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The coronavirus 2019 (COVID-19) pandemic is a health and economic crisis. It has also

highlighted human relational problems, such as racism and conflicts between nations.

Although vaccination programs against the severe respiratory syndrome coronavirus 2

(SARS-CoV-2) have started worldwide, the pandemic is ongoing, and people are struggling.

The mechanism of disease severity in COVID-19 is multifactorial, complicated, and affected

by viral pathogenesis. For example, monocyte dysfunction due to aging and respiratory and

gut dysbiosis influence the host's immunity against SARS-CoV-2 including helper T-cell

imbalance and viral clearance reduction, leading to accelerated disease progression in older

patients or those with underlying diseases. The different immune responses against SARS-

CoV-2 also contribute to various radiological findings, including that of acute respiratory

distress syndrome, which is associated with highmortality, especially in patients susceptible

to disease progression. We aimed to review the pathophysiological mechanisms involved in

COVID-19, with emphasis on the altered microbiome in the lung and gut, and the different

radiological findings in different patient groups, such as younger adults and pregnantwomen.

© 2022 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
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syndrome can occur in patients with COVID-19. Of all cases,

1. Introduction

Thecoronavirusdisease2019 (COVID-19)pandemic followedthe

emergence of a novel coronavirus in Wuhan, China. The path-

ogen was later named the severe respiratory syndrome coro-

navirus 2 (SARS-CoV-2). The pandemic is a severe healthcare

and economic crisisworldwide. Even after 2 years, as of January

2022, COVID-19 remains a threat to humankind [1e3]. To date,

more than 308 million confirmed cases of COVID-19 have been

reported in 220 countries, withmore than 5.4million confirmed

deaths (as of 4:52 p.m. CET, January 11, 2022. https://covid19.

who.int/). Although data from the WHO suggest that as many

as 80% of infections are mild or asymptomatic, some patients

have experienced pneumonia with respiratory failure [4].

Infected children and younger patients have been mostly

asymptomaticorpresentedonlymildsymptoms. Intheseyoung

patients,pneumonia israreandtendsnot toprogress inseverity.

It is well recognized that pneumonia due to COVID-19 typically

shows bilateral ground-glass opacities (GGOs), while consoli-

dationnor tree-in-budappearance are notusually found [5,6]. In

a previous study, we reported the clinical manifestations and

chest computed tomography (CT)findings inacohortofpatients

with COVID-19 pneumonia. Patchy shadows were found more

frequently in patients aged 20e39 years than in older age pa-

tients (S40years) (50%vs. 8%, p¼ 0.008 by Fisher's exact test) [7].
Wehypothesizedthat radiologicalfindingsofCOVID-19differby

age, and may explain the differences in disease severity and

mortality. Moreover, we hypothesized that the aging-related

monocyte dysfunction [8,9], lung and gut dysbiosis, and under-

lying chronic disease/s may influence host immunity and pro-

mote viral replication, resulting in high mortality in elderly

patients with COVID-19. In this review, we focused on the cor-

relation between disease severity and radiological findings, as

well as examined how host immunity affected the lung and gut

microbiome in patients with COVID-19.

2. Main text

2.1. Epidemiology

A viral pneumonia is caused by a viral infection. A previous

study documented that viral pneumonia occurs with all res-

piratory viruses in 6e18% of patients [10]. SARS-CoV-2 has

high pathogenicity. Severe acute respiratory distress
13.8% are considered severe, and 6.1% have critical courses.

The mortality rate is high. Approximately 12%e45% of pa-

tientswith pneumonia require admission to the intensive care

unit (ICU) [3,11]. The mortality rate was found to be particu-

larly high in elderly patients aged 70 years or above in the USA

and Japan, although the mortality rate differed in each coun-

try. Many risk factors that increase the severity and mortality

of COVID-19 have been identified, including hypertension,

malignancy, chronic respiratory diseases, smoking, obesity,

and pregnancy [12].

