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Abstract

Background: Computational state space models (CSSMs) enable the knowledge-based construction of Bayesian filters for
recognizing intentions and reconstructing activities of human protagonists in application domains such as smart
environments, assisted living, or security. Computational, i. e., algorithmic, representations allow the construction of
increasingly complex human behaviour models. However, the symbolic models used in CSSMs potentially suffer from
combinatorial explosion, rendering inference intractable outside of the limited experimental settings investigated in present
research. The objective of this study was to obtain data on the feasibility of CSSM-based inference in domains of realistic
complexity.

Methods: A typical instrumental activity of daily living was used as a trial scenario. As primary sensor modality, wearable
inertial measurement units were employed. The results achievable by CSSM methods were evaluated by comparison with
those obtained from established training-based methods (hidden Markov models, HMMs) using Wilcoxon signed rank tests.
The influence of modeling factors on CSSM performance was analyzed via repeated measures analysis of variance.

Results: The symbolic domain model was found to have more than 108 states, exceeding the complexity of models
considered in previous research by at least three orders of magnitude. Nevertheless, if factors and procedures governing the
inference process were suitably chosen, CSSMs outperformed HMMs. Specifically, inference methods used in previous
studies (particle filters) were found to perform substantially inferior in comparison to a marginal filtering procedure.

Conclusions: Our results suggest that the combinatorial explosion caused by rich CSSM models does not inevitably lead to
intractable inference or inferior performance. This means that the potential benefits of CSSM models (knowledge-based
model construction, model reusability, reduced need for training data) are available without performance penalty. However,
our results also show that research on CSSMs needs to consider sufficiently complex domains in order to understand the
effects of design decisions such as choice of heuristics or inference procedure on performance.
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Introduction

1.1 Motivation
Recently, a number of different approaches to representing the

transition models of probabilistic state space models (SSMs) by

computational means have been proposed as method for building

intention recognition systems, from somewhat different research

perspectives and conceptual backgrounds [1–5]. Computational
state space models (CSSMs) are probabilistic models where the

transition model of the underlying dynamic system can be

described by any computable function using compact algorithmic

representations. Objective of the study reported in this paper is to

evaluate the applicability of CSSMs for the purpose of sequential

state estimation in dynamic systems with very large state spaces

and dense transition models. Such domains are difficult to handle

with conventional methods relying on the explicit enumeration of

states or paths, such as hidden Markov models (HMMs) and their

various extensions [6], probabilistic context-free grammars [7], or

(libraries of) (partially ordered) plans [8]. We specifically consider

CSSMs for the objective of recognizing activities, goals, plans, and

intentions of autonomous non-deterministic agents, such as human

protagonists. These recognition tasks frequently arise in applica-

tion domains like smart environments [9,10], security and

surveillance [11], man-machine-collaboration [2], and assistive

systems [12,13].

Researchers have chosen computational state space models for

applications in activity and intention recognition for a range of

different reasons. CSSMs have been considered because they allow

to

N substitute training data by symbolic prior knowledge [3],
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N replace explicit enumerations of possible action sequences by

on-the-fly-synthesis of plans [5],

N enable the flexible introduction of additional state variables

that allow inferences about, for instance, the cognitive state of

a person [2],

N exchange observation models without affecting the system

model in response to changing sensor setups [14].

While these properties seem desirable from the viewpoint of

model development and model reusability, they come at a price:

using computational symbolic descriptions, it is very easy to

produce models with a very large state space. This is an immediate

effect of the generalization and abstraction power of the

computational representations: a model that considers not only

an explicit enumeration of action sequences, but rather all

sequences that achieve the same objective, will have a larger set

of states. From the viewpoint of probabilistic inference, a large

state space is first of all not an asset but a liability. Considering the

bias-variance trade-off [15], a large state-space might produce a

weaker performance (due to variance) than a smaller, potentially

less flexible and more biased state space.

The use of CSSMs for activity and intention recognition has so

far been investigated only in comparatively limited scenarios with

small state spaces and only few activities to distinguish. It remains

unclear, how well this approach scales to larger problems and in

how far inference in large state spaces is tractable. Objective of the

study presented in this paper is to answer this question. Our

findings suggest that such problems can indeed be successfully

tackled by CSSMs.

The further structure of this paper is as follows: as CSSMs are

not yet widely established, a brief overview of the pertinent

concepts of CSSMs is given in Sec. 1.2. A review of current

empirical investigations of CSSMs for activity and intention

recognition, including an assessment of the experimental scenarios,

is contained in Sec. 1.3. In Sec. 1.4 we explain the experimental

setting we used, the overall CSSM model structure used for

activity reconstruction, as well as the inference algorithms. In Sec.

