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Abstract

Genomic prediction has the potential to significantly increase the rate of genetic gain in tree breeding programs. In this study, a clonally
replicated population (n¼ 2063) was used to train a genomic prediction model. The model was validated both within the training popula-
tion and in a separate population (n¼ 451). The prediction abilities from random (20% vs 80%) cross validation within the training popula-
tion were 0.56 and 0.78 for height and stem form, respectively. Removal of all full-sib relatives within the training population resulted in
�50% reduction in their genomic prediction ability for both traits. The average prediction ability for all 451 individual trees was 0.29 for
height and 0.57 for stem form. The degree of genetic linkage (full-sib family, half sib family, unrelated) between the training and validation
sets had a strong impact on prediction ability for stem form but not for height. A dominant dwarfing allele, the first to be reported in a coni-
fer species, was discovered via genome-wide association studies on linkage Group 5 that conferred a 0.33-m mean height reduction.
However, the QTL was family specific. The rapid decay of linkage disequilibrium, large genome size, and inconsistencies in marker-QTL
linkage phase suggest that large, diverse training populations are needed for genomic selection in Pinus taeda L.
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Introduction
Forest trees are slow growing, long-lived species that require mul-

tiple years to reach reproductive maturity (Namkoong et al. 2012).

Traits of economic interest in a breeding program require many

years of growth prior to measurement to yield reliable phenotypic

information (Isik and McKeand 2019). These attributes lengthen

the generation time and reduce the rate of genetic gain from tree

breeding programs (Grattapaglia and Resende 2011). As in cattle

breeding, forward selection of young untested individual progeny

is an area of intense research interest in tree breeding since this

method reduces the time of a breeding cycle and has a direct im-

pact on the rate of genetic gain (Falconer and Mackay 1996;

Lillehammer et al. 2011).
In the conifer Pinus taeda L., the breeding cycle begins with a

controlled cross between two individuals in a breeding orchard.

After 18 months of cone maturation, seeds are extracted and

used for progeny test establishment. These progeny tests are

measured 4–5 years after planting. Traditionally, individual tree

breeding values are predicted with pedigree-based best linear un-

biased prediction (ABLUP) (Mrode 2014) and selection decisions

are made using a multi-trait index incorporating growth, stem
form, and disease resistance traits. Selection candidates are then
top grafted into mature breeding orchard trees and are available
for breeding in 3 years (Isik and McKeand 2019). If genomic selec-
tion (GS) could be used to select individual trees at the seedling
stage, the field-testing phase could be eliminated or reduced.
This would reduce the cycle time by 4–5 years and double of the
rate of genetic gain (Isik 2014).

Many proof-of-concept studies using real datasets have been
conducted to examine factors related to the success of GS in for-
est trees (Resende et al. 2012b; Beaulieu et al. 2014; Isik et al. 2016;
Ukrainetz and Mansfield 2020). In the first report of GS in a tree
species (Resende et al. 2012a), two unrelated clonal populations of
Eucalyptus were genotyped with a set of 3000 DArT markers.
Accuracy of GS, assessed through “leave-one-out” cross-
validation was found to closely match that of phenotypic selec-
tion but the prediction ability dropped significantly when one
population was used to predict another (Resende et al. 2012a).
Similar results were observed for a clonal population of loblolly
pine (Resende et al. 2012b); in that study, GS accuracies from ran-
dom cross-validation ranged between 0.63 and 0.75 for growth. In
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white spruce, a maternal half-sib population of 1694 trees from
214 parents was genotyped with a set of 6385 SNP markers
(Beaulieu et al. 2014). Accuracy of GS for multiple traits varied be-
tween 0.33 and 0.44 when half-sib relatives of the prediction set
were present in the training set. When half-sib relatives were re-
moved from the training population, GS accuracies were reduced
by more than 50% for most traits (Beaulieu et al. 2014). In another
study in maritime pine, a two-generation dataset composed of
661 trees genotyped with 2500 markers provided predictive abili-
ties between 0.4 and 0.5 for several traits in two random cross-
validation scenarios (Isik et al. 2016). Both cross-validation sce-
narios used in that study were random cross-validation, differing
only in training set population size.

Most of the proof-of-concept studies of GS in tree species utilized
random cross-validation schemes that included familial relatives of
the prediction set in each training set. Since the loblolly pine breed-
ing program managed by the Cooperative Tree Improvement
Program at North Carolina State University utilizes a full-sib mating
design with many crosses produced each year (Isik and McKeand
2019), a realistic application for GS would involve prediction of
breeding values within new full-sib families not represented in the
training population. Within-family selection requires accurate esti-
mation of Mendelian sampling effects to rank individuals (Werner
et al. 2020). Because the earlier literature on GS in tree species uti-
lized random cross-validation, they were not explicitly testing the
ability of markers to predict Mendelian sampling effects. Random
cross-validation tests the ability of markers to predict total breeding
value, which may provide higher accuracies than stratified sam-
pling schemes that withhold close relatives of the test set from the
training set (Werner et al. 2020). Studies in other species including
maize and triticale suggest that family structure between training
and prediction sets is a key determinant of GS prediction ability
(Massman et al. 2013; Lehermeier et al. 2014; Wurschum et al. 2017).
Since most tree GS studies utilized random cross-validation, there
is a knowledge gap around the best way to implement GS in conifer
breeding. In this study, we compare the relative ability of genome-
wide markers to predict total breeding value and Mendelian sam-
pling effects through two cross-validation scenarios designed to ad-
dress among-family and within-family selection separately.

Objectives
The first objective of this study was to measure the ability of a
clonal training population to predict genomic estimated breeding
values (GEBV) of individual trees in a separate population. The
second objective was to study the effect of genetic similarity be-
tween the training and validation population on prediction accu-
racy. We genotyped a number of trees from wide-ranging
progeny tests with varying degrees of relationship with the clonal
training population. Genetic architectures for stem height and
straightness (a categorical trait) were studied through individual
trait genome-wide association studies (GWAS), and significant
markers were tested as fixed-effect covariates in GBLUP models.
Genome-wide analysis of linkage disequilibrium (LD) was con-
ducted to contextualize the modeling results and develop recom-
mendations for the practical implementation of GS in conifer
breeding programs.

