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A highly expressed prostaglandin E2 (PGE2) in tumor tissues suppresses antitumor

immunity in the tumor microenvironment (TME) and causes tumor immune evasion

leading to disease progression. In animal studies, selective inhibition of the prostaglandin

E receptor 4 (EP4), one of four PGE2 receptors, suppresses tumor growth, restoring the

tumor immune response toward an antitumorigenic condition. This review summarizes

PGE2/EP4 signal inhibition in relation to the cancer-immunity cycle (C-IC), which

describes fundamental tumor-immune interactions in cancer immunotherapy. PGE2 is

suggested to slow down C-IC by inhibiting natural killer cell functions, suppressing

the supply of conventional dendritic cell precursors to the TME. This is critical for the

tumor-associated antigen priming of CD8+ T cells and their translocation to the tumor

tissue from the tumor-draining lymph node. Furthermore, PGE2 activates several key

immune-suppressive cells present in tumors and counteracts tumoricidal properties of

the effector CD8+ T cells. These effects of PGE2 drive the tumors to non-T-cell-inflamed

tumors and cause refractory conditions to cancer immunotherapies, e.g., immune

checkpoint inhibitor (ICI) treatment. EP4 antagonist therapy is suggested to inhibit the

immune-suppressive and tumorigenic roles of PGE2 in tumors, and it may sensitize

the therapeutic effects of ICIs in patients with non-inflamed and C-IC-deficient tumors.

This review provides insight into the mechanism of action of EP4 antagonists in cancer

immunotherapy and suggests a C-IC modulating opportunity for EP4 antagonist therapy

in combination with ICIs and/or other cancer therapies.

Keywords: EP4 antagonist, PGE2, NK-DC crosstalk, cancer-immunity cycle, cancer immunotherapy, immune

checkpoint inhibitor (ICI), inflamed tumor, non-inflamed tumor

INTRODUCTION

Increased expressions of PGE2 and cyclooxygenase 2 (COX-2), a key enzyme for PGE2 synthesis,
are routinely identified in a variety of tumor tissues in human and animals, and the contributions
of PGE2 in tumor initiation, proliferation, and metastasis have been reported (1, 2). Inhibition
of the PGE2 signal by non-steroidal anti-inflammatory drugs (NSAIDs) or COX-2 inhibitors has
been shown to suppress tumor growth in animal tumor models (1, 3). However, cardiovascular and
gastrointestinal safety concerns at high doses may have prevented further development of the drugs
in human. To avoid the toxicity and achieve intrinsic efficacy of this mechanism, discovery of drugs
that inhibit the downstream signaling of PGE2 has continued.
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Tumors directly or indirectly upregulate the expression of
PGE2 in tissues, and the highly expressed PGE2 regulates
tumors and other cells present in the tumor microenvironment
(TME), leading to tumor growth. PGE2 receptor EP4 is a Gs
protein-coupled receptor and activates cAMP-ERK and PI3K
signaling (4). EP4 receptors are expressed on the surface of
tumor cells, fibroblasts, and immune cells in tumor stroma
(2). Recent research evidence suggests that the effects of PGE2
on immune cells in the TME actively trigger tumor immune
evasion and influence tumor cell growth and patient survival
(5). Furthermore, animal experiments using tumor models
suggest the involvement of EP4 receptor on immune cells in
tumor growth (6–10). The mechanism of action of EP4 signal
inhibition in cancer immunotherapy, however, has not yet been
clearly demonstrated.

Advances in a therapy using immune checkpoint inhibitors
(ICIs) have led to remarkable outcomes in several solid tumors
and have established principles of cancer immunity in clinical
fields; however, there are still significant limitations with the
ICI therapy. The cancer-immunity cycle (C-IC) concept has
clearly demonstrated the mechanisms of immune cells to attack
and kill tumors through CD8+ T-cell cytotoxicity (11) and
represented a basis for understanding the present state of cancer
immunotherapy, contributing to drug selection and combination
therapies for patients refractory to ICIs and conventional
therapies (12, 13). This review summarizes the roles of PGE2
and EP4 signaling in the concept of C-IC and proposes
a position and opportunities for EP4 antagonist therapy in
cancer immunotherapy, including in combination with ICIs and
other therapies.

