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Abstract: Cobalt pi-complexes, previously described in the literature and specially synthesized
and characterized in this work, were used as catalysts in homogeneous oxidation of organic
compounds with peroxides. These complexes contain pi-butadienyl and pi-cyclopentadienyl
ligands: [(tetramethylcyclobutadiene)(benzene)cobalt] hexafluorophosphate, [(C4Me4)Co(C6H6)]PF6

(1); diiodo(carbonyl)(pentamethylcyclopentadienyl)cobalt, Cp*Co(CO)I2 (2); diiodo(carbonyl)
(cyclopentadienyl)cobalt, CpCo(CO)I2 (3); (tetramethylcyclobutadiene)(dicarbonyl)(iodo)
cobalt, (C4Me4)Co(CO)2I (4); [(tetramethylcyclobutadiene)(acetonitrile)(2,2′-bipyridyl)cobalt]
hexafluorophosphate, [(C4Me4)Co(bipy)(MeCN)]PF6 (5); bis[dicarbonyl(B-cyclohexylborole)]cobalt,
[(C4H4BCy)Co(CO)2]2 (6); [(pentamethylcyclopentadienyl)(iodo)(1,10-phenanthroline)cobalt]
hexafluorophosphate, [Cp*Co(phen)I]PF6 (7); diiodo(cyclopentadienyl)cobalt, [CpCoI2]2

(8); [(cyclopentadienyl)(iodo)(2,2′-bipyridyl)cobalt] hexafluorophosphate, [CpCo(bipy)I]PF6

(9); and [(pentamethylcyclopentadienyl)(iodo)(2,2′-bipyridyl)cobalt] hexafluorophosphate,
[Cp*Co(bipy)I]PF6 (10). Complexes 1 and 2 catalyze very efficient and stereoselective oxygenation of
tertiary C–H bonds in isomeric dimethylcyclohexanes with MCBA: cyclohexanols are produced in 39
and 53% yields and with the trans/cis ratio (of isomers with mutual trans- or cis-configuration of
two methyl groups) 0.05 and 0.06, respectively. Addition of nitric acid as co-catalyst dramatically
enhances both the yield of oxygenates and stereoselectivity parameter. In contrast to compounds
1 and 2, complexes 9 and 10 turned out to be very poor catalysts (the yields of oxygenates in the
reaction with cis-1,2-dimethylcyclohexane were only 5%–7% and trans/cis ratio 0.8 indicated that
the oxidation is not stereoselective). The chromatograms of the reaction mixture obtained before
and after reduction with PPh3 are very similar, which testifies that alkyl hydroperoxides are not
formed in this oxidation. It can be thus concluded that the interaction of the alkanes with MCPBA
occurs without the formation of free radicals. The complexes catalyze oxidation of alcohols with
tert-butylhydroperoxide (TBHP). For example, tert-BuOOH efficiently oxidizes 1-phenylethanol to
acetophenone in 98% yield if compound 1 is used as a catalyst.
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1. Introduction

Selective functionalization of C–H bonds in hydrocarbons and other compounds is a very real aim
of contemporary catalytic science [1–4]. Numerous transition metal complexes play roles of efficient
catalysts in oxygenation of hydrocarbons as well as alcohols [5–14]. Derivatives of cobalt are known
to catalyze various transformations of organic compounds [15–24]. Molecular oxygen, hydrogen
peroxide, tert-butyl hydroperoxides, and peroxyacids were used as oxidants in these oxygenations.
Certain complexes of transition metals have been previously reported to oxidize organic compounds
including alkanes with meta-chloroperoxybenzoicacid (MCPBA [25]) [25–44] (see, for example,
complexes of cobalt [21,24,38], manganese [26,27,34,36,44], iron [28], nickel [30–33,35,37,39,42,43] and
vanadium [40]). Earlier, Nam [15,16] reported that alkane oxidation with MCPBA catalyzed by some
cobalt compounds proceeds stereoselectively. It is interesting to check the oxidation various cobalt
organometallic complexes bearing ligands of different types, π-cyclobutadienyl, cyclopentadienyl,
π-arene, carbonyl, amine, etc. derivatives, and compare both their activity in the reaction and
stereoselectivity. It is also attractive to find any dependence of the product yield and stereoselectivity
parameter on the structure of the particular complex. Complexes containing various ligands in different
compositions have been chosen.

In the present work, we studied oxidation of alkanes and alcohols with peroxides catalyzed
by certain organometallic derivatives of cobalt. Many of the complexes have been synthesized and
characterized in this work for the first time.

2. Results and Discussion

2.1. Catalysts, Substrates and Oxidants

We used various cyclobutadienyl and cyclopentadienyl derivatives of cobalt as catalysts for
oxidation of organic compounds with peroxides. Structural formulae of the catalysts are depicted in
Scheme 1.

2.2. Syntheses of Catalysts

Syntheses of new complexes obtained in this work are described in Section 3.2. Complex
[CpCo(bipy)I]PF6 (9) was prepared in high yield by the described in the literature method but
with the usage of the improved counterion-exchange procedure (see Section 3.2). The related
pentamethylated complexes with N,N-ligands, [Cp*Co(phen)I]PF6 (7) and [Cp*Co(bipy)I]PF6 (10),
were synthesized in similar way by reactions of Cp*Co(CO)I2 (2) with 1,10-phenanthroline and
2,2′-bipyridyl. The cyclobutadiene complex [(C4Me4)Co(bipy)(MeCN)]PF6 (5) was prepared by
photochemical replacement of benzene ligand in [(C4Me4)Co(C6H6)]PF6 (1) by 2,2′-bipyridyl in
acetonitrile solution. All cationic complexes described here were isolated as salts with the
PF6

− anion. All catalysts are indefinitely stable in air in solid state.