Materials and methods
Clonal training population
The population used for model training, Atlantic Coastal Elite
(ACE), is a clonally replicated collection of full-sib families estab-
lished across eight environments in the early 2000s (Shalizi and

Isik 2019). A total of 24 parents was intermated in three discon-
nected eight-parent diallels, producing 76 full-sib families.
Seedlings from these families were screened for fusiform rust dis-
ease, caused by Cronartium quercuum (Berk.) Miyabe ex Shirai f.sp.
fusiforme at the USDA Forest Service Resistance Screening Center
in Asheville, NC using an artificial inoculation. From the original
set of 76 full-sib families, 25 were removed due to high suscepti-
bility to disease. This resulted in the removal of three parents
from the original disconnected diallel mating design.

An average of 46 full-sib progeny from each of the remaining
51 families was vegetatively propagated. From each progeny,
eight rooted cuttings (ramets) were produced. These ramets were
established in eight environments across the southeast United
States (Shalizi and Isik 2019). Each environment featured an
alpha-cyclic row–column incomplete block design with a single
replication. During test establishment, dead seedlings were
replaced with seedlings from an open-pollinated half-sib family
from a single parent. Additionally, seven cloned open-pollinated
families from parents not used in the disconnected diallels were
established in the eight tests.

Tests were measured 6 years after establishment. Height was
measured in units of feet and was converted to meters. Stem
form was recorded as an ordinal variable with values from 1 to 6,
with 1 being the straightest. At the time of measurement, a total
of 2499 clonal genotypes were present across the eight tests.
These genotypes were members of 51 full-sib families and 7
open-pollinated families.

Fourth cycle progeny tests for model validation
In order to test the ability of GS models trained within a clonal
population to predict GEBVs of individual trees in a separate pop-
ulation, a group of trees with both genotypic and phenotypic
records were required. These trees were sampled from a set of 18
progeny tests from the fourth Cycle Coastal breeding population
of The North Carolina State University Cooperative Tree
Improvement Program (Isik and McKeand 2019). Each location
was established using an alpha-cyclic incomplete row–column
experimental design with between five and 10 replications. Each
location was established with a collection of full-sib, open-polli-
nated, and checklot trees from bulked seedlots. The full-sib prog-
enies were derived from crosses prescribed by the mating design
algorithm implemented in MateSelect software (Kinghorn 2011).

The average number of shared parents between pairs of fourth
cycle progeny tests was 100.5, representing 72% of all parents
tested within any given site. The connectivity at the level of full-
sib families was 59.2 for pairs of fourth cycle tests, representing
51% of all full-sib families at any given site. The fourth cycle
progeny tests were connected to the ACE clonal tests through an
average of 18.6 shared parents (Supplementary Figure S1).
Connectivity between the ACE clonal tests (training population)
and the fourth cycle tests (validation population) at the level of
full-sib families was lower, with only two full-sib families appear-
ing in both sets.

All fourth cycle tests were measured 4 or 5 years after estab-
lishment for the same traits measured in the ACE clonal tests. A
set of 451 individual trees was sampled from the fourth cycle
tests for testing the ability of GS models to predict individual tree
GEBV. In the set of individual samples, 52 were members of a
full-sib family that was also represented in the ACE training pop-
ulation, 213 trees were members of seven half-sib families that
shared one parent in common with the ACE training population,
and 186 had no direct parental relationships with the training
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population. Each half-sib family contained two or more nested
full-sib families.

Genotyping and SNP filtering
A total of 2063 clones within the ACE training population were
genotyped with the Pita50K Affymetrix microarray (Caballero
et al. 2021). From the fourth-Cycle progeny tests, 451 individual
trees were genotyped. Genotypes were called from raw microar-
ray data using Life Science’s proprietary software Axiom Analysis
Suite (Axiom Analysis Suite v5.1 2020). All manipulation of SNP ge-
notype data was performed using customized scripts in the R pro-
gramming environment (R Core Team 2021). Various functions
within the dplyr and ggplot2 packages were used extensively
throughout this work (Wickham 2014). Before combining the gen-
otyping data from the two populations, any SNP that were mono-
morphic in either population were removed. SNP filtering was
then applied to the combined genotype dataset. Markers were re-
moved for two reasons: (1) having a minor allele frequency < 0.01
or (2) having an observed heterozygote frequency deviating more
than 15% from the Hardy–Weinberg expectation (Wiggans et al.
2009). This resulted in the retention of 29,135 markers. Samples
with more than 10% missing data were removed. The final pro-
portion of missing genotype data was 2.5%.

Genotype imputation and calculation of G
The genotype matrix (2514, 29135) was used for two purposes:
GWAS and GBLUP. For GBLUP, all 2063 ACE clonal genotypes plus
451 individual trees sampled from fourth-Cycle progeny tests
were used. The marker matrix used in GBLUP will be referred to
as M1. For GWAS, only the markers mapped in the Lauer and Isik
(2021) consensus map were retained, resulting in a (2514, 8523)
matrix. The marker matrix used in GWAS will be referred to as
M2.

The genomic relationship matrix G was calculated from M1
using the R package AGHMatrix (Amadeu et al. 2016), using
Method 1 described by VanRaden (2008). Missing data were im-
puted using the mean genotype for each marker. The matrix G is
shown as a heatmap in Supplementary Figure S3. For M2, the ge-
netic map was used for phasing and imputation with Beagle v5.1
(Browning et al. 2018). After phasing and imputation, all samples
that were not part of the ACE clonal population and all SNP with
a minor allele frequency <0.01 were removed from M2, resulting
in a (2063, 8437) matrix for use in GWAS.

Statistical analyses
All linear mixed models used for the purpose of BLUE and BLUP
estimation were implemented in ASReml 4.1 (Gilmour et al. 2015).
The linear mixed model used for GWAS was implemented in the
R package rrBLUP (Endelman 2011). Genomic relationship matrix
for genotyped individuals from ACE1 and fourth Cycle progeny
tests is presented as a heatmap using the R package popkin
(Ochoa and Storey 2021).

A linear mixed model was used to obtain spatially adjusted
pseudo-phenotypes (the best linear unbiased estimates, BLUE)
for the ACE clonal population for GWAS. The model was:

y ¼ Xbþ Zuþ e; (Eq. 1)

where y was a response vector for 14,857 vegetative ramets of
2,494 clones. X is a (14857, 2503) design matrix mapping the
records in y to the population mean, eight test sites, and 2494
clones. The vector of fixed effects b contains the population
mean, the effects for the eight ACE clonal sites, and fixed effects

for the 2494 clones. The matrix Z is a (14857,878) design matrix

for random effects, mapping the records in y to 360 column-

within-test effects, and 518 row-within-test effects. The random

effects vector u contains 360 column-within-test effects and 518

row-within-test effects. The random error vector e contains

14,857 residuals.
The assumptions of the model were that y � MVNðXb; VÞ

where V ¼ u
e

� �
¼ G 0

0 R

� �
. The variance-covariance for the ran-

dom effects u were block-diagonal with a separate variance for

each test. The variance-covariance matrix for the residuals e at

each location was a separable first-order autocorrelation matrix.