SUPPRESSION OF ANTITUMOR
IMMUNITY BY PGE2-EP4 SIGNAL

Inhibition of Conventional Dendritic Cell
(cDC) Recruitment Into Tumor by
PGE2-EP4 Signaling
PGE2 Inhibits cDC Recruitment Into Tumor Through a

Suppression of NK-DC Crosstalk
Clinical evidence demonstrated that patients with a relatively
high number of immature DCs in the tumor had longer overall
survival. A decrease in the number of DCs in the tumor
significantly correlated with advanced tumor stage in patients
with colorectal cancer (14). Recent research results suggest
that a conventional DC1 (cDC1, CD103+ DC in mice and
CD141+/BDCA3+ DC in human) has been reported as the
only professional antigen-presenting DC that can capture tumor-
specific antigen on their MHC class I molecule and cross-present
the antigen to CD8+ T cells (15–17). The recruitment of cDC1
into the TME is critically supported by natural killer (NK) cells in
the tumors by secreting cDC1 chemoattractants XCL1 and CCL5.
In patients with cancer, intratumoral XCL1 and CCL5 levels
correlate with the presence of NK and cDC1 cells in the tumor
and are associated with increased overall survival (18). NK cells
also produce formative cytokine for cDC1, Fms-related tyrosine
kinase 3 ligand (FLT3L), and stably form conjugates with cDC1.
The NK-DC crosstalk positively regulates cDC1 abundance in

melanoma. The FLT3L further leads to the expansion of cDC
progenitors in bone marrow and promotes the accumulation of
immature cDC1 at the tumor site (19). In human melanoma, the
numbers of NK cells and cDC1 are demonstrated to correlate
with increased overall survival and patient responsiveness to anti-
PD-1 immunotherapy (20, 21). Importantly, the tumor-produced
PGE2 impairs the viability and chemokine-producing property
of NK cells and downregulates chemokine receptor expression
in cDC1s in the TME, resulting in cancer immune evasion
(18). Thus, the inhibition of NK cell functions by PGE2 and
subsequent suppression of the NK-DC axis is suggested as the
key trigger to induce the absence and functional failure of cDCs
in the TME and the disruption of C-IC (Figure 1).

EP4 Signal Inhibits NK Cell Functions Following cDC

Recruitment Into TME
NK cells have direct cytotoxicity especially to MHC class I
molecule-downregulated tumor cells. EP4 signal inhibition is
reported to decrease the expression of the MHC class I on
mammary tumor cells and stimulates antitumor effects of NK
cells (22). PGE2 secreted by thyroid cancer cells promote
antitumor immune suppression through the inhibition of NK
cell cytotoxicity via EP2 and EP4 receptors (23). EP4 signaling,
in addition to the direct antitumor cytotoxicity of NK cells, has
demonstrated tumoricidal efficacy through diverse interactions
within the immune system. A direct treatment of PGE2 or
EP4 agonist to murine splenic NK cells in vitro blocked NK
cell functions such as IFNγ and TNFα productions and cancer
cell migration (24). The re-activation of NK cell functions in
tumor-bearing mice was reported via an ex vivo study using
the EP4 antagonist RQ-15986. RQ-15986 was administrated
systemically to 66.1 breast tumor-bearing mice for 3 weeks
and then splenic NK cells were isolated and tested for their
ability to produce IFNγ by IL-2 stimulation. Although NK
cells isolated from tumor-bearing mice lost their ability to
produce IFNγ almost completely compared with that of normal
mice, NK cells from RQ-15986-treated tumor-bearing mice
completely recovered IFNγ-producing ability (25). Moreover,
in an obesity-associated hepatocellular carcinoma mice model,
the daily systemic therapy of the EP4 antagonist AAT-008 for
3 weeks showed significant induction of cDC1 (CD103+ DC)
frequency with no change in the frequency of other DC classes
(10). Although no evidence of EP4 receptor inhibition on the NK
cells is evaluated in this study, the NK-DC crosstalk-mediated
mechanism should be included in the evidence observed as
changes on cDCs. Taken together, PGE2 is suggested to inhibit
cDC1 recruitment into the TME through the suppression of NK
cells and the NK-DC crosstalk. The EP4 antagonist restores the
cDC1 population in the TME by re-activating NK cells, and then
the NK-DC crosstalk, which is suppressed by tumor-induced
PGE2 (Figure 1).