2.4.2 we present the quantitative data obtained from our

experiments. A discussion of these results, our reasoning why we

think these results justify the claim that CSSMs are capable to

tackle real world scenarios, and the limitations of our study are

given in Sec. 3.4. Notational conventions and abbreviations are

summarized in Appendix S1, the remaining appendices contain

supplemental material.

1.2 Computational state space models
This section provides a brief review of the pertinent notions of

CSSMs from the perspective of intention recognition (IR) and

activity recognition (AR). A detailed introduction and discussion is

provided in Appendix S2.

We consider dynamic systems whose behavior can be formally

captured by the notion of labeled transition systems (LTS). An

LTS is a triple (S,A,?) where S is a set of states, A a set of action

labels and ?(S|A|S a labeled transition relation. It is easy to

arrive at LTS where S and ? are infinite, even though A is finite

– for instance by introducing states that represent counter values

and actions that increment such counters. In the domain of

intelligent assistive systems, protagonist activities such as setting a

table by incrementally moving items from the kitchen to the dining

room result in this counting behavior. Such LTS can not be

represented by explicit enumeration of states and transitions, but if

defined in a suitable algorithmic language (which we call

‘‘computational action language’’), then also these LTS have a

finite representation. As long as only a finite subset of states needs

to be considered in a given intention recognition task, computa-

tions on such latently infinite systems remain feasible.

State space models (SSMs) [16] are a general class of

probabilistic models that allow to infer the hidden state of an

LTS (e. g. the current activity or location of items) given a

sequence of observations (sensor readings). Let X be some set of

states, let X1:t be a sequence of random variables with value

domain X . Furthermore, let Y be a set of observations and Y1:t a

sequence of random variables with value domain Y. Then the

joint distribution p(x1:t, y1:t) can be described by an SSM if it

recursively (over time t) factorizes into a transition model
p(xtDxt{1) and an observation model p(ytDxt), that is

p(x1:t, y1:t)~p(y1Dx1)p(x1)Pt
i~2 (p(ytDxt)p(xtDxt{1)). The under-

lying idea of computational state space models (CSSMs) is to use

computational action languages for representing the transition

distribution. This approach is interesting when the process under

observation can be considered as performing some kind of

sequential ‘‘computation’’, including such phenomena as goal

directed behavior of human protagonists.

We call c(a’Dg’,s,a) : ~p(a’Dg’,s,a) the action selection distribu-

tion, which models the non-deterministic behavior of protagonists

in the case that multiple actions are applicable to a given situation.

They encompass decision theoretic quantities, such as an ‘‘action’s

utility’’ in reaching the goal from the given state [17], as well as

situation-based conflict resolution strategies such as ‘‘specificity’’

[14].

1.3 Feasibility of CSSMs for large scenarios: Current
research

As discussed above, CSSMs provide a number of desirable

properties. However, an analysis of current literature reviews on

activity and intention recognition [18–20] shows that currently

there is little empirical evidence for their applicability to detailed

models of everyday situations. Current studies either use models

that do not employ computational mechanisms, or they use

scenarios of very limited detail and/or simulations. Below we

summarize the results of this literature analysis.

1.3.1 Survey criteria. We identified different features

(factors) for assessing and comparing capabilities of the methods

and complexities of experiments. Table 1 gives a brief explanation

of the factors used for evaluation. The F factors represent the

different properties provided by CSSMs, they show in how far the

approach used in the respective study can be considered a CSSM.

The N factors quantify the complexity of the experimental setting

used for evaluation in the respective study. N.subjects indicates

whether sensor data obtained from human subjects has been used,

or simulations drawn from the model. The factor N.State gives a

rough quantitative estimate of the model’s detail level.

We note that N.State has substantial methodological drawbacks.

First, this number (in fact, any number quantifying the level of

detail of the respective experimental scenario) is often not given

explicitly and has to be inferred from the study description.

Secondly, if highly discriminative observations are available (such

as the ground action label used in some of the simulation studies),

only a small portion of the potential state space will have non-

vanishing support. In this case, inference in fact only needs to

consider a small subset of the state space, based on unrealistic

assumptions on observation quality. Finally, a continuous state

space obviously would have an infinite number of possible states.

Concerning this last point, the real quantity of interest would be

the representation complexity of the statistical model for the state

distribution, as inference algorithms operate on finite representa-

tions of distributions. A continuous state space modeled by a
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Gaussian can be represented by a point (m,s)[R2 in 2-d space. A

categorical state space with n category labels is represented by a

point on a (n{1)-d simplex. So, although the latter state space is

finite, its representational complexity is higher than for the

continuous Gaussian model. Fortunately, all studies in the

literature survey used some kind of categorical state space.