These submatrices were combined as a direct sum to form the re-

sidual matrix R.

R ¼ �8
t¼1½r2

e tð ÞRr tð Þ qr tð Þð Þ � RcðtÞ qcðtÞð Þ�; (Eq. 2)

where r2
e tð Þ is the residual variance for test t, Rr tð Þ qr tð Þð Þ is the [r, r]

correlation matrix for the rows of test t, and RcðtÞ qcðtÞð Þ is the [c, c]

correlation matrix for the columns of test t.

Genome-wide association analysis (GWAS)
The GWAS function of the R package rrBLUP was used as a

mixed-model platform for association analysis. The following lin-

ear mixed model was fit for each marker:

y ¼ Xbþ Zg þ Ss þ e; (Eq. 3)

where y represents a vector (2063,1) of pseudo-phenotypes [the

BLUE of genotyped ACE clones estimated in (Eq. 1)]. X is a (2063,3)

design matrix relating the BLUE in y to the loadings for each clone

on the first three principal components of the kinship matrix,

represented in this model by matrix b. The design matrix for the

random polygenic effects, Z, related the BLUE in y to the poly-

genic effects in g. Finally, the fixed effect of each marker was

obtained using a design matrix S taking on values of –1, 0, and 1

for the major-allele homozygote, heterozygote, and minor-allele

homozygote, respectively. The residual errors for 2063 clones

were contained in e. The random polygenic effect had the expect-

ations g � Nð0;Kr2Þ with K representing the realized genomic

relationship matrix (VanRaden 2008). The residual errors were

assumed to have a normal distribution with the expectations

e � Nð0; Ir2
eÞ. The loadings in b were determined from spectral

decomposition of K matrix using the base R function eigen

(Endelman 2011), and were incorporated into the model to ac-

count for large-scale population structure.
To estimate family-specific effects for significant GWAS asso-

ciations, simple marker regression was performed within families

displaying genotypic variation at the significant marker. The

model applied to each family was:

y ¼ Xbþ e; (Eq. 4)

with y representing the height BLUE estimated from the model in

Equation (1) for a single full-sib family. The design matrix X is a

vector of 0’s and 1’s, representing homozygous and heterozygous

genotypes at the significant marker, while b represents the re-

gression coefficient (the average effect). Here, e represents the

random residual error, which in this case was assumed �iid(0,

Ir2
e ).
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Animal model for prediction of estimated
breeding values
Univariate animal models were used to predict breeding values
for all genotypes in the ACE and fourth-Cycle populations. The
animal model took the form:

y ¼ Xbþ Z1rþ Z2uþ e; (Eq. 5)

with y being a vector (27883,1) of phenotypic records (height or
straightness) for 14,857 trees (vegetative ramets) in ACE clonal
tests and 13,026 individual trees in fourth-Cycle. Matrix X is a
(27883,19) design matrix mapping the fixed effects in b vector
to the response vector y. The fixed effects vector b included the
population mean and the test effects for the eight ACE clonal
tests and 18 tests of fourth-Cycle population. The design ma-
trix for the random experimental design effects Z1 had dimen-
sions (27883, 3303). The random experimental design effects
vector, r, included 100 replication-within-test effects for the
fourth-Cycle tests, 1103 column-within-replication effects for
fourth-Cycle tests, 1222 row-within-replication effects for
fourth-Cycle tests, 360 column-within-test effects for the ACE
clonal tests, and 518 row-within-test effects for the ACE clonal
tests. The design matrix for the genetic effects, Z2, had dimen-
sions (27883, 403575). The vector of random genetic effects, u,
included 315 specific combining ability effects and 403,260 ad-
ditive genetic effects for the 15,510 entries in the pedigree
across the 26 test sites. The random residual vector was e. The
variance–covariance matrix for the residuals, R, was block-
diagonal with a separate residual variance for each location.

The assumptions of the model were that y � MVNðXb; VÞ

where ¼
r
u
e

2
4

3
5 ¼

Gr 0 0
0 Gu 0
0 0 R

2
4

3
5. The variance–covariance ma-

trix for the random effects, G, had two sub-matrices Gr and Gu.

The variance–covariance matrix for the random experimental
design effects, Gr, was formed as a direct sum: Gr ¼
I100r2

rep�I1103r2
cr �I1222r2

rr�I360r2
ct�I518r2

rt, where the variance
parameters for reps within fourth-Cycle tests, columns within
reps for fourth-Cycle tests, rows within reps for fourth-Cycle
tests, columns within tests for ACE clonal tests, and rows
within tests for ACE clonal tests are indexed by the subscripts
“rep,” “cr,” “rr,” “ct,” and “rt,” respectively. The variance–covari-
ance matrix for the random genetic effects, Gu, was a direct
sum: Gu ¼ I315r2

SCA� ð1126r
2
u þ I26r2

u:eÞ �A
� �

where the variance
parameters for the SCA variance, genetic variance, and
genotype-by-environment variance are indexed by “SCA,” “u,”
and “u.e,” respectively. In this formulation (CORUV structure in
ASReml software syntax), a single variance parameter is esti-
mated for genotype-within-environment effects, and a single
covariance is estimated for among-environment genetic co-
variance. These parameters are interpreted as r2

u þ r2
u:e

� �
and

r2
u, respectively. The numerator relationship matrix A had

dimensions of (15510, 15510).
Marginal estimated breeding values (EBV) were obtained by

averaging the genotype-within-environment effects for each
genotype over 26 tests: ûi ¼ 1

26

P26
t¼1 ûiðtÞ. The term ûiðtÞ repre-

sents the additive genotype-within-environment effect for the
ith individual within the tth environment. Reliabilities were
computed using the prediction error variance (PEV) of each
BLUP: r2 ¼ 1� PEV

r2
uð1þFÞ. The F term represents the inbreeding co-

efficient, estimated as Fi ¼ Aii � 1 where Aii is the diagonal
value of the additive relationship matrix for the ith individual.