cDCs in Tumor Accelerate Effector CD8+

T-Cell Infiltration Into the Tumors Through
CXCL9/10 Production
The absence of the effector CD8+ T cells in tumors correlates
with a poor prognosis for clinical outcome in both human and
animal cancer models (26, 27). The exclusion of CD8+ T cells
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FIGURE 1 | Antitumor mechanism of EP4 antagonist in cancer-immunity cycle (C-IC). The role of the highly expressed PGE2 in tumors and antitumor mechanisms of

action of EP4 antagonist (EP4A) therapy are illustrated with the concept of the C-IC. The C-IC includes cyclic steps: a release of tumor-derived antigens (tdAs) to the

TME, an antigen presentation of cDCs and a priming of CD8+ T cells and proliferation in tumor-draining lymph node, translocation of effector CD8+ T cells into the

tumors, and killing of the tumor cells by the effector CD8+ T cells, and the release of tdAs again. Tumor cell death results in a release of damage-associated molecular

patterns (DAMPs), which contains molecules that can be recognized as antigens to specify the tumor cells in the body. Conventional dendritic cells (cDCs) capture

and process these tdAs and prime the naïve CD8+ T cells. During the ICI therapy, continuous supply of the pre-cDCs from bone marrow is required for the

consecutive continuation of the C-IC result in the success of ICI therapy. NK cells in tumors secrete XCL1 and CCL5 that induce an infiltration of cDCs into the TME.

The NK cells further secrete a growth factor FLT3L, which supports survival of cDCs and enhances local cDC differentiation. In TME with high levels of PGE2, the

PGE2 shut off supply of cDCs into the TME through the inhibition of NK cell functions, thereby causing disruption of the C-IC and the failure of ICI therapy. The cDCs

located in the tumor further secrete chemokines CXCL9/10 that attract CD8+ effector T cells into the tumor. EP4A therapy inhibits the effects of PGE2 on the NK cells

and revitalizes the supply of cDCs into the TME. Highly expressed PGE2 in tumors increases populations of immune-suppressive cell species, MDSC, Treg, and

M2-like macrophage (M2-Mφ) in the TME and inhibits cytotoxic ability of effector CD8+ T cells against tumor cells. The tumor-produced PGE2 regulates these immune

cells directly or indirectly and produces the non-T-cell-inflamed tumor environment, accelerating tumor immune evasion. EP4A inhibits tumor-mediated PGE2 functions

on the immune-suppressive cell species and eliminates the elements causing disruption of an effective C-IC in cancer immunotherapy.

from the tumor tissue is often observed in many cancers, and
they are commonly referred to as non-T-cell-inflamed tumors
(28). The non-T-cell-inflamed tumors are difficult to treat with
ICIs compared with inflamed tumor therapies in the clinic. A
failure in effector CD8+ T cells’ traffic into melanoma tissue
from tumor-draining lymph nodes in a mice model is mediated
by the lack of chemokines CXCL9 and CXCL10 produced by
CD103+ DCs. These DCs are generally present in inflamed
tumors, whereas these are absent in non-inflamed tumors (29).
Thus, the importance of cDCs in tumors is suggested not only for
tumor-specific effector CD8+ T-cell production and proliferation
but also for the active infiltration of the effector CD8+ T
cells into the tumor bed. Production of chemokine CXCL10 in
human immature DCs is reported to be negatively regulated
by PGE2 and EP2 and/or EP4 receptors are involved in this
effect (30). Treatment with EP4 antagonist E7046 demonstrated
a significant increase in CD8+ T-cell frequency in tumors in
a CT26 colon cancer–bearing mice model (9). The evidence
strongly suggests that EP4 antagonist therapy increases the
infiltration of effector CD8+ T cells into the tumor through the

active production of chemokines CXCL9 and 10 from the DCs in
tumors corresponding to the restoration of NK cell functions by
EP4 signal inhibition (Figure 1).