2.2. Reasons for the different mortality rates of COVID-19
in Japan and the US

Themortality rate of COVID-19 in the US is remarkably higher

than that in Japan. The Johns Hopkins University of Medicine

reported that the number of patients who died because of

COVID-19 in the USA was 849,241 per 64, 917, 963 confirmed

cases (mortality rate 1.3%, 25,579 deaths/1,000,000 popula-

tion). In contrast, Japan reported 18,423 deaths per 1,830,381

confirmed cases (mortality rate 1.0%, 1486 deaths/1,000,000

population) [13]. Several factors, such as the medical care

system, lifestyle, and host immunity have been suggested for

the difference in mortality between the two countries. First,

the healthcare system in Japan is vastly different from that in

the US. Japan has a universal national medical insurance in

which all citizens can freely access care at any medical insti-

tution covered under medical insurance. In the US, accessing

care from a medical institution has been challenging. The US

CDC reported that 32.8 million Americans (12.1%) were unin-

sured in 2019, although the number is estimated to rise to 35

million by 2029 [14]. Second, obesity is an increased risk factor

for disease severity in COVID-19 [15,16]. The prevalence of

obesity (bodymass index [BMI] > 30) among adults in the US is

almost 10 times that in Japan [17,18]. Particularly, 9.2% of adult

Americans are severely obese (BMI � 40) [17]. The definition of

obesity in Japan is BMI � 25, which is also different from that

in the US [19]. Third, the difference in gut dysbiosis can

contribute to differing mortality rates between the two

countries. Viral immunity is strongly correlated with gut

dysbiosis, which is influenced by obesity and diet [9,14,20]. We

now know that the gut microbiome is strongly influenced by

age, sex, weather, and lifestyle including dietary intake, and

that individuals from different countries have different gut

https://covid19.who.int/
https://covid19.who.int/
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microbiomes [21,22]. The higher mortality rate in the US may

be due to gut dysbiosis. We hypothesized that severe cytokine

stormsmay be more common among American adults. These

phenomena have also been used to explain why the mortality

rate among patients with influenza was higher in the US than

in Japan [23]. Lastly, the Bacillus Calmette-Gu�erin (BCG) vac-

cine, a live attenuated vaccine against tuberculosis that is

used globally, may be protective against SARS-CoV-2 infection

and thereby, reduce the mortality rate [24]. Japan has a

nationwide universal BCG vaccination program for infants.

Thismay have exerted some protective effects against COVID-

19. A previous report has confirmed that the mortality rate of

COVID-19 in countries with BCG vaccination programs is

lower than that in those without [25]. This is a current hot

topic. We keenly await the results from current ongoing ran-

domized control trials.

Additionally, the Japanese culture of frequent hand

washing andwearing a facemask, less hugging, not kissing on

the cheek as a greeting, and not wearing shoes indoors, may

have minimized the transmission of SARS-CoV-2, and thus

reducing the mortality rate.

2.3. Radiological findings of COVID-19 pneumonia

All respiratory viruses can lead to viral pneumonia. The fre-

quency and severity depend on the virus itself. It is quite

difficult to determine the causative pathogen by radiological

findings alone [10]. Computed tomographic findings of COVID-

19 pneumonia typically show GGOs, peripheral distribution,

and bilateral lung involvements, and rarely, the tree-in-bud

appearance or consolidation [5,6]. We have already reported

that radiological findings may differ in patients of different

ages. Younger patients with COVID-19 pneumonia are more

likely to present with patchy lesions than elderly patients [1].

These radiological differences may be influenced by host im-

munity. In turn, host immunity may affect pathogenesis.

Thus, radiological findings could differ with different host

immunity, even though it is the same disease caused by the

same pathogen. For example, Mycoplasma pneumoniae pneu-

monia has various radiological presentations depending on

the type and degree of host immunity. The disease severity

and radiological findings are correlated and caused by the

cytokine balance of type I helper T cell (Th1) and type II helper

T cell (Th2) [26]. Moreover, Pneumocystis jirovecii pneumonia

shows a worse prognosis in non-human immunodeficiency

virus (HIV) patients than in those infected with HIV [7,27].