Genomic BLUP
To test the ability of genome-wide markers to predict additive ge-
netic merit of trees, a GBLUP model was applied to the same data-

set that was used for the estimation of BLUE of the ACE clonal
population, excluding non-genotyped clones. In addition, 451
rows were appended to the bottom of the dataset representing
the genotyped fourth-Cycle trees, but their phenotypic data were
not included in the model. The mixed linear model for GBLUP can

be written as before:

y ¼ Xbþ Zuþ e; (Eq. 6)

here, y represents the response vector for 12223 ramets (geneti-
cally identical copies of 2063 clones) and the fourth cycle popula-
tion 451 individual trees. No phenotypic data were included for
the individual trees. The design matrix for the fixed effects X had

dimensions (12664, 9). The vector of fixed effects in b included
the population mean and eight test effects. The design matrix for
the random effects Z had dimensions (12664, 5906). The random
effects vector u contained 360 row-within-test effects, 518

column-within-test effects, 2514 additive genetic effects, 2514
non-additive genetic effects, and 20112 genotype-by-
environment effects. The vector of random residuals was e.

The variance–covariance matrix for the additive genetic
effects was r2

uG, with G representing the realized relationship
matrix calculated from SNP markers using Method 1 from

VanRaden (2008). The variance–covariance for the non-additive
genetic effects was identity, r2

naI2514. In this context, the non-
additive component contains dominance, higher-order epistatic
terms, effects of major genes, and any other genetic effects that

do not fit the additive genomic relationships. The variance–co-
variance for the genotype-by-environment term was I20112r2

ue.
The variance–covariance matrix for the residuals was block-
diagonal with a unique residual variance for each location as
explained for Equation (3). Reliabilities for each GEBV were com-

puted using the same method as the animal model, with inbreed-
ing coefficients estimated from G instead of A.

A significant GWAS association on linkage Group 5 for tree
height was used as a fixed-effect covariate in GBLUP. The average
effect of the allele substitution (a) for the QTL on linkage Group 5
was estimated using the same GBLUP model described above,

with an additional covariate in X taking values of 0 and 1 for the
major-allele homozygote and heterozygote, respectively. The av-
erage effect was estimated as the regression coefficient for the
covariate in b.

Heritability
To assess the ability of genome-wide markers to capture additive
genetic variation relative to standard ABLUP, narrow-sense heri-
tability was estimated from model Equation (4):

h2 ¼ r̂ar2
u

r2
u þ r2

SCA þ 1
t

Pt
t¼1 r2

e pð Þ

� 	 ; (Eq. 7)

where r̂ais the common genetic correlation between sites, r2
u is

the genotype-within-environment variance, and t is the number
of fourth-Cycle progeny tests. Since the objective was prediction
of individual tree breeding values, the residual term 1

t

Pt
t¼1 r2

e pð Þ

� 	
is the average residual variance of the fourth-Cycle progeny tests.

Heritability of clone means was estimated in the same man-
ner, except that the residual term was weighted by the harmonic
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mean number of vegetative ramets per clone (Holland et al. 2003).
The heritability of clone means could be written as:

h2
c ¼

r̂ar2
u

r2
u þ r2

SCA þ
Pc

c¼1
r2

eðcÞ
nc

; (Eq. 8)

where n is the harmonic mean number of ramets per clone, and c

is the number of clonal tests. The mean reliability of genotyped
trees was compared between the animal model and GBLUP to as-

sess the impact of information loss caused by removal of the ped-

igree and phenotypic data. Standard errors of heritabilities were
estimated using the Delta method in ASReml 4.1 (Gilmour et al.

2015).
Heritability of family means for fourth-Cycle tests was esti-

mated using the following formula (Isik et al. 2017):

h2
f ¼

r̂ar2
u

r2
u

s þ
ð1�sÞr̂ ar2

u
s þ

Pt

t¼1
r2

e pð Þ
rs

;

where s is the total number of fourth-Cycle progeny test sites and
r is the harmonic mean number of progeny per parent.

To estimate missing heritability (de los Campos et al. 2015), av-
erage reliabilities (r2

n) for clonal genotypes with phenotypic data

were compared between ABLUP and GBLUP. In the case of unbal-

anced data, the response to selection may vary depending on the
selection unit since the amount of information in the model is

not the same for each genotype (Piepho and Möhring 2007). A

generalized heritability taking into account the heterogeneous in-
formation content for Q genetic effects in the model is the mean

reliability:

r2 ¼ Q�1
XN

n¼1
r2

n: (Eq. 9)

Conifer genetic trials typically constitute sets of full-sib fami-
lies derived from crosses between unrelated individuals, so F is

usually 0. The average reliability Eðr2Þ of individual BLUPs is anal-

ogous to the classical heritability from balanced completely ran-
domized designs with independent genetic effects (Piepho and

Möhring 2007):

E r2ð Þ ¼ covðui; ûiÞffiffiffiffiffiffiffiffiffiffiffiffi
r2

ur2
û

q ¼ r2
u

r2
P

¼ h2: (Eq. 10)

To estimate missing heritability for each trait (h2
mÞ, average

reliabilities from ABLUP and GBLUP for clonal genotypes were

substituted for the h2 and h2
g terms, respectively (de los Campos

et al. 2015):

h2
m ¼

h2 � h2
g

h2 : (Eq. 11)

Cross-validation
Two cross-validation scenarios were used to test the ability of

genome-wide markers to predict breeding values. The first was

random fivefold cross validation (Random-CV) within the ACE
clonal population. In each of 10 replications of Random-CV, the

phenotypic data for a random set of 20% of the ACE clonal geno-

types was held out of the model, and GEBV for these clones were
predicted using the other 80% of the population. Since the

sampling was random, the training population for each clone
was a mixture of full-sib, half-sib, and distant relatives.

The second cross-validation scenario was full-sib cross valida-
tion (Fullsib-CV). In this scenario, each of 51 full-sib families in
the ACE population was held out of the model in turn, and pre-
dicted using the other 50 families. This scenario represents a
common breeding situation in which a new full-sib family is pro-
duced that is not represented in the training population. In this
scenario, the training population for each clone lacked full-sib
relatives, but contained a mixture of half-sib and more distantly
related relatives.

In each replication of cross-validation, variance parameters
were fixed using estimates from the full model (with all ACE
clonal data). Since the breeding program conducts forward selec-
tion using individual tree BLUP (EBV), prediction ability in each
fold was measured as r̂ EBV; GEBVð Þ, the Pearson correlation coef-
ficient between EBVs predicted from the ABLUP animal model,
and GEBVs predicted from GBLUP.

Since the fourth-Cycle progeny tests were not included in the
training model for GBLUP, cross-validation could not be repli-
cated for the 451 genotyped trees. The impact of relatedness on
prediction ability was assessed using the full GBLUP model
trained with all ACE clones, and prediction ability was measured
as the correlation between their GEBV from GBLUP and their EBV
from ABLUP.