PGE2-EP4 Signal Activates Suppressive
Immune Cells and Inhibits Effector CD8+ T
Cells
Myeloid-derived suppressor cells (MDSCs), M2-like
macrophages in tumors often called tumor-associated
macrophages, and regulatory T cells (Tregs) are the major
immune-suppressive cell species in the TME. These cells directly
or indirectly inhibit cytotoxic activity of effector CD8+ T
cells against tumor cells, primarily through the production of
immune-suppressive cytokines such as IL-10 and TGFβ. The
PGE2-EP4 signal is demonstrated to activate the functions of
these immune-suppressive cells and to promote inactivation of
antitumor activity in effector CD8+ T cells, leading to tumor
immune evasion (Figure 1).
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PGE2-EP4 Signal Regulates MDSC Differentiation

and Macrophage Polarization
The MDSCs frequently exist in TME and mediate immune
suppression through the production of arginase, inducible NOS,
TGFβ, IL-10, and COX-2. These molecules directly or indirectly
induce Treg activities (31), suppress NK cell functions (32),
and promote the polarization of macrophages toward M2-like
properties. They cooperatively and synergistically impair the
tumoricidal property of effector CD8+ T cells, thereby leading
to the evasion of tumor cells from the host’s antitumor immunity
(33). PGE2 is demonstrated to stimulate MDSC differentiation
and proliferation in tumors (32, 34–36), and the EP4 and/or EP2
receptors promote the activation. Albu et al. demonstrated the
significant increase in the number of MDSCs in CT-26 colon
cancer–bearing mice spleen and the almost complete reversal of
the number of MDSCs as a result of continuous treatment with
the EP4 receptor antagonist E7046 (9).

Macrophages polarize to functionally different M1- and
M2-like phenotypes by various stimulation in tissues with
inflammation and tumor. In in vitro experiments, a human
peripheral blood mononuclear cell primary culture in the
presence of GM-CSF plus IL-4 promotes differentiation to
DCs. An addition of PGE2 in this culture suppresses the
formation of DCs and skewed the differentiation into the M2-
like macrophage. EP4 antagonist E7046 treatment in this culture
dose-dependently reversed the effects of PGE2 on the proportion
of differentiation to DCs or M2-like macrophages (9). Similarly,
in human cervical cancer cell culture, PGE2 hampered monocyte
to DC differentiation and skewed their differentiation toward
M2-like macrophages. A depletion of PGE2 restored the normal
monocyte to DC differentiation (37). In an Apcmin/+ mice, a
deletion of the myeloid EP4 receptor led to the loss of the
arginase 1-expressing M2 phenotype macrophage population
in a histochemical study (38). In K19-Wnt1/C2mE mice, a
PGE2 highly producing transgenic gastric cancer mice model,
EP4 antagonist RQ-15986 therapy achieved almost complete
shrinkage of the tumor. M2-like macrophage polarization was
observed in the tumor, and the EP4 signal inhibition by RQ-
15986 released this polarization (6). Collectively, the evidence
strongly supports the EP4 antagonist’s role in the prevention of
M2-like macrophage polarization and accumulation in tumors
derived by tumor-associated PGE2.

PGE2-EP4 Signal Activates Treg Cells
The frequency of circulating or tumor-infiltrating Tregs is
associated with poor survival of patients in many cancers,
including colon, breast, melanoma, and lung (39). PGE2 is
reported to increase the expression of the Treg-specific marker
Foxp3 and to stimulate the functions of Treg cells in vitro and in
a mice lung cancer model. The activated Treg cells also induce
COX-2 expression and PGE2 production, which then support
immune-suppressive functions by themselves. These autocrine
and paracrine effects of PGE2 cooperatively activate Treg cells in
tumors (40, 41). In Treg cell culture isolated from the spleen of
EP2 or EP4 knockout mice, expressions of Foxp3 in the presence
of PGE2 were significantly reduced compared with those Treg
cells isolated from normal mice. The contribution of EP2 and
EP4 receptors in PGE2 signaling in activated Tregs has also

been demonstrated using the antagonists AH6809 and AH23848,
respectively, by evaluating the reversal of Treg cell-mediated T-
cell effector function failure (41). An immunosuppression caused
by UV irradiation was mediated through the induction of Treg
proliferation, and PGE2-EP4 signaling was also reported to be
involved (42).

