot were higher than from
the left fingers (Table 5).
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Figure 7. Illustration of the differences in the GSR measurement range observed in the experiment: a case of differences
between two types of sensors (a); a case of differences in different types of sensors (b).

Table 5. GSR measurement range of each measurement location.

GSR Measure Range Right Wrist Left Wrist Right Foot Left Fingers
0-0.35 uS 88%
0-0.75 uS 94%
0.3-3 us 29% 41%
3-10.7 uS 65% 53%

In order to see if differences in the GSR magnitude readings could affect the detection
of homogeneous increases or decreases of galvanic skin responses in the test group in
specific measurement sites (as well as other possible anomalies), we used the second
analysis approach based on the correlation between the signal measurement sites in each
respondent, and compared them among the test group. Figure 8 summarizes the linear
correlations among the sensors of each respondent, both positive and negative, as in this
case, the comparison was between signals of the same respondent, and no factors should
affect the measurement in specific places but the respondent themselves or the sensor used,
which is of interest in this study.
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Figure 8. Correlation between signals in each respondent. In the bottom part, the anomalies detected relate to each
respondent, measurement location, and sensor. OD, opposite directions; FZ, fall to zero; AJ, abrupt jump; HV, held value.

Empatica E4 sensors have a lower range of measurement than Shimmer3GSR sensors
(Figure 7a); this was the case in 82% of the test group. However, in the other 18% of
the test group, one of the Empatica E4 sensors read a higher magnitude than the other
Empatica E4 sensor (see Figure 7b). From the left wrist of Respondent 9 and the right
wrist of Respondents 14 and 16, the measurements of one of the Empatica E4 sensors were
higher-magnitude signals than the other E4 sensor signals. Then, to investigate whether the
magnitude of the measurements influences a better correlation among the test group, we
conducted a paired comparison between the correlations involving these signals with other
respondent anomalies (Figure 8), indicating no significant difference. Thus, we cannot
affirm that higher magnitude measurements cause more homogeneous readings among a
test group, but we can affirm the type of sensor.

Based on the insight and previous results from the first correlation analysis approach,
a quick horizontal view in Figure 8 highlights that the signals measured from the right foot
and left fingers still demonstrate a homogeneous response in the test group, as they have a
higher correlation mean, a lower standard deviation, and a lower coefficient of variation.
This means that these two places of measurement had a strong linear response in the test
group, meaning that—independent of any factor from a heterogeneous group—in both
places, if the galvanic skin response increases or decreases, the other measurement location
will tend to increase or decrease with a strong association. This association is about how
many changes or variations co-occur in one respondent and will occur in the other.

From the second correlation analysis approach (Figure 8 above), it can be appreciated
that not all respondents followed a positive linear relationship in the GSR signals measured
from their bodies (Figure 8), which means that in a respondent, not all GSR measurement
sites increased when the others increased. We found two different cases for this negative
correlation between sensors or measurement sites in the same respondent (from now,
termed opposite directions). In the first case of this opposite direction anomaly, some
respondents experienced increased signals from some GSR measurement sites using one
type of sensor, while the others decreased using another type of sensor—for instance,
Respondent 4 (Figure 9a). Although the increasing signals of the Empatica E4 sensors
cannot be fully appreciated, the negative correlations between these two types of sensors
in Respondent 4 denote this (Figure 8). In this case, signals from both the right foot and left
fingers (from the Shimmer3GSR sensors) decreased in an almost perfect positive correlation
(r = 0.98; see Figure 8), while the signals from the left and right wrists (from the Empatica
E4 sensors) increased with a moderately positive linear relationship (r = 0.43; see Figure 8).
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Figure 9. Illustration of the opposite directions of GSR signals in the same respondent (Respondent 4). A case of different

types of sensors: A respondent with negative correlations between different sensors (a); a respondent with positive
correlations between sensors (b).