Several theories have been suggested regarding different

radiological patterns and outcomes in patients with COVID-19

of different ages. Not only viral pathogenesis, but also aging-

related monocyte dysfunction and dysbiosis of the lung and

the gut may contribute to the high mortality rate in elderly

patients with COVID-19.

2.4. Respiratory and gut dysbiosis

The healthy lung and gut microbiome contribute to appro-

priate immune responsiveness and homeostasis in the

human body. The theory of the lung-gut axis could explain

these phenomena. Like other respiratory viral infections, the

disease severity of COVID-19 is strongly correlated with
dysbiosis of the gut-lung axis. Particularly, viral immunity is

closely related to the gut microbiome. Hagen et al. suggested

that gut dysbiosis impairs vaccine immunity. In their study,

they administered broad-spectrum antibiotics to healthy

adults prior to the seasonal influenza vaccine. Their results

demonstrated significant impairment in H1N1-specific

neutralization and in binding IgG1 and IgA [28]. Bradley et al.

proposed that “the microbiota-driven interferon signature in

lung epithelia impedes early virus replication and that type I

interferon a/b receptor surface levels fine-tune this signature.

Moreover, both murine and human studies revealed that an-

tibiotics use could decrease pulmonary IgA production and

increase the risk of pneumonia” [29]. The gut microbiome of

patients with COVID-19 showed significantly reduced bacte-

rial diversity, a higher relative abundance of opportunistic

pathogens such as Streptococcus, Rothia, Veillonella, and Acti-

nomyces, and a lower abundance of beneficial symbionts as

compared to the control group. Moreover, it has been reported

that the disease severity of COVID-19 is correlated with a

predominance of opportunistic pathogens and inversely

correlated with the abundance of beneficial commensals

[30,31]. Schult et al. reported that gut dysbiosis is associated

with disease severity and progression in patients with COVID-

19 [32]. They also found that a stable microbial composition

may contribute to a more favorable outcome. Specific taxo-

nomic changes in the relative abundance of individual bac-

teria were correlated with complications, such as acute

respiratory distress syndrome (ARDS) and acute kidney injury

(AKI), hemodialysis, and acute cardiac events. Interestingly,

Faecalibacterium prausnitzii was significantly reduced in pa-

tients with ARDS, AKI, hemodialysis, and acute cardiac

events, and was negatively associated with mortality [32]. Ren

analyzed the oral and fecal microbiome of patients with

COVID-19 and reported that oral and fecal microbial diversity

was reduced compared to healthy controls. Furthermore,

butyric acid-producing bacteria were decreased, and

lipopolysaccharide-producing bacteria were increased in the

oral cavity of patients with COVID-19 [33].

The lung microbiome has several roles in viral immunity.

First, microbiota dwelling on the respiratory surface can act as

a barrier, therefore preventing viral attachment to the host

cells. Second, it primes the lung's immunity against viral in-

fections. Exposure to a diverse range of microbiota may also

build up immunity. Focusing on the alternation of microbiota,

a reduction in fecal bifidobacteria has often been mentioned

for age-related gut dysbiosis [34]. Besides, butyrate-producing

organisms from the Clostridium cluster XIVa and a reduction in

anti-inflammatory organisms such as F. prausnitzii and

Akkermansia muciniphila have also been reported [35]. Lung

dysbiosis in patients with chronic respiratory diseases

compared to the general population has been observed and

reported [36e39]. Current evidence has highlighted that gut

dysbiosis has an inflammatory effect on the joints, liver, or

brain, influencing disease progression through the gut-joint

axis [40], gut-liver axis [41], and gut-brain axis [42], respec-

tively. This further suggests that patients with underlying

diseases, such as rheumatoid arthritis, chronic liver disease,

and neurologic disease, have gut dysbiosis, and that gut dys-

biosis is involved in the disease progression of COVID-19 (Figs.

1 and 2).

https://doi.org/10.1016/j.resinv.2022.03.002
https://doi.org/10.1016/j.resinv.2022.03.002


r e s p i r a t o r y i n v e s t i g a t i o n 6 0 ( 2 0 2 2 ) 4 9 6e5 0 2 499
The lung and gut microbiome may be critical in severe

COVID-19 cases. In summary, dysbiosis of the lung and gut

may affect the disease severity of COVID-19 and prognosis

[33]. The lung and gut microbiome may be a potential thera-

peutic target for COVID-19.