Activation of Immune-Suppressive Mechanisms by

PGE2-EP4 Signal Impairs Effector CD8+ T-Cell

Functions
The effector CD8+ T cells infiltrated to tumors are primarily able
to fight against the antigen-targeted tumor cells. However, the
tumors activate the previously described immune-suppressive
cell species to avoid the attack from effector CD8+ T cells.
PGE2 is one of the key molecules triggering the immune
suppression in TME (34). The EP4 antagonist E7046 therapy
increased the population of intratumoral effector CD8+ T
cells, inhibited myeloid MDSC activation, and suppressed the
polarization of macrophages to M2-like properties in a CT26
mouse colon cancer model. It showed potent antitumor efficacy
compared with non-treated controls (9). The aforementioned
evidence strongly suggests that tumor-produced, PGE2-activated
immune-suppressive cell species in the TME inhibit the
tumoricidal function of effector CD8+ T cells in the tumor
through EP4 signaling, and that the EP4 antagonist rescues the
tumoricidal function of CD8+ T cells (Figure 1).

MECHANISM OF ACTION OF EP4
ANTAGONIST IN THE C-IC

Cancer-Immunity Cycle
The concept of the C-IC is proposed by Chen and Mellman
and suggests the respective roles of tumor cells, tumor-derived
antigens, DCs, and effector CD8+ T cells in a series of
stepwise events, which proceed and expand iteratively in cancer
immunotherapy (11). For patients with cancer with deficiency in
immunological antitumor ability, rescuing single or few defects
among these steps is essential for the C-IC to optimally perform.
Amplifying the entire C-IC will provide effective antitumor
activity; however, drugs such as ICI generally target only a single
step in the cycle. Therefore, the most effective approaches will
require targeting the rate-limiting steps in a given patient using
the appropriate combination of drugs (12). The EP4 antagonist is
one of the drug classes that can reactivate antitumor immunity,
rescuing the defects of the steps in the C-IC as described
above. Understanding the mechanism of action of the EP4
antagonist in cancer immunotherapy in combination with the
C-IC concept would be a useful procedure when considering
therapeutic strategy, drug regimen combination, or radiotherapy
in the clinical environment.

Roles of PGE2 and EP4 in C-IC and
Perspectives on EP4 Antagonist in
Immunotherapy
As summarized in the previous sections, PGE2 mediates the
immunologically deficient tumor environment by regulating
several immune cell species that express the EP4 receptor and
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FIGURE 2 | Opportunity for EP4 antagonist therapy in cancer immunotherapy. Based on the mechanisms of action of the EP4 antagonist (Figure 1), opportunities for

the EP4 antagonist therapy in cancer immunotherapy are illustrated. Because EP4 antagonist therapy is suggested to change the tumor environment from non-T-cell

inflamed to inflamed, concomitant use of EP4 antagonist with ICI will sensitize the efficacy of ICI in some portion of patients whose prior ICI monotherapy was

non-responsive. Combination of chemotherapy and radiotherapy with ICI therapy is suggested to show cooperative antitumor efficacy via the production of DAMPs

and activation and restoration of tumor-targeted immune responses. This combination is reasonable from the standpoint of C-IC theory, and the addition of EP4

antagonist therapy with ICI, together with chemotherapy and/or radiotherapy, may further accelerate the potential of the C-IC and antitumor therapeutic efficacy.