The second case refers to Respondents 15 and 1, where the correlation between
Shimmer3GSR sensors was negative (Figure 8). When a sensor measure increased, the
signal from the other same type of sensor decreased, as Figure 10 shows. Despite the
Shimmer3GSR being related in both cases, the signal of the right foot presented an opposite
behavior; this is easy to infer, as is this is the only signal measured with the Shimmer3GSR
sensors to present a negative correlation with both Empatica E4 sensors. Plus, a visual
examination of the time signals plot of each respondent involved (Figure 10) indicates that
this second case reported no increasing or decreasing tendency, as the signal increased
in one respondent while it decreased in others. For this case, we did not consider the
negative correlation between the Empatica E4 sensors in Respondent 7, as these correlations
demonstrated some anomalies in the signal, which will be analyzed next.

Besides the above anomaly, we highlight other anomalous findings in the GSR signals
measured during the experiment: sudden falls to zero and abrupt jumps of magnitude,
present among the measurements made with Empatica E4. Only one measurement with
one of the Shimmer3GSR sensors presented a signal with values that remained consistent
for a relatively long time. The bottom of Figure 8 relates the respondent, measurement
location, type of sensor, and the respective correlation anomalies. This type of error comes
from the sensors and their use on the respondent, especially the place of measurement.
From the correlations in Figure 8, the first impression is that the Empatica E4 sensors have
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a higher rate of measure anomalies than the Shimmer3GSR sensors. The second impression
is that the fall to zero (FZ) anomalies are the most frequent type of error in the Empatica E4
sensors. First, this could have been because the battery level may have been low during
the experiment, but checking the raw data generated by the iMotion software from both
Empatica E4 sensors, in which the battery level was also captured, no patterns related to
the anomalies were observed.
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Figure 10. Illustration of the opposite directions of GSR signals in the same respondent (Respondent 15). A case of the
same type of sensor: A respondent with negative correlations between different sensors (a); a respondent with positive
correlations between sensors (b).

Four of the five signals with fall to zero anomalies had a positive linear relationship
with the same type of sensor (Empatica E4): Two of these demonstrated weak strength
correlations, while the other two achieved moderate-strength correlations, despite these
signals having a zero value for almost half of the measuring time. Moreover, a visual
examination provided evidence that this anomaly occurred when GSR signal decreased
(see Figure 11), as all of the signals from the Empatica E4 sensors showed decreasing GSR
values in different respondents. The above, plus the fact that the Empatica E4 sensors
showed a lower range of GSR measurements during this experiment, we can say that if the
GSR measurement range is below 0.6 uS from an Empatica E4 sensor, then the decreasing
trends of the galvanic skin response might result in this signal falling to zero suddenly,
unlike other sensors. This may not be due to the measurement location, but rather the
type of sensor, as the left wrist measurement location also had a fall to zero anomaly, but
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with a different Empatica E4 sensor. Additionally, it cannot be said with certainty that
the anomaly of fall to zero influences low correlations, as the signals with this anomaly
measured with one of the Empatica E4 sensors had higher or positive correlations than the
other E4 sensor, which did not present anomalies.
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We treated the fifth signal with fall to zero anomalies separately, as this is the only
signal with this anomaly that presented a second anomaly in the same sensor (E4 in
Respondent 7). We attribute the negative correlations in this respondent to a second
anomaly in the signal, an abrupt jump (A]) (see Figure 12), as the correlations with abrupt
jump anomalies are those that presented lower correlations between Empatica E4 sensors
(Figure 8). Nevertheless, this evidence is not enough to affirm that this anomaly may
affect homogeneous change detection among the test group. There were correlations
between signals both with and without abrupt jump anomalies it, with better correlations
for those with than without any anomalies in their signals (for instance, Respondent 7 vs.
Respondent 11). Neither can we attribute these abrupt changes to fast changes in the GSR
measure, as this physiological parameter does not behave in this way. What happens is a
sudden change in magnitude, as can be seen in the right-hand plots of Figure 12, where
every dot is a GSR value measured in milliseconds, that, unlike the left plots that came
from the dataset sample rated in 250 ms, came from the raw data.
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Figure 12. Illustration of cases of abrupt jump anomalies. On the left are the signals with the anomaly turned into a graph
from the downsampled data; on the right are the other signals measured in the same respondent with the same type of
sensor, turned into a graph from the raw data, zooming in on the time interval.
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The last anomaly detected with the Shimmer3GSR sensors was a sustained measure-
ment value for a relatively long period (Figure 13). The signal in Respondent 13 remained
constant at 0.67 uS for 120 s and then registered an abrupt change in magnitude held at a
specific value for several milliseconds. Despite this, the anomaly in the signal seems not
to have affected the homogeneous detection of increasing or decreasing the galvanic skin
response in the test group. Figure 8 shows a really strong, almost perfect linear positive
correlation between the pair of Shimmer3GSR sensors.
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Figure 13. Illustration of the detected constant value anomaly. On the left are the signals with the anomaly turned into a