2.3. Structures of Catalysts

Complexes 7, 9, and 10 were investigated by X-ray diffraction. Their molecular structures, bond
lengths and angles as well as crystallographic data and structure refinement parameters are given in
Figures 1–3 as well as in Section 3.3.

In the case of 9, the symmetry-independent part of the unit cell contains two formula units.
All complexes have a piano-stool geometry. The bi-pyridine ligand in 9 and 10 is almost planar;
the dihedral angle formed by the intersection of the planes defined by the pyridyl rings is equal to
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5.83 (6.55) and 8.78◦, respectively. The Co···C5 distance in pentamethylated complexes 10 (1.691 Å)
and 7 (1.687 Å) is somewhat longer than the corresponding distance in the unsubstituted derivative 1
(1.667 and 1.683 Å, average 1.675 Å); this can be explained by sterical effect of five methyl groups. The
length of the Co–I bond in the three complexes 7, 9 and 10 varies in the range 2.5718(13)–2.5798(4) Å.
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Scheme 1. Structural formulae of the catalysts used in this work. 

 
Figure 1. Structure of cation [Cp*Co(phen)I]− (7). Atoms are represented by 50% thermal ellipsoids. 
Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Co1—C11 2.059(3), 
Co1—C12 2.079(3), Co1—C13 2.061(3), Co1—C14 2.099(3), Co1—C15 2.097(3), Co1—N1 1.958(2), 
Co1—N2 1.968(2), Co1—I1 2.5798(4), and N1—Co1—N2 82.85(9). 
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Figure 1. Structure of cation [Cp*Co(phen)I]− (7). Atoms are represented by 50% thermal ellipsoids. 
Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Co1—C11 2.059(3), 
Co1—C12 2.079(3), Co1—C13 2.061(3), Co1—C14 2.099(3), Co1—C15 2.097(3), Co1—N1 1.958(2), 
Co1—N2 1.968(2), Co1—I1 2.5798(4), and N1—Co1—N2 82.85(9). 

Figure 1. Structure of cation [Cp*Co(phen)I]− (7). Atoms are represented by 50% thermal ellipsoids.
Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [◦]: Co1—C11 2.059(3),
Co1—C12 2.079(3), Co1—C13 2.061(3), Co1—C14 2.099(3), Co1—C15 2.097(3), Co1—N1 1.958(2),
Co1—N2 1.968(2), Co1—I1 2.5798(4), and N1—Co1—N2 82.85(9).
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[Cp*Co(bipy)Cl]PF6 [45]. For example, the dihedral angle between the Cp and bipy planes in 10 (38.2°) 
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Moreover, the real concentrations of the alkyl hydroperoxide as well as of alcohol and ketone can be 
calculated (estimated) using the data obtained before and after reduction [72–81]. Selectivity of the 
oxidation reaction can be characterized by the parameter [ROOH + A]/[K] where [ROOH + A] and [K] 
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Figure 2. Structure of cation [CpCo(bipy)I]− (9). Atoms are represented by 50% thermal ellipsoids.
Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [◦] for the first/second
symmetry-independent species: Co1—C11 2.046(17)/2.049(17), Co1—C12 2.06(2)/2.050(16),
Co1—C13 2.056(17)/2.063(17), Co1—C14 2.127(17)/2.061(16), Co1—C15 2.072(19)/2.045(17), Co1—N1
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The main geometric parameters of 10 resembles those in a recently characterized chloride analog
[Cp*Co(bipy)Cl]PF6 [45]. For example, the dihedral angle between the Cp and bipy planes in 10 (38.2◦)
is close to that in [Cp*Co(bipy)Cl]PF6 (41.5◦) but smaller than in 9 (average 50.1◦) and 7 (49.2◦).

2.4. Determination of Alkyl Hydroperoxides by GC before and after Reduction with PPh3

Earlier, one of us developed a convenient method for the analysis of mixtures obtained in alkane
oxidation with molecular oxygen or peroxides [46–55] (the Shul’pin method [56]). In many cases,
oxidation leads to the formation of three main products (alkyl hydroperoxide, alcohol and ketone).
If a reaction solution is injected directly (see, for example, [57–62]) to the chromatograph, the alkyl
hydroperoxide ROOH (if present) decomposes in the injector and/or column to produce the alcohol
and ketone in approximately equal amounts.

However, if a sample of the reaction mixture is reduced by an excess of solid PPh3 (or thiourea)
during 10–20 min, the alkyl hydroperoxide is quantitatively transformed into the corresponding
alcohol. Comparing concentrations of the alcohol and ketone before and after treatment with PPh3,
we can qualitatively conclude on existence or non-existence of ROOH in the solution [63–71]. Moreover,
the real concentrations of the alkyl hydroperoxide as well as of alcohol and ketone can be calculated
(estimated) using the data obtained before and after reduction [72–81]. Selectivity of the oxidation
reaction can be characterized by the parameter [ROOH + A]/[K] where [ROOH + A] and [K] are
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concentrations of alcohol and ketone after reduction with PPh3, respectively [82,83]. However, this
parameter gives us absolutely no information on existence or non-existence of ROOH in the solution.