Linkage disequilibrium
Genome-wide analysis of LD was conducted for genotype matrix
M2 using the R package pegas (Paradis 2010). The function
“LDScan” was used to estimate interallelic R2 values for all pairs of
SNPs on each linkage group using the phased genotypes in M2.
The rate of LD decay over genetic distance was estimated by aver-
aging the R2 values for all pairs of SNP within 0.5 cM bins of map
distance from 0 to 200 cM. The rate of LD decay over physical dis-
tance was estimated in the same manner, except that only pairs
of markers occurring on the same contig of the Pitav2.01 refer-
ence genome were utilized in the analysis.

Results
Marker-trait associations
A significant association was observed for tree height on linkage
Group 5 at 166.9 cM at marker PitaSNP287174 (Figure 1), and no
significant associations were observed for stem form (data not
shown). The QQ-plot suggested a close agreement to the null hy-
pothesis for the majority of SNP (Supplementary Figure S2). The
minor allele at PitaSNP287174 was present at a frequency of 0.02
and had an average effect of –0.34 m, which was the average dif-
ference between trees with 0 copies of the minor allele and 1
copy. No minor-allele homozygotes were observed in the popula-
tion. Genotypic values were inspected in the four full-sib families
segregating at the marker (Figure 2). Marker PitaSNP287174
showed evidence for the segregation of a large-effect dwarfing
gene in two full-sib families (ACE76, ACE37), which shared one
parent. The SNP was not associated with any effect on height in
two other families in which it was segregating, and which did not
derive from the parent shared by families ACE76 and ACE37. This
suggests that the marker-QTL linkage phase varied across fami-
lies. The height reducing effect was observed in two of the four
families, but was statistically significant only in family ACE37
(Supplementary Table S1). Since the minor allele was associated
with a height decrease in the heterozygous condition, this
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represents the first dominant dwarfing allele reported in a conifer

species.

Genetic parameters and reliabilities of predictions
Type-B genetic correlations of genotypic values across environ-

ments were 0.79 and 0.87 for height and stem form, respectively

(Table 1), suggesting limited genotype-by-environment interac-

tion. The traits had similar clone-mean heritability estimates

(0.49 and 0.51), but the narrow-sense heritability for stem form
(0.19) was far lower than for height (0.31). Heritability of family

means was > 0.9 for both traits (Table 1). Reliabilities of EBV for

clones were � 0.68 for both height and stem form. For individual
trees, reliabilities were close to 0.55 for both traits, with stem

form showing slightly lower estimates than height (not shown).

Cross-validation within ACE population
The Random-CV scenario showed contrasting levels of prediction
ability for height and stem form, with average prediction abilities

of 0.58 and 0.78, respectively (Table 2). Adjustment of height

GEBV with the QTL covariate increased prediction ability by only
one percentage point in the Random-CV scenarios (not shown).

The modest increase in prediction ability using the covariate was

likely due to its low minor allele frequency and the variable
marker-QTL linkage phase observed in the families segregating

for the marker. In the families segregating at PitaSNP287174, ad-

justment of GEBV with the QTL covariate resulted in large
changes to prediction ability. In the case of family ACE37, adjust-

ment with the covariate increased the prediction ability from –

0.05 to 0.26 in the Fullsib-CV scenario (Figure 3). Similarly, in
family ACE76, the QTL covariate increased prediction ability from

0.36 to 0.38 (data not shown). However, prediction ability for fam-

ily ACE04 was reduced from 0.22 to 0.04 with the QTL effect,
again suggesting that linkage phase between the minor allele at

PitaSNP287174 and height-reducing QTL allele varies among fam-

ilies.
Prediction ability for both traits dropped significantly in the

Fullsib-CV scenarios (masking single full-sib families) relative to

Random-CV (Table 2). The average prediction ability within 51

families was 0.22 for height and it was 0.36 for stem form. These

correlations represent decreases of 62% and 54% from the
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Figure 1 Significance levels (log scale) of 8437 SNPs distributed across 12 linkage groups for association with height in Pinus taeda. The Bonferroni-
adjusted-log10 (P-value) for an experiment-wise Type I error rate of 0.05 is shown as a horizontal red dashed line. The significant marker, PitaSNP287174,
was located at 166.9 cM on linkage Group 5. The average effect of the marker was –0.34 m, and its minor allele frequency was 0.02. The marker
segregated in four full-sib families within ACE1 population.
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Figure 2 The effect of significant SNP PitaSNP287174 on linkage Group 5
on height varied across four families, suggesting variation in linkage
phase between this marker and a linked QTL. Phenotype distributions for
height (m) for the two genotypic classes within the four families
segregating at the marker are shown here. Full-sib families ACE76 and
ACE37 share one common parent. The effect of the marker was
statistically significant only in family ACE37 (Supplementary Table S1).
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Random-CV scenario, respectively. The standard errors of predic-
tion ability for both traits showed a large increase in Fullsib-CV
relative to Random-CV, indicating more variability in the predic-
tion ability. The addition of the QTL covariate had minimal im-
pact on the mean prediction ability, but did have a significant
impact on the families segregating for the marker (Figure 3).

Individual tree GEBV
Reliabilities of individual tree GEBVs were strongly influenced by
the degree of relationship with the training population (Figure 4).
For tree height, reliabilities were reduced by 18%, 36%, and 82%
in the GBLUP model relative to ABLUP for full-sibs, half-sibs, and
unrelated trees, respectively (Figure 4). Stem form reliabilities
were not significantly reduced for full-sibs, and were reduced by
19% and 75% for half-sibs and unrelated trees, respectively.
Reliabilities of GEBV for individual trees were regressed on three
different measures of covariance with the training population
(Figure 5). The mean of the top 100 covariances between the indi-
vidual tree and the training population explained 83% of the vari-
ation in reliability. The mean of the top 10 covariances and the
maximum covariance explained 78% and 72% of the variation in
reliabilities, respectively. Variation in the mean of all covariances
among genotypes was very low, and explained only a small pro-
portion of the variation in reliability (not shown).

Genomic prediction ability for individual trees in fourth-Cycle
progeny tests was far lower than for clones within ACE. For tree
height, genomic prediction abilities dropped from 0.58 for clones to

0.29 for individual fourth-Cycle trees (Table 2a). A reduction in ge-
nomic prediction ability between clones and individual trees was
also observed for stem form, although not as large as for tree height
(Table 2b). One full-sib family, ACE12, contained both clones and
individual fourth-Cycle trees. The Fullsib-CV scenario for this family
indicated that genomic prediction ability is reduced significantly for
both clones and individual trees when the entire full-sib family was
removed from the training set (Figure 6).