develop multiple dysfunctions in the C-IC. The EP4 antagonist
is suggested to demonstrate antitumor efficacy by restoring the
PGE2-mediated dysfunctions in the host’s antitumor immune
systems. Figure 1 illustrates the roles of PGE2 and the EP4
antagonist in cancer immunotherapy combined with the C-IC
concept. Tumor-produced PGE2 inhibits the NK cell function
in the TME and suppresses XCL1 and CCL5 production, which
promotes the infiltration of cDC precursors (pre-cDCs) into
the TME. The suppression of NK cells further mediates the
reduction of cDC function in tumors, with FLT3L playing a key
role. Moreover, the decrease in the cDC population and function
in the TME causes the reduction of CXCL9/10 production by
cDCs and suppresses the translocation of effector CD8+ T
cells into the tumor from draining lymph nodes. Thus, the
PGE2-mediated exhausting of NK cell triggers the failure of
sequential recruitment of cDCs and the effector CD8+ T cells,
essential elements of the C-IC, into the TME (43). The EP4
antagonist therapy is demonstrated to block the PGE2-mediated
dysfunction of NK cells, which enables the continuous infiltration
of cDCs into the TME, thereby increasing the population of
tumor-specific effector CD8+ T cells in the TME (9, 25). The
PGE2 further activates the functions of immune-suppressive
cell species, such as MDSC, Tregs, and tumor-associated M2-
like macrophages, thereby directly or indirectly wresting the
functions of effector CD8+ T cells from the tumor cells. The EP4
antagonist supports the roles of antitumor immune functions by
inhibiting the roles of PGE2 in the immune-suppressive cells as
noted previously (Figure 1).

Therapy using ICIs in humans led to remarkable antitumor
efficacy in several tumors, enabling complete elimination of

tumors in some cases. However, the proportion of patients
who achieve a response remains generally modest. Absence
or functional failure of effector CD8+ T cells in tumors, the
non-inflamed tumor, is suggested to be one reason for being
refractory to ICI therapy according to current clinical experience.
For a portion of ICI-refractory patients, the failure of C-IC in
their TME is suggested. As summarized in this review, tumor-
mediated PGE2 is one of the key molecules that disrupt the C-
IC and promote the non-inflamed tumor environment, resulting
in ICI therapy deficiency. When drugs are used concomitantly,
EP4 antagonist therapy may sensitize the efficacy of ICI therapy
in patients with ICI-refractory by restoring the sequential
NK and cDC cell functions. Animal experiments support the
combination of the EP4 antagonist E7046 (ER0886046) with
anti-CTLA4 in a mouse melanoma B16F10 model and with
anti-PD-1 or anti-PD-L1 antibodies in a mouse colon cancer
CT26 model. Higher antitumor efficacies were demonstrated
in combination, compared with E7046 or the ICI antibody
alone (44). Figure 2 illustrates the opportunity to introduce EP4
antagonist therapy with ICIs, which may cooperatively interact
leading to an efficient C-IC. An additional opportunity for EP4
antagonist therapy is in combination with the other cancer
therapies that induce immunogenic cell death (ICD), such as
tumor radiotherapy and some types of cancer chemotherapies.
The ICD, by releasing damage-associated molecular patterns
(DAMPs) and tumor-derived antigens, has been shown to
support the activation of DCs’ functions and their traffic
to lymph nodes, activating tumor-targeted immune responses
(45). The EP4 antagonist E7046 was demonstrated to show
improved antitumor efficacy and prolonged survival of mice
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in combination with radiotherapy, compared with radiotherapy
or E7046 alone in a CT26 colon cancer mouse model (46).
The combination of radiotherapy and/or chemotherapy with the
EP4 antagonist is thought to synergistically accelerate the C-IC.
Simultaneous increases in the cDC population by EP4 therapy
and the production of DAMPs through therapy-producing ICD
in tumors are essentially required for the effective production of
tumor-specific effector CD8+ T cells (44) (Figure 2).

CONCLUSION

Several companies are currently conducting clinical
trials of EP4 receptor-selective antagonists for cancer
therapy (ClinicalTrials ID: NCT03658772, NCT03696212,
NCT03152370, NCT03661632) and evaluating EP4 antagonist

therapy in anti-PD-1-refractory tumors, microsatellite stable
tumors, and in combination with tumor radiotherapy. Enhanced
understanding of the mechanism of action of the EP4 antagonist
therapy within the C-IC concept enabled us to pursue a new
therapeutic approach to EP4 antagonist therapy.
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