Therefore, despite its deficiencies, for the purpose of this study

N.State was considered as useful surrogate measure for model

complexity.

1.3.2 Survey results. 21 studies were analyzed in the survey,

these include the studies contained in [18–20] with the addition of

new results we regarded as relevant for the topic of this study. An

overview of the analysis results is given in Table 2. There were two

studies with more than 100,000 states (studies 6 and 8). 7 studies

(33%) considered no more than 1000 states. The median plan

length used in trials was 15 (with interquartile range

IQR~7:5{23). Concerning trial sizes, the median number of

subjects was 3 (IQR~2{6).

It can indeed be observed that CSSMs have been evaluated

only in simpler scenarios, and complex experimental settings have

only been used for testing more simple inference methods. There

was a single study using a model supporting all features (study 3).

Studies including durative actions used at most 70,000 states. As

CSSM-like approaches all studies were considered that supported

latently infinite state spaces and plan synthesis. From the resulting

five studies (studies 1–5), only a single one (again, study 3) used

non-simulated observation data and durative actions.

While non-CSSM methods have been evaluated with in median

6.5 (IQR~5:25{13:75) different activity classes, experiments

using CSSMs distinguish only 4 (IQR~3{6:25) activity classes.

When fewer target classes have to be discriminated, it is easier to

achieve higher recognition accuracies. The plan length to be

recognized by the approaches is also influenced by the supported

features, where it can be observed that more complex models are

usually evaluated with shorter plans. For instance, approaches

employing plan synthesis (studies 1–5, 8–15) have been evaluated

with a median plan length of 12 (IQR~6{17:5), while in median

24 (IQR~14:5{40) actions had to be recognized without plan

synthesis. Similarly when the action’s durations are modeled, the

plans have a median length of 10 (IQR~5:25{14:25), whereas

plans of length 20 (IQR~12:75{36) are used when actions are

modeled without durations.

The single most frequently used performance measure was

accuracy, (10 studies, 48%). 16 studies (76%) used some kind of

performance measure derived from the confusion matrix (accura-

cy, precision, recall, F1, etc.). Four studies reported no

performance data. No study used performance measures sensitive

to the sequential (or causal) structure of the sequence of estimates

(cf. Sec. 2.4.2.). The median number of target classes used in

performance evaluations was 6 (IQR~4:25{12:25). Activities of

daily living represented the majority of scenarios (12 studies, 57%).

The most frequent single scenario was kitchen activities (8 studies,

38%).

Considering inference methods, if approximate methods were

employed and if on-line filtering was possible (i.e., where

complexity = O(1)), variants of particle filters were used in all

cases, with the exception of [8] (study 21). Approximate methods

are inevitable if large state spaces have to be supported.

1.3.3 Assessment. While being successful in using CSSMs

for intention recognition and state estimation in scenarios of a level

of complexity comparable to those reported in Table 2, we made

the experience that achieving success with CSSM-based methods

in larger settings, such as they occur in certain domains of

everyday activities, is not as straightforward as their intuitive

appeal implies. When applying the CSSM approach to the

scenario outlined in Sec. 2.1.1 (with an average plan length of 91.6

actions), our initial attempt did not yield a model that was able to

compete with a simple hidden Markov model applied to the same

estimation task. The CSSM models were found to contain several

Table 1. Factors for analyzing empirical studies on activity recognition.

F.latent.infty Method allows inference in latently infinite state spaces (typically employing a computational action language).

F.plan.synth Plan synthesis is supported. Otherwise, the approach requires to create plan libraries by explicitly enumeration.

F.duration Durative actions are supported. (This will significantly increase inference complexity, as the starting time for an action becomes another
state variable, which has a large value space. See Appendix S4)

F.action.sel Explicit mechanisms for modeling human action selection based on opportunistic and/or goal driven features are supported.

F.probability Method provides (an approximation of) the posterior probability distribution over states (or actions, depending on the mechanism). This
is a prerequisite for selecting assistive interventions using decision-theoretic methods (i. e., that aim at maximizing the expected utility).

F.struct.state The state maintained by inference provides a structured representation of the environment state. This allows the formulation of state
predicates and the dynamic synthesis of contingency plans. (Otherwise the state typically represents the action currently executed.)

F.non.monoton Non-monotonous action sequences are considered, that – temporarily – may increase goal distance. (This affects the number of plans
that need to be considered. Methods using explicit plan enumeration usually avoid non-monotonicity.)