The average prediction ability for all 451 individual trees was
0.29 for height and 0.57 for stem form (Table 2). For the set of
full-sibs, the prediction ability was 0.16 for height and 0.37 for
stem form. For height and stem form, prediction ability within
half-sib families averaged 0.23 and 0.29, respectively. The great-
est contrast between the two traits was observed for the unre-
lated prediction set. For height, the prediction ability for
individual trees without direct parent relationships to the train-
ing population was 0.24 (Table 2a). For stem form, this correla-
tion was 0.04 (Table 2b). The large contrast between the two
traits in the unrelated prediction set may have been related to
low narrow-sense heritability for stem form in ABLUP (Table 1).
For tree height, the narrow-sense heritability was around 32% of
the family-mean heritability, but was only �19% for stem form. A
significant amount of inflation of GEBV relative to EBV was ob-
served, particularly for the fourth-Cycle trees. Slopes of EBV on
GEBV were all lower than 1. For clonal genotypes, slopes were sig-
nificantly reduced in the Fullsib-CV scenario relative to Random-
CV. For both tree height and stem form, the mean of the top 10%

Table 1 Genetic parameter estimates for tree height and stem form from ABLUP models with standard errors provided in parentheses

Parameter Height Stem form
Estimate (SE) Estimate (SE)

Type B genetic correlation (̂rB) 0.785 (0.021) 0.873 (0.021)
Additive genetic variance (r2

u) 0.203 (0.036) 0.257 (0.015)
Specific combining ability variance (r2

SCA) 0.013 (0.003) 0.007 (0.002)
Mean residual variance for fourth-Cycle tests (r2

eðpÞ) 0.389 (0.012) 0.934 (0.019)
Mean residual variance for clonal tests (r2

eðcÞ) 0.145 (0.002) 0.180 (0.003)
Family-mean heritability (h2

f ) 0.96 (0.003) 0.92 (0.005)
Clone-mean heritability (h2

c ) 0.49 (0.012) 0.51 (0.014)
Narrow-sense heritability (h2) 0.31 (0.014) 0.19 (0.010)

Table 2 Cross-validation model fit statistics for six scenarios

Scenario Training/prediction Prediction ability (SE) Slope (SE) Mean top 10%

(a) Height
Random-CV 1558/413 0.58 (0.03) 0.73 (0.07) 0.38 (0.02)
Fullsib-CV 2024/39 0.22 (0.18) 0.39 (0.35) 0.19 (0.19)
4C 2063/451 0.29 0.39 0.29
4C Full-Sib 2063/57 0.16 0.16 0.33
4C Half-Sib 2063/29 0.23 (0.13) 0.23 (0.18) 0.17 (0.21)
4C Unrelated 2063/186 0.24 0.56 0.25

(b) Stem form
Random-CV 1558/413 0.78 (0.01) 0.81 (0.04) –0.37 (0.04)
Fullsib-CV 2024/39 0.36 (0.16) 0.44 (0.22) –0.09 (0.33)
4C 2063/451 0.57 0.71 –0.19
4C Full-Sib 2063/57 0.37 0.17 –0.02
4C Half-Sib 2063/29 0.29 (0.27) 0.26 (0.23) 0.07 (0.32)
4C Unrelated 2063/186 0.04 0.07 –0.11

For replicated scenarios, standard errors are provided after each estimate. Random-CV, random approximately fivefold cross validation within the ACE training
population with 10 reps; Fullsib-CV, each full-sib family is predicted using a training set lacking any members from that full-sib family, with 51 reps; 4C, 451 fourth
cycle trees are predicted using the ACE training population; 4C Full-Sib, fourth cycle trees within one family having full-sib relatives in the ACE training population;
4C Half-Sib, fourth cycle trees within seven families having half-sib relatives in the ACE training population; 4C Unrelated, fourth cycle trees not having direct
parental relationships with the ACE training population.
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of EBVs ranked by GEBV suggested that genetic gain could be re-
alized through selection based on GS.

Linkage disequilibrium
The decay of LD was studied for pairs of markers placed on the
Lauer and Isik (2021) consensus genetic map. Pairs of markers on
the consensus map located at the same genetic position had a
median R2 close to 0.1 (Figure 7A). This correlation dropped by
more than half with a 1 cM increase in map distance and was
close to zero at distances greater than 2 cM. Decay of LD was also
studied for pairs of markers located on the same contigs of the
Pita v.2.01 reference genome. For pairs of markers < 1 kb distant,
the median R2 was 0.48; this correlation dropped by 50% within
1 Mb (Figures 6B and 7B).

Discussion
This study shows the large impact of family structure on empiri-
cal prediction ability for tree height and stem form in P. taeda.
Some recommendations can be made regarding the practical ap-
plication of GS in tree breeding. First, the inclusion of full-sib rela-
tives of selection candidates in the training population increased
the within-family prediction ability for both traits by more than
50% (Table 2). The reduction in prediction ability when full-sib
relatives were removed from the training population was severe,
even if those relatives constituted < 2% of the total training pop-
ulation size. Second, the impact of large-effect QTL on height
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Figure 3 Prediction abilities for tree height (m) of two families segregating for the significant SNP PitaSNP287174 marker on linkage Group 5 for three
scenarios. Left (full model): all ACE genotypes are included in the training model; Center (Fullsib-CV): full-sib families ACE37 or ACE04 are removed from
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Figure 4 Estimated reliabilities from GBLUP for height (left) and stem
form (right) for 451 individual trees. On the X axis, three categories of
genotypes are presented: fourth-Cycle trees with full-sib relatives in the
ACE training population, fourth-Cycle trees with half-sib relatives in the
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varies by family. The assumption of common linkage phase be-
tween markers and QTL is not valid, particularly in outbred coni-
fers with large effective population size, large physical genome
size, and limited breeding history from their wild source

populations (Brown et al. 2004; Zimin et al. 2014; Isik and
McKeand 2019). There may be benefits from models that utilize
multi-allelic haplotypes (Hess et al. 2017; Sallam et al. 2020) or
that explicitly model the transmission of QTL alleles from
parents to offspring (Sun et al. 2016).

Missing heritability for height and stem form was 0.26 and
0.13, respectively. These estimates are informative as to the rela-
tive efficiency of GS selection vs traditional ABLUP. If the breeder
were to select among individual seedling progeny from the same
group of families in the training population, the selection accu-
racy would be around 74% and 87% of what could be obtained if
they waited for height and stem form measurements, respec-
tively. Assuming a 50% reduction in cycle time and an equal se-
lection intensity, the annualized genetic gain from GS compares
favorably with ABLUP for both traits. However, this advantage
depends on close genetic relationships between the training and
prediction sets. The selection accuracy decreases as this genetic
similarity gets lower.