We must emphasize that, although treatment with PPh3 can be used in order to only remove from
the reaction mixtures peroxides (starting H2O2, tert-BuOOH, produced ROOH etc.) [84–91], the main
aim of the method under discussion is estimation of real concentrations of ROOH, alcohol and ketone
formed in the reaction. Chromatograms obtained only after reduction of the reaction mixture cannot be
used for determination of real concentration of each oxygenate. Nevertheless, such chromatograms
give valuable information on the total concentration of produced oxygenates.

2.5. Oxidation of Alkanes and Alcohols with Peroxides

We have tested the catalytic effect of compound 1–10 in the reactions of alkanes and alcohols with
various oxidants. These reactions are summarized in Scheme 2.
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Scheme 2. Examples of oxidation reactions studied in this work.

All complexes exhibited low activity in the oxidations with hydrogen peroxide. Some examples
are presented in Table 1. The oxidation affords predominantly cyclohexyl hydroperoxide because the
treatment of the reaction solution with PPh3 leads to the decrease of the ketone peak and increase of
the alcohol peak in GC [55] (compare entries 1 and 2 in Table 1).

Table 1. Oxidation of cyclohexane with hydrogen peroxide catalyzed by cobalt complexes 1.

Entry Cat Time (min) Reduction with PPh3 Cyclohexanone (mM) Cyclohexanol (mM) TON TOF (h−1)

1 1 30 No 0.05 0.07 0.24 0.48
2 30 Yes 0 0.3 0.6 1.2
3 120 No 0.05 0.08
4 120 Yes 0 0.7
5 5 2 60 Yes 0.1 0.6
6 180 Yes 0.5 1.0
7 7 120 Yes 0 1.4
8 7 2 60 Yes 0.2 1.0
9 120 Yes 1.0 2.3 6.6 3.3
1 Conditions. Concentrations [Cat]0 = 5 × 10−4 M, [cyclohexane]0 = 0.46 M, [H2O2]0 = 1.5 M, 50 ◦C. Solvent
MeCN, total volume of the reaction solution was 5 mL; 2 Nitric acid (0.05 M) was added.
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Hydrogen peroxide is not a good oxidizing agent for alcohols in our case of cobalt catalysts.
For example, 1-phenylethanol (0.33 M) after 180 min at 60 ◦C (other conditions are the same as in
Table 1) gave 5.0 mM of acetophenone (yield was only 1.5%) when the reaction was catalyzed by
complex 1. In contrast, tert-BuOOH efficiently oxidizes (yield 98% after 13 h) 1-phenylethanol if
compound 1 is used as a catalyst (Figure 4).
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Figure 4. The 1-phenylethanol (0.33 M) oxidation with tert-butyl hydroperoxide (TBHP; 70%, 
aqueous, 1.65 M): (A) Accumulation of acetophenone with time in in the absence (curve 1) and in the 
presence (curve 2) of compound 1 (5 × 10−4 M). The reaction gave TON 650 and TOF 50 h‒1. 
Temperature was 70 °C, solvent was acetonitrile (total volume of the reaction solution was 5 mL). (B) 
The same oxidation catalyzed by complex 4 at 50 (curve 3) and 70 °C (curve 4). (C) The same oxidation 
([TBHP]0 = 0.9 M) catalyzed by complexes 9 (curve 5) and 10 (curve 6) at 70 °C. 
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1-phenylethanol. Thus, the oxidation catalyzed by complex 1 in the presence of HNO3 (for the 
conditions, see Table 1) afforded after 3 h acetophenone in only 18% yield. The oxidation of 
cyclohexane was also inefficient (Table 2). It should be noted that the chromatogram made before and 
after reduction of samples with triphenylphosphine as well as the ketone/alcohol ratio is not changed 
in the chromatograms. This indicates that cyclohexyl hydroperoxide is not formed in the course of 
the oxidation (for this simple method, see References [46–56]). In contrast, Figure 5, which is 
presented here for comparison, demonstrates that cyclohexyl hydroperoxide, CyOOH, is produced 
in the oxidation with MCPBA catalyzed by the salt Mn(ClO4)2. In the course of the reaction, CyOOH 
gradually decomposes to afford cyclohexanone and cyclohexanol. 
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complexes 1. 

Entry Cat 
Time 
(min) 

HNO3 
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MeCN, total volume of the reaction solution was 5 mL. For entry 2, TON = 106, TOF=53 h‒1. 

Figure 4. The 1-phenylethanol (0.33 M) oxidation with tert-butyl hydroperoxide (TBHP; 70%, aqueous,
1.65 M): (A) Accumulation of acetophenone with time in in the absence (curve 1) and in the presence
(curve 2) of compound 1 (5 × 10−4 M). The reaction gave TON 650 and TOF 50 h−1. Temperature was
70 ◦C, solvent was acetonitrile (total volume of the reaction solution was 5 mL); (B) The same oxidation
catalyzed by complex 4 at 50 (curve 3) and 70 ◦C (curve 4); (C) The same oxidation ([TBHP]0 = 0.9 M)
catalyzed by complexes 9 (curve 5) and 10 (curve 6) at 70 ◦C.