graph from the downsampled data; on the right are other signals measured in the same respondent with the same type of

sensor, turned into a graph from the raw data, zoomed in on the time interval.

Finally, this second correlation approach analysis highlights some insights from the
statistics in Figure 14. Better homogeneous detection of the test group in this experiment
was present in the signals from the left fingers and right foot, both measured from the
Shimmer3GSR sensors. The statistics show that the second best mean correlations came
from the right and left wrists measured using the Empatica E4 sensors. From the above,
we can affirm that GSR signals changes can be measured homogeneously in a test group,
at least in two different sites, with a strong positive linear correlation when using the
same type of sensor (at least Shimme3GSR and Empatica E4). Compared to the above,
as correlations of measurement location that involve different sensors have, in general,
a moderate positive correlation strength, we can affirm—for this experiment—that the
type of sensor does not influence, in a homogenous detection of GSR, change among a test
group, Shimmer3GSR being the sensor that provides better results.

The outliers in Figure 14 may be due to the anomalies previously discussed, which
caused negative correlations between the sensors in each respondent, especially in the
right foot and left wrist correlations, which may be due to anomalies in both measurement
sites, as well as the high dispersion detected in the first correlation analysis approach. This
dispersion may have resulted in the low strength of association for the correlation of the
signal from the left fingers. A comparison between those respondents with anomalies in
their GSR signals and those without indicated a particular effect on the positive correlations
between signals. However, a visual inspection of the respondents’ correlation matrix of
each signal (Figure 4) against the anomalies in Figure 8 evidences some cases in which the
anomalies did affect the correlation between respondents, and other cases not affected, as
low or negative correlations between respondents without anomalies in their signals.
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Figure 14. Box plot distributions of the coefficient correlations from the correlations between signals.

6. Discussion and Limitations

Using Pearson’s correlation coefficient (), we compared the signals measured from
four wearable GSR sensors used on the right and left wrists, the fingers left, and the right
foot to investigate which place of measurement could have a better homogenous response
in a test group. Our experimental results indicated that these four GSR measurement
locations have a significant tendency toward a moderate—strong positive correlation—on
average, a 60% probability of detecting linear increasing or decreasing GSR changes in a
test group (Table 4). The GSR signals measured in the left fingers achieved a bigger group
of positives correlations, followed by the right foot, the right wrist, and then the left wrist
(Figure 4). Statistically, there is a 90% probability that the GSR signals measured in the test
group would have a positive weak—-moderate strength association if the measure is in the
left fingers, 64% if in the right foot, and 53% if in the right wrist. The GSR signals from the
left wrist failed the goodness-of-fit test in the negative as in the positives correlations, and
we were unable to make statistical inferences.

The GSR measurement locations of the left fingers and right foot showed better relia-
bility for a moderate—strong correlation among a heterogeneous test group than the other
measurement sites, as both had certain symmetry in their standard deviations and had
better skewness in their correlations (Figure 6). This provides an approach to determine
how many changes or variations occur in one respondent and will occur in another. An-
alyzing the correlations between signals, on average, the left finger and right foot GSR
measurements showed the strongest positive linear responses between the signals in each
respondent (Figure 8). This means that, independent of any factor in a heterogeneous
group, in both places if one signal increases or decreases in terms of their galvanic skin
response, the other measurement locations will tend to increase or decrease, respectively,
with a strong association (Figure 14). Thus, from this experiment we can infer that there
is a better probability to detect homogeneous changes in the galvanic skin response of
a heterogeneous test group when the GSR measurements come from the left fingers or
the right foot, consistent with the findings of [27,32,47]. The signals measured from the
right wrist had a more significant dispersion of positive correlations in the strength associa-
tion scale and had the lowest means and medians of its positives correlations in the test
group, tending toward a low—moderate strength (Figure 6), also consistent with previous
findings [47,48].
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Insights from these experimental results for highly homogeneous detection of changes
in the galvanic skin response of a test group came from the left wrist. Despite the positive
linear relationship of this GSR measurement location not being uniform in the test group,
its correlations fit in the high as well as the low strengths of positive association and have
the highest means of negative correlations. It is visually remarkable that the left wrist
had the strongest positive correlations from the signal matrix correlations (Figure 5), as
well as the highest means (Figure 6). The hidden potential could stand out, inferring that
this signal could have a potential high-strength correlated GSR measurement location
among the test group without any outliers affecting the correlation. Anyhow, specific
studies should be conducted to determine if the influence on the Empatica E4 sensor or
the galvanic skin response of the left wrist is caused by internal variables such as age,
gender, and culture or external variables such as temperature, relative humidity, clothing,
or medication according to Boucsein et al. [49].