Prediction abilities in the Random-CV scenario within the ACE
clonal population were 0.58 for height and 0.78 stem form, com-
paring favorably to maritime pine (Isik et al. 2016) and white
spruce (Beaulieu et al. 2014). Since each replicate of Random-CV
featured training and prediction sets within the same generation,
these prediction abilities are likely higher than would be obtained
from cross-generation prediction since marker-QTL linkage
phase was consistent between training and prediction sets in
Random-CV (Bartholomé et al. 2016; Isik et al. 2016). Within the
ACE clonal population, a �60% reduction in prediction ability
was observed in the Fullsib-CV scenario relative to the Random-
CV scenario for both traits (Table 2). In most GS studies reported
in conifers, results from Random-CV are reported as the metric
for assessing genomic prediction ability (Resende et al. 2012a; Isik
et al. 2016; Lenz et al. 2017; Thistlethwaite et al. 2020). Since each
prediction set in Random-CV contains individuals from multiple
full-sib or half-sib families, Mendelian sampling effects are con-
founded with family means and the prediction ability appears
higher (Werner et al. 2020). In this study, by systematically re-
moving each full-sib family from the training population, the pre-
diction ability for Mendelian sampling effects can be partitioned
from the prediction ability for family means. In most breeding
programs, breeding values for the parents that are intercrossed
to produce the GS training and validation populations are known,
since they are usually selected using progeny records via ABLUP.
The expectation of the family mean is the mid-parent breeding
value, which is either already predicted with a high degree of pre-
cision or can be estimated from the phenotypic records within
the training population. The true utility of genome-wide markers
to tree breeding lies in the prediction of Mendelian sampling
effects (Werner et al. 2020), which would allow large collections of
full-sib progenies from a cross to be ranked using genome-wide
markers without the need for phenotypic data or progeny testing.
The observed variation in marker-QTL linkage phase across fami-
lies (Figure 2) and rapid decay of LD (Figure 7) suggests that the
current marker density (1 SNP/755Kb) may not adequately cap-
ture within-family haplotype variation. Likewise, since only 21
parents were intercrossed to produce the ACE training popula-
tion, the haplotype diversity within the training data may have
been inadequate for the prediction of Mendelian sampling effects
from one family to another (Werner et al. 2020). The rate of LD de-
cay measured for P. taeda is similar to other conifers such as
Pseudotsuga menziesii and Picea glauca (Thistlethwaite et al. 2020).
The combination of rapid LD decay and exceptionally large ge-
nome size (Zimin et al. 2014) means that in conifers, higher

R2 = 0.83

R2 = 0.78

R2 = 0.72

Max

Top10

Top100

0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Covariance

re
lia

bi
lit

y
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marker density, and more diverse training populations may be
required for within-family selection schemes.

For prediction abilities of the individual fourth-Cycle trees, the
impact of relatedness to the training population was more obvi-
ous for stem form than height (Table 2). The most significant
contrast between the two traits was for the unrelated set, which
had an average prediction ability of 0.24 for height and 0.04 for
stem form. For tree height, there was little difference between
the full-sib, half-sib, and unrelated prediction sets (Table 2a). For
stem form, prediction ability was well correlated with the degree
of relationship between training and prediction sets, dropping
from 0.37 to 0.29 between full-sibs and half-sibs, and from 0.29 to
0.04 between half-sibs and the unrelated set. The sixfold greater
prediction ability for height than stem form for the unrelated set
is surprising given that stem form had higher reliabilities for all
other prediction sets (Figure 4). This result suggests that stem
form was more sensitive to the family structure in the training
population than tree height, which may point to subtle differen-
ces in genetic architecture between the traits. This sensitivity to
family structure was also observed in the results from the
ABLUP, in which the difference between family-mean and
narrow-sense heritability was much greater for stem form than
height (Table 1). Since the unrelated set had the lowest average
covariance with the training population of all prediction sets
(Figure 5), the prediction ability for these trees would have been
driven more by trait heritability than covariance with the training
population. The narrow-sense heritability of stem form was 50%
lower than tree height (Table 1), resulting in lower prediction
ability particularly for the unrelated trees. A similar contrast be-
tween growth and form was observed in maritime pine; in that
species, sampling from the progeny generation improved predic-
tion ability for stem sweep, but not for height (Isik et al. 2016).
The prediction ability within the half-sib family sets was compa-
rable to the clonal prediction abilities from the Fullsib-CV sce-
nario for height, and around 20% lower for stem form (Table 2).
This shows that clonal replication resulted in significant im-
provement in prediction ability for stem form, but not for height.

For both traits, the reduction in GEBV reliability from trees
with full-sib relationships to trees with no parental relationships
to the training population was close to 80%. The magnitude of
this reduction in reliability between full-sibs and unrelated indi-
viduals is similar to that reported in Merino sheep (Clark et al.

2012) and slightly lower than white spruce (Beaulieu et al. 2014).
Variation among GEBV reliabilities were well explained by the
elements of G (Figure 5). A total of 83% of the variation among
reliabilities for fourth-Cycle trees was explained by the mean of
the top 100 covariances in the realized genomic relationship ma-
trix. Slightly less variation among reliabilities was explained by
the mean of the top 10 covariances and the maximum covari-
ance, respectively. These values are similar to those reported by
Clark et al. (2012) for Merino sheep, but in the case of P. taeda,
there was a larger benefit from averaging more covariances,
likely due to the nested family structure of the training popula-
tion.

The large-effect dwarfing allele discovered on linkage Group 5
is the first dominant dwarfing allele reported in a conifer. It war-
rants further investigation into the mechanisms of height reduc-
tion, its impacts on wood quality traits, and the fitness
consequences of reduced height in wild populations. A large
number of deleterious recessive mutations are thought to exist in
wild populations of P. taeda, perpetuated by the outbreeding mat-
ing habit and high heterozygosity of the species (Franklin 1972).
The dominance of the reduced height effect was unexpected
given that deleterious alleles are typically recessive (Yang et al.
2017), but this presupposes that reduced height carries a fitness
cost in wild populations. The finding that a locus bearing a domi-
nant height-reducing allele is still polymorphic after millions of
years of natural selection indicates that the selection coefficient
for tree height may be small. This exemplifies the tension be-
tween natural selection and domestication. For ancient conifers
such as P. taeda, genomic methods will be invaluable in identify-
ing mutations that have deleterious effects in a breeding popula-
tion but are neutral in wild populations.