2.5. COVID-19 pneumonia in pregnant patients

Pregnant patients are unique. They are of particular interest

during the COVID-19 pandemic because expecting mothers

are typically young and healthy. However, pregnancy presents

an altered immunological state. Like the seasonal influenza

virus infection [24], it is found that pregnant patients infected

with severe acute respiratory syndrome coronavirus 1 showed

a high risk of spontaneous abortion, preterm birth, and

maternal death. However, follow-up postnatal testing of ne-

onates did not reveal serologic evidence of vertical trans-

mission [43]. Pregnant women with COVID-19 are also

considered to have an increased risk of disease severity and

mortality. At the beginning of the COVID-19 pandemic, chest

CT scans were frequently taken [44,45] despite routine expo-

sure to ionizing radiation being discouraged during preg-

nancy. In a systematic review of CT findings among 427

pregnant patients, Rachel et al. reported expecting mothers

showed different tomographic findings compared with the
Fig. 1 e Correlation between dysbiosis and lifestyle factors, suc

physical exercise, smoking, stress, pathogens, medications, and

and joints, mutually called the gut-brain axis, gut-lung axis, gu
general population [46]. In this study, the mean age was 30.4

years (range 17e49 years), which is the expected age range for

pregnant women. In the CT images of these pregnant women,

69% bilateral involvements and 77% GGOs were seen. Of note,

consolidation and pleural effusionswere seen in 41% and 30%,

respectively, which seems proportionally higher than that of

the general population (Table 1). This may be due to the need

for mother and fetus’ needs to ensure immune tolerance to

prevent fetal rejection during pregnancy [47,48]. This innate

human immunity to protect a pregnancy could promote viral

replication in the expectant mother, resulting in a cytokine

storm [5,49]. Moreover, pregnant patients have expanded

thoracic cageswith splaying and a reduced functional residual

capacity due to the expansive volume of the gravid uterus [50].

These anatomical and immunological changes contribute to

the different radiological presentations compared with the

general population and a poor prognosis among pregnant

patients with COVID-19. Furthermore, hypertension, diabetes

mellitus, and thrombosis during pregnancy may further lead

to unfavorable outcomes.

In a review of neonatal outcomes [46], 251 neonates were

tested for SARS-CoV-2 infection by reverse transcription-

polymerase chain reaction (RT-PCR) and/or cases IgG anti-

body testing, resulting in a 96.8%negative test rate. Eight cases

of suspected neonatal infection were reported. Six of which
h as hygiene, food, alcoholic beverages, birth and feeding,

genes. Gut dysbiosis correlates with the brain, lung, liver,

t-liver axis, and gut-joint axis, respectively.

https://doi.org/10.1016/j.resinv.2022.03.002
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Fig. 2 e Pathological mechanism of disease progression in COVID-19 patients. Disease progression is accelerated by aging-

related monocyte dysfunction, smoking history, and dysbiosis of the lung and gut. These figures were created using

BioRender (https://biorender.com).

Table 1 e Comparison of radiological tomographic
findings between pregnant patients and the general
population.

Imaging findings Pregnant
patients (%)

General
population (%)

Bilateral involvement 69.4 79.0e87.5

Peripheral distribution 68.1 76.0e100

Posterior involvement 72.5 80.4

Multi-lobar involvement 71.8 78.8

Ground-glass opacities 77.2 88.0

Consolidation 40.9 21.0e31.8

Pleural effusion 30.0 5.0

Data are cited in Ref. [49].

r e s p i r a t o r y i n v e s t i g a t i o n 6 0 ( 2 0 2 2 ) 4 9 6e5 0 2500
showed positive results of RT-PCR, and two tested positive by

IgG antibody assay. The overall survival rate was 93%.

In conclusion, viral immunity affected by lung and gut

dysbiosis and age-associated monocyte dysfunction can in-

crease disease severity in humans. Radiological findings and

COVID-19 prognosis may differ by age.
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