This study also showed a weak and negative correlation between the signals in
some respondents. Looking for possible outliers, we reported anomalies in GSR signal
measurements as sudden falls to zero, abrupt jumps of magnitude, opposite directions of
GSR signals in the same respondent, and held values in a particular interval of time. We
found the opposite direction anomaly in two cases. In the first case, a respondent had GSR
signals measured from different body sites, one signal increasing using one type of sensor
while decreasing using another type of sensor (Figure 9). In the other case, the GSR signals
went in opposite directions measured with the same type of sensor (Figure 10).

This opposite direction anomaly is distinguishable in the right foot measured with a
specific Shimmer3GSR sensor (Figure 8). This issue was also reported by Borrego et al. [28],
who compared the reliability of two GSR wristbands and found that while the Empatica E4
detected an average increase in the GSR for unpleasant stimuli, the Refa system registered
the opposite tendency. The authors gave credit to the Refa system, as previous studies
have shown the Refa system to follow a good tendency for unpleasant stimuli. This may
be in accordance with the statement that the ankle may be less sensitive to GSR fluctuation
according to Phitayakorn et al. [33] and Betancourt et al. [22]. The first author found no
correlations between the GSR signals measured from the wrist and the ankle (a place close
to the inner side of the right foot used in this experiment). Moreover, this decreasing GSR
values may be to the lower skin temperatures of the right causing the permeability of the
skin to water to decrease [26,49]. In this opposite direction anomaly, we did not find any
tendency to increase or decrease, as the signal of the right foot with the opposite direction
anomaly increasing in one respondent while it decreased in another.

A look in depth at the weak or negative correlations in the same respondent lay in
the recent theory proposed by Picard et al. [50] about bilateral differences and asymmetric
GSR measures mainly present in the two halves of the upper body. As this theory gains
more and more strength in the EDA research field [32,51,52], and the negative correlation
found in this study came from two halves (the upper and the bottom parts of the body),
more specialized correlation studies should be conducted for asymmetric measurements
in the right foot. Due to this statement, we highly recommend that from now on, new
emotion detection algorithms take into account bilateral measurements to sort biases in the
detection assessment among a test group.

Other data anomalies may have caused the weak or negative correlations in this study
also, and it is essential to evaluate these issues in GSR measurements further, as this is not
beneficial for new stress detection systems. Only the Empatica E4 sensors presented fall to
zero anomalies (Figure 11). We observed that if the GSR measurement range was below
0.6 uS for Empatica E4 sensors, the decreasing trends in the galvanic skin response might
cause these signals to fall to zero suddenly, unlike Shimmer3GSR sensors, which tend to
be measured in a range of uSiemens (uS) higher than Empatica E4 sensors (3-5 higher in
most cases, as can be seen in Figure 3). The above is in accordance with Kutt et al. [29],
who reported that the amplitude of skin conductance responses from Empatica E4 is lower
than from other devices such as eHealth and BITalino. The above is also in accordance
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with [53], who reported that an EDA measurement under high skin resistance conditions
may outline low values of skin conductance, in which case slow decreases in GSR levels
can reach the point where the sensor is not able to obtain a measurement, and thus a zero
value is returned constantly. Even though skin dryness or hydration levels may be a factor
affecting the detection of skin conductance levels, we cannot attribute this anomaly to the
measurement location. However, evidence points to the Empatica E4 sensor measure levels,
as this happened for two different devices in this experiment and has also been reported
in the literature. Data loss in transmission was discarded as well, as the other variables
collected from the E4 sensors, such as inter-beat interval (IBI), BVP, and HR, continued
to transmit, in addition to a faulty connection with the electrodes due to the decreasing
tendency of the GSR values. In each respondent plot, we also observed that 89% of the
time, using the Shimmer3GSR sensors, the right foot signals were higher than the left
finger signals.