F.complexity Filter step complexity (computational complexity for the filtering step from t to tz1). If greater than O(1), for instance O(t), then online
filtering is essentially intractable.

Method Type of inference method used.

Scenario Scenarios considered in experimental tasks.

N.states Number of X states considered. (See text for further explanation.)

N.plan.length Lengths of plans considered in study.

N.classes Number of classes in classification target used for performance evaluation.

N.subjects Number of subjects participating in trials (or ‘‘sim’’ in case evaluation is based on simulated observations).

M.accuracy Accuracy is provided as performance measure.

M.conf.based Other quantities based on confusion matrices (true–positive rate, precision, etc.) are provided as performance measures.

doi:10.1371/journal.pone.0109381.t001

Computational State Space Models for Activity & Intention Recognition

PLOS ONE | www.plosone.org 3 November 2014 | Volume 9 | Issue 11 | e109381



T
a

b
le

2
.

Q
u

an
ti

ta
ti

ve
an

d
q

u
al

it
at

iv
e

p
ro

p
e

rt
ie

s
o

f
se

le
ct

e
d

st
u

d
ie

s
o

n
ac

ti
vi

ty
an

d
in

te
n

ti
o

n
re

co
g

n
it

io
n

.

Reference

F.latent.infty

F.plan.synth

F.duration

F.action.sel

F.probability

F.struct.state

F.non.monoton

F.complexity

Method

Scenario

N.states

N.plan.length

N.classes

N.subjects

M.accuracy

M.conf.based

1
[1

]
[4

]
&

&
%

&
&

&
&

1
B

D
M

7
0

,0
0

0
{

2
0

3
2

3
%

%

2
[2

]
[5

6
]

&
&

%
{

&
&

&
&

{
1

B
D

O
M

–
–

e
si

m
%

%

3
[3

]–
&

&
&

&
&

&
&

1
B

P
F

O
7

0
,0

0
0
{

1
5
{

1
0

6
&

&

4
[4

]
[2

0
]

&
&

%
&

&
&

%
t

B
P

l
K

1
0

,0
0

0
{

–
3

si
m

%
&

5
[5

]
[2

0
]

&
&

%
&

&
&

&
1

B
P

K
7

0
,0

0
0

6
5

si
m

&
&

6
[5

7
]

[1
9

]
&

%
%

%
&

&
%

1
B

D
A

2
0

0
,0

0
0

5
{

6
6

%
&

7
[1

2
]

[1
9

]
&

%
%

&
&

&
%

1
B

D
K

7
0

,0
0

0
4

0
e

2
%

%

8
[2

1
]

[1
8

]
%

&
%

%
&

&
&

1
B

D
O

2
5

0
,0

0
0
{

–
5

5
&

%

9
[5

8
]

[5
9

]
%

&
%

%
&

&
&

t
N

B
N

M
1

,0
0

0
{

–
1

5
{

si
m

%
&

1
0

[6
0

]–
%

&
&

%
&

%
&

1
B

H
K

2
8

6
6

–
&

&

1
1

[6
1

]–
%

&
%

%
&

%
&

1
B

H
A

3
0

0
{

1
2
{

1
5

3
&

%

1
2

[6
2

]
[1

9
]

%
&

&
%

&
%

&
1

B
R

P
K

9
6

–
1

3
2

%
&

1
3

[6
3

]
[1

9
]

%
&

&
%

&
%

&
1

B
R

P
O

3
,5

0
0
{

3
3

2
{

%
%

1
4

[6
4

]
[5

6
]

%
&

%
%

&
&

&
t

O
M

L
M

–
2

0
{

4
1

4
&

&

1
5

[2
9

]
[1

9
]

%
&

&
%

&
&

&
1

B
D

A
K

5
2

8
{

–
3

3
3
{

&
&

1
6

[6
5

]
[1

9
]

%
%

&
%

&
%

%
1

N
M

H
O

7
2

0
{

–
2

1
%

&

1
7

[6
6

]
[1

9
]

%
%

%
%

%
%

%
1

LD
L

K
–

1
5

6
si

m
%

&

1
8

[6
7

]
[1

9
]

%
%

%
%

%
%

%
1

LD
L

A
K

–
2

4
{

8
3

&
%

1
9

[7
]–

%
%

%
%

%
%

%
t2

O
G

M
–

5
0
{

e
2
{

%
%

2
0

[6
8

]
[1

9
]

%
%

%
%

&
%

%
1

LP
A

1
0

0
{

4
0
{

7
{

6
&

%

2
1

[8
]

[1
8

]
%

%
&

%
&

%
%

1
B

M
F

A
2

0
,0

0
0

1
4
{

1
4

3
&

&

‘‘&
’’

=
fe

at
u

re
in

cl
u

d
e

d
in

st
u

d
y.