2.6. Stereoselective Oxidation with meta-Chloroperoxybenzoic Acid (MCPBA)

It turned out that the third oxidant, MCPBA, is a weak oxidant in the reaction with
1-phenylethanol. Thus, the oxidation catalyzed by complex 1 in the presence of HNO3 (for the
conditions, see Table 1) afforded after 3 h acetophenone in only 18% yield. The oxidation of cyclohexane
was also inefficient (Table 2). It should be noted that the chromatogram made before and after
reduction of samples with triphenylphosphine as well as the ketone/alcohol ratio is not changed
in the chromatograms. This indicates that cyclohexyl hydroperoxide is not formed in the course
of the oxidation (for this simple method, see References [46–56]). In contrast, Figure 5, which is
presented here for comparison, demonstrates that cyclohexyl hydroperoxide, CyOOH, is produced in
the oxidation with MCPBA catalyzed by the salt Mn(ClO4)2. In the course of the reaction, CyOOH
gradually decomposes to afford cyclohexanone and cyclohexanol.

Table 2. Oxidation of cyclohexane with meta-chloroperoxybeanzoic acid (MCPBA) catalyzed by
cobalt complexes 1.

Entry Cat Time (min) HNO3 (mM) Cyclohexanone (mM) Cyclohexanol (mM) Total Yield (%)

1 1 120 50 18 5 16
2 5 120 0 26 6 23
3 120 50 20 4.5 18
4 6 60 50 0.7 2.6 3
5 180 50 1.9 5.3 5

1 Conditions. Concentrations [Cat]0 = 5× 10−4 M, [cyclohexane]0 = 0.23 M, [MCPBA]0 = 0.26 M. Solvent MeCN,
total volume of the reaction solution was 5 mL. For entry 2, TON = 106, TOF = 53 h−1.
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Figure 5. Accumulation of cyclohexanol (curve 1), cyclohexanone (curve 2), and cyclohexyl 
hydroperoxide (curve 3), as well as TON (curve 4) in the reaction of cyclohexane (0.46 M) with 
MCPBA (0.025 M) in MeCN at 25 °C catalyzed by Mn(ClO4)2 (5 × 10−4 M). Concentrations of 
cyclohexanone and cyclohexanol were measured by GC twice: before and after the reduction of the 
reaction mixture with PPh3 [46–56]. At the time moment denoted by an arrow, an additional amount 
(0.025 M) of MCPBA was introduced into the reaction solution. After 25 h, TON was 76, and the yield 
of all oxygenates based on MCPBA was 76%. 

The most impressive results have been obtained in oxidations of alkanes containing tertiary  
C–H bonds. Thus, cobalt complexes under consideration exhibited relatively high activity in the 
oxidation of isomers of dimethylcyclohexane with MCPBA (Table 3). The chromatograms of the 
reaction solutions made before and after reduction of samples with triphenylphosphine are very 
similar (see Table 3, run 6) and the ketone/alcohol ratio is not changed in the chromatograms. It 
should be noted that tertiary alkyl hydroperoxides easily decompose in hot injector with splitting  
C–H bonds and formation of carbonyl derivatives [2]. If tertiary alkyl hydroperoxide is produced the 
chromatograms before and after reduction with PPh3 should be different which is not our case. Thus, 
alkyl hydroperoxides are not formed in the course of the oxidation (for the method, see References  
[46–56]). The yield of tertiary alcohols attained 53% based on MCPBA (Table 3, run 22). In many cases 
shown in Table 3 the reaction proceeds stereoselectively, the highest parameter trans/cis = 0.05–0.07 
was attained for catalysts 1, 2 and 3. The lowest ratios trans/cis have been achieved when nitric acid 
in low concentration has been added to the reaction solution. 

Table 3. Oxygenation of isomeric dimethylcyclohexanes with MCPBA catalyzed by cobalt complexes 1. 
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[HNO3]
(mM) 

Time 
(min) 

t-Dimethyl-
Alcohol (mM) 

c-Dimethyl-
Alcohol (mM) 

Yield 
(%) 

Ratio 
trans/cis 

1 None cis-1,2-DMCH 0 30 0.13 0.17 0.2 0.76 
2 None cis-1,2-DMCH 0 120 2.9 4.1 5 0.74 
3 None cis-1,2-DMCH 50 30 0.07 0.5 0.4 0.14 
4 1 cis-1,2-DMCH 0 30 3 23 19 0.13 
5  cis-1,2-DMCH 0 120 4 29 24 0.14 
6  cis-1,2-DMCH 2 50 120 2.4 52 39 0.05 
7  cis-1,2-DMCH 50 3 30 3 11 10 0.30 
8  cis-1,2-DMCH 50 3 120 5 19 17 0.26 
9  cis-1,2-DMCH 50 4 30 8 12 14 0.70 
10  trans-1,2-DMCH 0 30 19 8 19 2.4 
11  trans-1,2-DMCH 0 120 19 8 19 2.4 
12  trans-1,2-DMCH 50 30 26 1 19 19 
13  trans-1,2-DMCH 50 120 36 2 27 21 

Figure 5. Accumulation of cyclohexanol (curve 1), cyclohexanone (curve 2), and cyclohexyl
hydroperoxide (curve 3), as well as TON (curve 4) in the reaction of cyclohexane (0.46 M) with MCPBA
(0.025 M) in MeCN at 25 ◦C catalyzed by Mn(ClO4)2 (5 × 10−4 M). Concentrations of cyclohexanone
and cyclohexanol were measured by GC twice: before and after the reduction of the reaction mixture
with PPh3 [46–56]. At the time moment denoted by an arrow, an additional amount (0.025 M) of
MCPBA was introduced into the reaction solution. After 25 h, TON was 76, and the yield of all
oxygenates based on MCPBA was 76%.