Some sudden abrupt jumps in the measured magnitude were present in the different
respondent’s signals, but the evidence is insufficient to affirm that this anomaly may
affect homogeneous change detection among a test group and cause negative correlations.
Neither can we attribute these abrupt changes to fast changes in GSR measure, as this
physiological parameter does not behave in this way. What may happen is a sudden change
in magnitude from one millisecond to another, as shown in the right plots of Figure 7.
This issue was reported by Kutt et al. [29] with Empatica E4 and MS Band. During
movements, the contact between the body and the sensor was not constant, leading to
sudden conductance changes, resulting in lower signal correlation.

Unlike the previous cases, which occurred three times each in the different respondents
throughout the experiment, we detected the held value anomaly only once. During the
measuring, the signal start suddenly sustained a value of 0.67 uS without any change
across 120 s (Figure 13). We visually inspected the plots generated from the pretreated
dataset, and the held values were registered in the raw data to be highly likely due to
the loss of connection in wireless communication. Despite this, the anomaly in the signal
seems not to have affected the homogeneous detection of increasing or decreasing GSR
measures in the test group.

In this experiment, the Empatica E4 sensors registered a higher rate of anomalies than
the Shimmer3GSR sensors. Moreover, the fall to zero anomaly was the most frequent error
in the Empatica E4 sensors. The battery level captured in the raw data in the iMotion
software did not show any pattern related to anomalies. We encourage new GSR-based
emotion detection proposals to consider if these anomalies and their possible causes as
discussed herein are present in their accuracy assessment for the possible improvement of
outcomes. The above is the reason why we did not remove the outliers for this study, as we
wanted to observe the behavior of the GSR signals among the test group, as would be the
case in real life. Additionally, we wanted to indirectly determine how any outliers in the
raw data captured may influence the detection of increasing or decreasing GSR measures
in the test group, without any computation technique applied but the reconstruction of
missing data. Even as an experimental study, we state that these inferences from the
results should not be taken as fact in the acquisition of physiological GSR signals. More
detailed studies about these anomalies, their causes, and their consequences must be
studied more in-depth, according to the measurement devices, as stated in the conclusion
and future works.

Despite other studies attributing low correlations to differences in the sample rate
between devices [28], our results showed moderate positive correlations between sensors
with a significant difference in the sample rate (128 Hz for Shimme3GSR and 4 Hz for
Empatica E4) after applying spline interpolation and downsampling the dataset to 4 Hz. In
this case, due to the downsampled data and difference in timestamp synchronization, we
use using spline interpolation [30].

The use of iMotion software to integrate and synchronize the data gathered by the
sensors was valuable. However, our study was not without limitations. Different wearable
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sensors could cause data biases and could affect the correlation results, but using different
models of sensors for the comparison of correlations seems to be accepted in the literature,
as shown in Table 1, possibly due to the nature of the Pearson’s coefficient calculation itself.
Another limitation is not using a rigorous assessment of a bidimensional approach for both
the participants’ valence as well the intensity of the emotion referred to as arousal [42,43]
during the experiment, as a factor of respondents’ sensitivity to pleasant or unpleasant
stimuli to see how these can affect the correlation analysis among a test group. Moreover,
the local skin condition may influence the reliability of the measurements and the quality of
the signals. These have to be included in an in-depth correlation study looking for potential
affecting factors such as different measurement methods (e.g., sticky electrodes vs. plate
electrode) [30], sensor movement [26], skin temperature, skin thickness, water content, body
posture, and the density of sweat glands [26,54]. It is essential to complement this study
with in-depth correlation analyses using datasets of GSR signals from all respondents for
each pleasant or unpleasant stimulus. As well as comparing correlations using the different
techniques of smoothing and low /high filters and downsampled raw data, according
to [30], low-cost wearable sensors tend to produce datasets with reduced data quality, and
the noise in GSR signals gathered from wearable devices may vary [29].