Conclusions and implications
Based on the findings in this study, some simple guidelines can
be developed for the application of GS in conifers. First, the
marker panel Pita50K is adequate for among- and within-family
selection, but its ability to capture Mendelian sampling variation
within families is limited due to rapid LD decay, large genome
size, and low diversity in the training population. In order to pre-
dict GEBV within full-sib families not represented in the training
population, a higher density marker panel and a large and more

Figure 7 (A) Decay of linkage disequilibrium (R2) is shown relative to genetic distance (cM). The decay function is the mean for all pairs of markers with a
genetic distance equal to or less than the value on the X axis. Pale blue dots in the background are marker pairwise R2 values. (B) LD decay is shown
relative to physical distance for pairs of markers mapped to the same contigs of the Pita v.2.01 reference genome.
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diverse training population would likely produce significant
improvements in prediction ability. Second, the benefit of famil-
ial relatedness to the training population was trait-specific. For
tree height, prediction ability of unrelated trees was equivalent to
the half-sib prediction sets. This situation was reversed for stem
form. This shows that some traits are much more sensitive to fa-
milial relatedness with the training set than others, which may
involve subtle differences in genetic architecture and trait herita-
bility. Finally, the GWAS results reported here suggest that tree
height can be influenced by large-effect QTL. Knowledge of trait
architecture, represented in this study by the inclusion of a fixed
effect covariate for the significant marker, improved prediction
ability in some families and reduced it in others (Figure 3).
Inference of identity-by-descent status for unobserved QTL
alleles using observed marker genotypes is made more difficult
by low LD, large wild effective population sizes (Brown et al. 2004),
and large genome sizes for conifer species (Zimin et al. 2014).

Data availability
File M1.csv (https://doi.org/10.6084/m9.figshare.15023355) con-
tains the genomic marker data for 29135 SNP markers on the
Pita50K Affymetrix Array for all 2514 genotyped samples refer-
enced in the manuscript. File M2.csv (https://doi.org/10.6084/m9.
figshare.15023316) contains the phased genomic marker data, in
“AjG” format, for 8437 SNP markers on the Pita50K Affymetrix
Array for 2063 clones within the ACE training population. File
phenotypes_ABLUP.csv (https://doi.org/10.6084/m9.figshare.
15023343) contains the phenotypic dataset combining the 8 loca-
tions from the ACE1 clonal trials with the 18 fourth-Cycle prog-
eny test locations. File pedigree.csv (https://doi.org/10.6084/m9.
figshare.15023358) contains the pedigree file used in ABLUP. File
phenotypes_GBLUP.csv (https://doi.org/10.6084/m9.figshare.
15023508) contains the phenotypic data for genotyped ACE1
clones, as well as an additional 451 rows (lacking phenotypic
data) for the individual genotyped fourth-Cycle trees. File
Height_BLUE.csv (https://doi.org/10.6084/m9.figshare.15025266)
contains the fixed effect estimates for height for all genotyped
clones within ACE1. File “SupplementaryTable4.xlsx” (https://doi.
org/10.6084/m9.figshare.15023334) contains the genetic map for
all markers in M2.csv. File “GBLUP_pedigree.csv” (https://doi.org/
10.6084/m9.figshare.15024540) contains the genotype identifiers
and row order for the G matrix, to be used by GBLUP.as. File
G1.grm.csv (https://doi.org/10.6084/m9.figshare.15024387) is a
sparse-formatted realized relationship matrix computed from
29135 markers using Van Raden Method 1, to be used by
GBLUP.as. File GBLUP.as (https://doi.org/10.6084/m9.figshare.
15024876) is an ASReml job file for running the full GBLUP model
as well as Fullsib-CV for height and stem form. File ABLUP.as
(https://doi.org/10.6084/m9.figshare.15024705) is an ASReml job
file for running pedigree BLUP for the combined ACEþ fourth
Cycle dataset. All pedigree identifiers have been coded with ran-
dom alphanumeric strings.
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Isik F, Bartholomé J, Farjat A, Chancerel E, Raffin A, et al. 2016.

Genomic selection in maritime pine. Plant Sci. 242:108–119. doi:

10.1016/j.plantsci.2015.08.006.

Isik F, Holland J, Maltecca C. 2017. Genetic Data Analysis for Plant

and Animal Breeding. Cham, Switzerland: Springer International

Publishing. doi:10.1007/978-3-319–55177-7.

Isik F, McKeand SE. 2019. Fourth cycle breeding and testing strategy

for Pinus taeda in the NC State University Cooperative Tree

Improvement Program. Tree Genet Genomes. 15:70.doi:

10.1007/s11295-019–1377-y.

Kinghorn BP. 2011. An algorithm for efficient constrained mate selec-

tion. Genet Sel Evol. 43:4.doi:10.1186/1297–9686-43-4.

Lauer E, Isik F. 2021. Major QTL confer race-nonspecific resistance in

the co-evolved Cronartium quercuum f. sp. fusiforme–Pinus taeda

pathosystem. Heredity (Edinb). 127:288–299.

Lehermeier C, Kramer N, Bauer E, Bauland C, Camisan C, et al. 2014.

Usefulness of multiparental populations of maize (Zea mays L.)

for genome-based prediction. Genetics. 198:3–16. doi:10.1534/ge-

netics.114.161943.

Lenz PR, Beaulieu J, Mansfield SD, Clément S, Desponts M, et al. 2017.

Factors affecting the accuracy of genomic selection for growth

and wood quality traits in an advanced-breeding population of

black spruce (Picea mariana). BMC genomics. 18:1–17.

Lillehammer M, Meuwissen THE, Sonesson AK. 2011. A comparison

of dairy cattle breeding designs that use genomic selection. J

Dairy Sci. 94:493–500. doi:10.3168/jds.2010–3518.

Massman J, Gordillo A, Lorenzana R, Bernardo R. 2013. Genomewide

predictions from maize single-cross data. Theor Appl Genet. 126:

13–22. doi:10.1007/s00122-012–1955-y.

Mrode R. 2014. Linear models for the prediction of animal breeding

values. 3rd ed. CABI. Oxfordshire, UK.

Namkoong G, Kang HC, Brouard JS. 2012. Tree Breeding: Principles

and Strategies. Springer Science & Business Media. New York,

USA.

Ochoa A, Storey J. 2021. Estimating FST and kinship for arbitrary

population structures. PLoS Genet. 17:e1009241.

Paradis E. 2010. pegas: an R package for population genetics with an

integrated–modular approach. Bioinformatics. 26:419–420. doi:

10.1093/bioinformatics/btp696.
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