The most impressive results have been obtained in oxidations of alkanes containing tertiary C–H
bonds. Thus, cobalt complexes under consideration exhibited relatively high activity in the oxidation of
isomers of dimethylcyclohexane with MCPBA (Table 3). The chromatograms of the reaction solutions
made before and after reduction of samples with triphenylphosphine are very similar (see Table 3,
run 6) and the ketone/alcohol ratio is not changed in the chromatograms. It should be noted that
tertiary alkyl hydroperoxides easily decompose in hot injector with splitting C–H bonds and formation
of carbonyl derivatives [2]. If tertiary alkyl hydroperoxide is produced the chromatograms before and
after reduction with PPh3 should be different which is not our case. Thus, alkyl hydroperoxides are
not formed in the course of the oxidation (for the method, see References [46–56]). The yield of tertiary
alcohols attained 53% based on MCPBA (Table 3, run 22). In many cases shown in Table 3 the reaction
proceeds stereoselectively, the highest parameter trans/cis = 0.05–0.07 was attained for catalysts 1, 2
and 3. The lowest ratios trans/cis have been achieved when nitric acid in low concentration has been
added to the reaction solution.

Table 3. Oxygenation of isomeric dimethylcyclohexanes with MCPBA catalyzed by cobalt complexes 1.

Run Cat Substrate [HNO3]
(mM)

Time
(min)

t-Dimethyl-Alcohol
(mM)

c-Dimethyl-Alcohol
(mM)

Yield
(%)

Ratio
trans/cis

1 None cis-1,2-DMCH 0 30 0.13 0.17 0.2 0.76
2 None cis-1,2-DMCH 0 120 2.9 4.1 5 0.74
3 None cis-1,2-DMCH 50 30 0.07 0.5 0.4 0.14
4 1 cis-1,2-DMCH 0 30 3 23 19 0.13
5 cis-1,2-DMCH 0 120 4 29 24 0.14
6 cis-1,2-DMCH 2 50 120 2.4 52 39 0.05
7 cis-1,2-DMCH 50 3 30 3 11 10 0.30
8 cis-1,2-DMCH 50 3 120 5 19 17 0.26
9 cis-1,2-DMCH 50 4 30 8 12 14 0.70
10 trans-1,2-DMCH 0 30 19 8 19 2.4
11 trans-1,2-DMCH 0 120 19 8 19 2.4
12 trans-1,2-DMCH 50 30 26 1 19 19
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Table 3. Cont.

Run Cat Substrate [HNO3]
(mM)

Time
(min)

t-Dimethyl-Alcohol
(mM)

c-Dimethyl-Alcohol
(mM)

Yield
(%)

Ratio
trans/cis

13 trans-1,2-DMCH 50 120 36 2 27 21
14 trans-1,2-DMCH 50 30 13 8 15 1.6
15 trans-1,2-DMCH 50 4 120 14 9 16 1.5
16 cis-1,4-DMCH 50 30 3 48 37 0.07
17 cis-1,4-DMCH 50 120 14 9 43 0.11
18 trans-1,4-DMCH 50 30 30 3 23 12
19 trans-1,4-DMCH 50 120 30 2 23 18
20 2 cis-1,2-DMCH 0 120 10 32 30 0.28
21 cis-1,2-DMCH 50 30 3.5 44 34 0.08
22 cis-1,2-DMCH 50 120 4 69 53 0.06
23 3 cis-1,2-DMCH 50 30 3.5 50 35 0.07
24 cis-1,2-DMCH 50 120 4 61 46 0.07
25 4 cis-1,2-DMCH 50 30 3 37 26 0.08
26 cis-1,2-DMCH 50 120 3 44 32 0.07
27 trans-1,4-DMCH 50 30 24 1 17 27
28 trans-1,4-DMCH 50 120 35 1 26 34
29 5 cis-1,2-DMCH 50 90 9 14 16 0.64
30 cis-1,2-DMCH 50 180 4 10 10 0.4
31 6 cis-1,2-DMCH 50 30 3 39 30 0.08
32 cis-1,2-DMCH 50 120 3 40 30 0.07
33 7 cis-1,2-DMCH 50 300 3 6 6 0.5
34 8 cis-1,2-DMCH 50 30 17 54 50 0.3
35 cis-1,2-DMCH 50 120 17 57 53 0.3
36 9 cis-1,2-DMCH 50 30 4.5 6 7 0.82
37 cis-1,2-DMCH 50 120 4.5 6 7 0.82
38 10 cis-1,2-DMCH 50 30 3 4 5 0.84
39 cis-1,2-DMCH 50 120 3 4 5 0.84

1 Reactions were performed in MeCN (total volume 2.5 mL). Concentrations: [Substrate]0 = 140 mM,
[MCPBA]0 = 260 mM, catalyst [Cat]0 = 0.5 mM, 40 ◦C. Samples were analyzed by GC after reduction with
PPh3. t-Dimethyl and c-dimethyl alcohol are tertiary alcohols with trans- and cis-mutual orientation of methyl
groups, respectively. The ratio trans/cis is the ratio of these two isomers. Parameters for entries 22 and 35 were
TON = 150 and TOF = 75 h−1; 2 The chromatogram obtained for the reaction solution before reduction with
PPh3 (t-dimethyl alcohol, 2.5 mM; t-dimethyl alcohol, 52 mM) did not practically distinguish from the data
obtained for the reduced sample; 3 Trifluoroacetic acid (50 mM) was used instead of nitric acid; 4 Salt LiNO3
(50 mM) was used instead of nitric acid.