7. Conclusions and Future Works

This paper contributes to the literature by reporting results of an introductory study
of the correlations of measurement places of GSR signals with wearable sensors in a test
group, relating information about possible causes of negative correlations and comparing
them with some other existing findings. Although there have been a few related studies,
there is still a need to find and prove correlations among different measuring places and to
compare them with other studies of negative correlation issues. Seventeen respondents
participated in this experiment, in which four GSR sensors were used simultaneously
while watching a video clip that contained pleasant and unpleasant scenes for 285 s to
simulate changes in the galvanic skin response. The experiment had a two-correlation
analysis approach; one analyzed the correlation between each signal of the 17 respondents,
while the other analyzed the correlation between the signals of each respondent. Both
approaches used statistical estimates and visual inspection of time plots to gain insights
into the homogeneity of the detection of the galvanic skin response in the test group.

The experimental results confirm previous findings that a better GSR measurement
location for homogeneous detection in a heterogeneous test group may be the left fingers
and the right foot—both measured using Shimmer3GSR sensors in this case. The statistics
show that the second best correlation may be from the right and left wrists, also measured
using Empatica E4 sensors. In general, based on this experiment, we reported that galvanic
skin response changes may be measured homogeneously in a test group, at least in two
body sites, with a strong positive linear correlation when using the same type of sensor.
The type of sensor may not influence the homogenous detection of galvanic skin response
changes among a test group, but there are some sensors such as Shimmer3GSR that may
provide better results.

Our analysis indirectly showed that Shimmer3GSR sensors may present better reli-
ability of homogenous detection of galvanic skin response changes, as they have fewer
anomalies among respondents. However, attention should be paid to the difference in
the sense of the GSR signal, as in this experiment one respondent showed increasing GSR
signals from the right foot while the rest of the signals tended to decrease. Our results also
showed that the correlations between sensors with significant differences in the sampling
rate (128 Hz for Shimme3GSR and 4 Hz for Empatica E4) were moderately positive, at least
after applying spline interpolation and downsampling the dataset to 4 Hz.

Our experiment also showed that the inner side of the right foot may be suitable for
measuring GSR, as it is strongly correlated with GSR measurements from the left fingers, at
least when using the same type of GSR sensor. The right foot was also positively correlated,
with a moderate strength of association, with the rest of the measurement sites. Regardless
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of the type of sensor, the magnitude of the measurement did not influence the correlations
between the test groups. We did not find strong evidence that the signal anomalies detected
in this study resulted in low correlations. However, they were indirectly investigated
in this study. Our results underline the importance of bilateral GSR measurements for
correlation studies and the accurate testing of emotion detection algorithms, as we found
asymmetric measurements in different parts of the body in the same respondents. We
recommend considering this condition to evaluate the accuracy of emotion recognition
methods, performing bilateral measurements.

Our future works will further evaluate, in a second stage, the influence of negative
correlation factors in test groups such as sensors movements, local skin conditions, type of
electrode, respondent sensitivity factor to pleasant or unpleasant stimuli, technical specifi-
cations of wearable sensors, quality of signals, smoothing and interpolation methods, and
internal and external factors of the GSR measurement. Moreover, we will consider bilateral
body measurements due to the multiple arousal theory. Thus, robust methods will be used
to describe the variation in signal correlations in the test group as the design of experiment
(DOE) to understand the further behavior of signals from different measurement sites. As
well as rigorous experiments assessing valence and arousal changes with facial emotion
recognition systems, for a bidirectional approach Russell’s circumflex model of affect can
be used. The third stage of our research program will be focused on finding a suitable
wearable technology to conduct quality measures in the foot; we expect to conduct a
study under conditions of movement and stillness toward a stress measurement concept
technology for people with ASD. We may need to consider a DOE using two different types
of sensor in each foot to evaluate which have better reliability for other populations than
heterogeneous test groups.
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