The data collected in Table 3 allow us to compare activities and stereoselectivity parameters
of different cobalt complexes. Table 3 indicates sufficiently different catalytic activities
and stereoselectivity parameters in the oxidations catalyzed by different cobalt complexes.
Addition of nitric acid greatly enhances the efficiency in all cases. In the hydroxylation of
cis-1,2-dimethylcyclohexane complexes 1 and 8 exhibit the highest activity (yields are 39% and 53%
after 2 h). However, the oxidation catalyzed by complex 1 is much more selective (trans/cis = 0.05) than
that in the presence of compound 8 (trans/cis = 0.3). Complexes 9 and 10 containing bulky 1,1′-dipyridil
ligands are very poor and non-stereoselective catalysts which is apparently due to sterical hindrance
around the reaction center. Previously, Nam et al. [16] in the oxidation catalyzed by Co(ClO4)2 used
large excess of cis-1,2-dimethylcyclohexane (1 mmol) over MCPBA (0.02 mmol) and obtained the
oxygenates in 80% yield based in the oxidant. We introduced into the reaction low amount of the
expensive substrate (140 mM) and larger concentration of MCPBA (260 mM). In our case, hydroxylated
products were obtained in high yield: 53% based on the substrate.

2.7. Studies of Obtained Complexes by Electrospray Ionization/Mass Spectrometry (ESI-MS) Method

In order to determine possible organo-cobalt spices responsible for the catalytic oxidation of
alkanes by MCPBA, we investigated the reaction of the obtained cobalt complexes with HNO3

by the ESI-MS method, which is a common tool to gain mechanistic insights into homogeneous
metal-catalyzed reactions [92]. The primary reaction of containing bidentate nitrogen ligands iodide
complexes 7, 9, and 10 with HNO3 in acetonitrile leads to the replacement of iodide with either a nitrate
anion or an acetonitrile molecule. Thus, the ESI-MS spectrum of the reaction mixture with complex 7
(Figure 6) reveals two main peaks corresponding to ionic fragments [Cp*Co(phen)(CH3CN)]2+
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(m/z = 207.8) and [Cp*Co(phen)(NO3)]+ (m/z = 436.0). It can be concluded on the basis of Table 3
(runs 33, 36–39) that complexes 7, 9, and 10 containing phenanthroline or dipyridine ligands are the
poorest catalysts in the alkane oxygenation.
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Figure 6. The ESI-MS spectrum (positive-ion mode) of the reaction mixture of complex 7 and HNO3

in acetonitrile solution at 55 ◦C after 1 h. Concentrations: [7]0 = 6.5 × 10−4 M, [HNO3]0 = 0.04 M.
Total volume of the reaction mixture was 3 mL.

In contrast, interaction of HNO3 under the same reaction conditions with complexes 3, 6, and
8 results in complete decomposition of the complexes to form solvated Co2+ salts detected by the
appearance of two characteristic peaks in the ESI-MS spectra with m/z = 152.3 and 243.5 (Figure 7)
attributed to species [Co(MeCN)6]2+ and [Co(MeCN)3(NO3)]+, respectively. The catalysts 3–6, and 8
exhibited in the oxidation moderate yield and stereoselectivity (see Table 3). Noteworthy, although
complexes 3, 6, and 8 heated with HNO3 exhibit the same patterns in the ESI-MS spectra they have
different behavior in the catalytic oxidation of cis-1,2-DMCH. The oxidation stereoselectivity in the
case of complex 8 is lower than that for complexes 3 and 6. It can be due to lower bulkiness of active
species formed from 8 in comparison with the case of pre-catalysts 3 and 6.
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in acetonitrile solution at 55 ◦C after 1 h. Concentrations: [6]0 = 6.5 × 10−4 M, [HNO3]0 = 0.04 M.
Total volume of the reaction mixture was 3 mL.

It is interesting that efficient in stereoselective oxidation complex 1 (Table 3, runs 4–19) was
significantly more stable toward HNO3. After heating in acetonitrile during 1 h at 55 ◦C the ESI-MS
spectrum reveals the sole signal (m/z = 245) corresponding to the starting cation [Cb*Co(C6H6)]+.
However, addition of MCPBA and prolonged heating for 1 h leads to appearance of extra signals in the
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spectrum (Figure 8), which clearly indicates the interaction of 1 with MCPBA leading to the activation
of pre-catalyst [Cb*Co(C6H6)]+.Molecules 2016, 21, 1593 10 of 17 
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HNO3 and MCPBA in acetonitrile solution at 55 ◦C after 1 h. Concentrations: [1]0 = 6.5 × 10−4 M,
[HNO3]0 = 0.04 M, [MCPBA]0 = 0.015 M. Total volume of the reaction mixture was 3 mL.

2.8. On the Mechanism of Catalyzed C–H Bond Oxidation with MCPBA

We demonstrated in Section 2.5 that the catalyzed alkane oxidation with H2O2 affords
predominantly alkyl hydroperoxides because the treatment of the reaction solution with PPh3 leads to
the decrease of the ketone peak and increase of the alcohol peak in GC [55] (compare entries 1 and 2
in Table 1). The cyclohexane oxidation with MCPBA catalyzed by the manganese salt affords some
amount of cyclohexyl hydroperoxide (Figure 5). On the contrary, catalysis by cobalt complexes of the
oxidation of dimethycyclohexane with MCPBA led to the identical results for the product content
measured before and after reduction with PPh3 (see Table 3, run 6). Thus, we may conclude that alkyl
hydroperoxides are not formed in the oxidation with MCPBA and that free radicals are not involved
into the process. The reaction most probably proceeds via the concerted mechanism with peroxide
oxygen insertion into the alkane C–H bond [37,42,61].

3. Materials and Methods

3.1. General

The syntheses were carried out under an inert atmosphere in dry solvents. The isolation of
products was conducted in air. Hydrogen peroxide, TBHP, and MCPBA were used as oxidants.
Acetonitrile was employed as solvent in all oxidations. 1H-NMR spectra (δ in ppm) were recorded
on a Bruker Avance-400 spectrometer (Moscow, Russia) (400.13 MHz) relative to residual protons of
the solvents.

3.2. Syntheses of Complexes

The isolation of products was conducted in air. Catalysts [(C4Me4)Co(C6H6)]PF6 (1) [93],
Cp*Co(CO)I2 (2) [94], CpCo(CO)I2 (3) [95], (C4Me4)Co(CO)2I (4) [93], [(C4H4BCy)Co(CO)2]2 (6) [96],
and [CpCoI2]n (8) [97] have been described previously in the literature. Complex [CpCo(bipy)I]PF6 (9)
was prepared by King’s method [95] in high yield, with the use of the improved counterion-exchange
procedure described below.

Compound [(C4Me4)Co(bipy)(MeCN)]PF6 (5). A solution of the complex [(C4Me4)Co(C6H6)]PF6 (1)
(100 mg, 0.26 mmol) in acetonitrile (3 mL) was irradiated using mercury luminescent lamp (400 W) for
2 h with the use of a running water cooler for 2 h. 2,2′-Bipyridyl (44 mg, 0.28 mmol) was added to the
obtained solution. The reaction mixture was stirred overnight. The solvent was removed in vacuo.
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The residue was extracted with CH2Cl2 and ether was added. The precipitate was filtered off, washed
with ether, and dried in vacuo. Yield of compound [(C4Me4)Co(bipy)(MeCN)]PF6 (5) obtained as
an orange solid was 63 mg (48%). Anal. Calc. for C20H23N3CoF6P:C, 47.16; H, 4.56; N, 8.25%. Found:
C, 46.31; H, 4.59; N, 8.52%. 1H-NMR (acetone-d6): δ = 8.99 (d, J = 5.2 Hz, 2 H, bipy), 8.66 (d, J = 8.0 Hz,
2 H, bipy), 8.29 (m, 2 H, bipy), 7.83 (m, 2 H, bipy), 1.31 (s, 12 H, C4Me4).

Compound [Cp*Co(phen)I]PF6 (7). Benzene (5 mL) was added to a mixture of complex Cp*Co(CO)I2

(3, 120 mg, 0.24 mmol) and phen (56 mg, 0.36 mmol). The reaction mixture was stirred overnight.
The solvent was removed in vacuo. The complex [Cp*Co(phen)I]I was extracted from the residue with
water. Then an excess of an aqueous KPF6 solution was added. The black precipitate that formed was
filtered off, washed with water, and dried in vacuo. Reprecipitation from acetonitrile with ether gave
complex [Cp*Co(phen)I]PF6 (7, 70 mg, 45%) as a black solid. Anal. Calc. for C22H23N2CoIF6P:C, 40.89;
H, 3.59; N, 4.33%. Found: C, 41.03; H, 3.44; N, 4.51%. 1H-NMR (acetonitrile-d3): δ = 9.71 (d, J = 5.2 Hz,
2 H, phen), 8.72 (d, J = 8.0 Hz, 2 H, phen), 8.14 (m, 4 H, phen), 1.60 (s, 15 H, Cp*).

Compound [CpCo(bipy)I]PF6 (9). Complex [CpCo(bipy)I]PF6 was prepared by King’s method [95]
in high yield, with the use of the improved counterion-exchange procedure given below. Benzene
(5 mL) was added to a mixture of complex CpCo(CO)I2 [95] (3,120 mg, 0.28 mmol) and bipy (73 mg,
0.55 mmol). The reaction mixture was stirred overnight. The precipitate of [CpCo(bipy)I]I was filtered
off, washed with benzene and ether, and dried in vacuo. The precipitate was extracted with water.
Then an excess of an aqueous KPF6 solution was added. The dark violet precipitate that formed was
filtered off, washed with water, and dried in vacuo. Reprecipitation from acetone with ether gave
complex [CpCo(bipy)I]PF6 (9, 126 mg, 86%) as a dark violet solid. 1H-NMR (acetone-d6): δ = 10.07
(d, J = 5.2 Hz, 2 H, bipy), 8.54 (d, J = 8.0 Hz, 2 H, bipy), 8.33 (m, 2 H, bipy), 7.87 (m, 2 H, bipy), 6.18
(s, 5 H, Cp).

Compound [Cp*Co(bipy)I]PF6 (10). Benzene (5 mL) was added to a mixture of complex Cp*Co(CO)I2

(2, 120 mg, 0.24 mmol) and bipy (47 mg, 0.36 mmol). The reaction mixture was stirred overnight.
The solvent was removed in vacuo. The complex [Cp*Co(bipy)I]I was extracted from the residue with
water and methanol. Then an excess of an aqueous KPF6 solution was added. The black precipitate
that formed was filtered off, washed with water, and dried in vacuo. Reprecipitation from acetone
with ether gave complex [Cp*Co(bipy)I]PF6 (10, 47 mg, 32%) as a black solid. Anal. Calc. for
C20H23N2CoIF6P:C, 38.62; H, 3.70; N, 4.50%. Found: C, 38.69; H, 3.68; N, 4.46%. 1H-NMR (acetone-d6):
δ = 9.61 (d, J = 5.6 Hz, 2 H, bipy), 8.58 (d, J = 8.0 Hz, 2 H, bipy), 8.35 (m, 2 H, bipy), 7.95 (m, 2 H, bipy),
1.68 (s, 15H, Cp*).

3.3. X-ray Diffraction Study

Crystals were grown by slow diffusion in a two-layer system of ether/petroleum ether mixture
with solution of complex in acetonitrile (for [Cp*Co(phen)I]PF6 (7)) or acetone (for [CpCo(bipy)I]PF6

(9) and [Cp*Co(bipy)I]PF6 (10)). X-ray diffraction data for 10 were collected with Bruker Apex2 DUO
diffractometer (Moscow, Russia) at 100 K and those for 7 and 9 with Bruker Apex 2 diffractometer
at 120 and 100 K, respectively, using graphite monochromated Mo-Kα radiation (λ = 0.71073 Å,
ω-scans). The structures were solved by the direct method and refined by the full-matrix least-squares
against F2 in anisotropic approximation for non-hydrogen atoms. The positions of hydrogen atoms
were calculated, and they were refined in isotropic approximation in riding model. Crystal data
and structure refinement parameters for 7, 9, and 10 are collected in Table 4. All calculations were
performed using the SHELXTL PLUS 5.0 [98]. CCDC 1504665, 1504667 and 1504666 contain the
supplementary crystallographic data for 7, 9, and 10, respectively. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/data_request/cif.

The molecular structures, bond lengths and angles as well as crystallographic data and structure
refinement parameters of the three catalysts 7, 9, and 10 obtained in this work are given in Figures 1–3
above and Table 4 below.

www.ccdc.cam.ac.uk/data_request/cif
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Table 4. Crystallographic data and structure refinement parameters for 7, 9, and 10.

Compound 7 9 10

Empirical formula C22H23CoF6IN2P C15H13CoF6IN2P C20H23CoF6IN2P
Formula weight 646.22 552.07 622.20
Crystal system Triclinic Orthorhombic Monoclinic

Space group P-1 Pna21 P21/n
a (Å) 8.2684(9) 16.7546(14) 9.0966(18)
b (Å) 11.4505(13) 8.4636(7) 26.448(5)
c (Å) 12.4520(14) 24.681(2) 9.2018(17)
α (◦) 87.800(2) - -
β (◦) 84.628(2) - 90.574(4)
γ (◦) 77.714(2) - -

V (Å3) 1146.7(2) 3499.9(5) 2213.7(7)
Dcalc (g·cm−3) 1.872 2.095 1.867

Linear absorption, µ (cm−3) 22.27 28.98 23.02
F(000) 636 2128 1224

2θmax, ◦ 56 52 54
Reflections measured 20,367 31,839 28,418

Independent reflections 5529 (Rint = 0.0416) 6888 (Rint = 0.0642) 4819 (Rint = 0.1797)
Observed reflections (I > 2σ(I)) 4730 6398 4320

Parameters 303 484 307
R1 0.0301 0.0620 0.0739

wR2 0.0800 0.1721 0.2145
Goodness-of-fit 1.017 1.271 1.477

Largest diff. peak and hole (e Å−3) 1.44 and −0.72 2.49 and −1.51 2.34 and −1.92

3.4. Catalytic Oxidation of Alkanes and 1-Phenylethanol

Typically, catalyst and the co-catalyst (nitric or trifluoroacetic acid) were introduced into the
reaction mixture in the form of stock solutions in acetonitrile. The reactions of alcohols and
hydrocarbons were carried out in air in thermostated Pyrex cylindrical vessels with vigorous stirring
and using MeCN as solvent. The substrate (alcohol or hydrocarbon) was then added and the reaction
started when the oxidant was introduced in one portion. (CAUTION: The combination of air or
molecular oxygen and peroxides with organic compounds at elevated temperatures may be explosive!).
The reactions with 1-phenylethanol were analyzed by 1H-NMR method (solutions in acetone-d6;
“Bruker AMX-400” instrument, 400 MHz). Areas of methyl group signals were measured to quantify
oxygenates formed in oxidations of 1-phenylethanol. As we made previously, the samples obtained in
the alkane oxidation were typically analyzed twice (before and after their treatment with PPh3) by GC.
This method (comparison of chromatograms of the same sample obtained before and after addition of
PPh3) was proposed by Shul’pin earlier [46–56] and allows us to estimate real concentration of alkyl
hydroperoxide, ketone (aldehyde and alcohol) present in the reaction solution. Samples of the reaction
mixture were analyzed by GC (the chromatograph-3700; fused silica capillary column FFAP/OV-101
20/80 w/w, 30 m × 0.2 µm × 0.3 µm; helium as a carrier gas). Attribution of peaks was made by
comparison with chromatograms of authentic samples and by GC–MS (INEOS, Moscow, Russia).
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