‘‘%
’’

=
fe

at
u

re
n

o
t

in
cl

u
d

e
d

.
‘‘x

{ ’’
=

va
lu

e
/p

ro
p

e
rt

y
x

n
o

t
e

xp
lic

it
ly

st
at

e
d

in
st

u
d

y
d

e
sc

ri
p

ti
o

n
.

‘‘–
’’

=
va

lu
e

u
n

kn
o

w
n

.
‘‘e

’’
=

p
ro

p
e

rt
y

n
o

t
m

e
an

in
g

fu
l

co
n

si
d

e
ri

n
g

ta
rg

e
t

o
f

st
u

d
y.

M
e

th
o

d
co

d
e

s:
L:

lo
g

ic
-b

as
e

d
(D

L
=

d
e

sc
ri

p
ti

o
n

lo
g

ic
,

P
=

co
m

b
in

e
d

w
it

h
p

o
ss

ib
ili

ty
th

e
o

ry
).

B
:

u
si

n
g

so
m

e
va

ri
an

t
o

f
se

q
u

e
n

ti
al

B
ay

e
si

an
fi

lt
e

ri
n

g
(e

xa
ct

:
H

=
H

M
M

o
r

e
xt

e
n

si
o

n
,

D
=

o
th

e
r

D
B

N
,

P
l

=
tr

an
sf

o
rm

at
io

n
in

to
a

p
la

n
n

in
g

p
ro

b
le

m
,

P
=

p
ar

ti
al

ly
o

b
se

rv
ab

le
M

ar
ko

v
d

e
ci

si
o

n
p

ro
ce

ss
;

ap
p

ro
xi

m
at

e
:

P
F

=
p

ar
ti

cl
e

fi
lt

e
r,

R
P

=
R

ao
-B

la
ck

w
e

lli
ze

d
p

ar
ti

cl
e

fi
lt

e
r,

M
F

=
m

ar
g

in
al

fi
lt

e
r)

.
N

=
N

o
n

-s
e

q
u

e
n

ti
al

B
ay

e
si

an
in

fe
re

n
ce

(M
H

=
M

e
tr

o
p

o
lis

-
H

as
ti

n
g

s,
B

N
=

u
n

ro
lle

d
B

ay
e

s
N

e
t)

.
O

=
o

th
e

r
e

xa
ct

m
e

th
o

d
(G

=
so

m
e

ki
n

d
o

f
g

ra
m

m
ar

,
M

L
=

M
ar

ko
v

Lo
g

ic
n

e
t)

.
Sc

en
a

ri
o

co
d

e
s:

K
=

ki
tc

h
e

n
ta

sk
,

A
=

o
th

e
r

ac
ti

vi
ti

e
s

o
f

d
ai

ly
liv

in
g

,
O

=
o

ff
ic

e
,

M
=

m
is

ce
lla

n
e

o
u

s
o

th
e

r
sc

e
n

ar
io

.
W

e
co

n
si

d
e

r
th

e
fi

rs
t

fi
ve

st
u

d
ie

s
as

C
SS

M
-l

ik
e

ap
p

ro
ac

h
e

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
9

3
8

1
.t

0
0

2

Computational State Space Models for Activity & Intention Recognition

PLOS ONE | www.plosone.org 4 November 2014 | Volume 9 | Issue 11 | e109381



hundred million states. This indicates a potential scalability

problem of the method due to combinatorial explosion.

As the above survey results indicate, current studies have

considered scenarios of substantially smaller size. For instance,

Ramı́rez and Geffner [5] infer the plan of a (software) agent

solving a problem in a kitchen environment (among others). They

show how the plan can be inferred when observing the actions
executed by the agent. The model contains about 70,000 states,

including location of four ingredients. There are less than 10

different action classes including interacting with kitchen utensils

and the ingredients like frying and mixing. Baker et al. [1] use a

Markov Decision Process to model agent or human behaviour.

The model describes an agent moving on a 2-dimensional grid

towards a goal, avoiding obstacles. The state is the position of the

agent and locations of obstacles, resulting in approximately 70,000

states. One of three goals is recognized by Bayesian filtering.

Krüger et al. [3] recognize human activities in a presentation

scenario. A state in their model contains the location of up to three

people and the currently executed activity. They distinguish 10

activities (sitting, presenting, discussing, walking to different

locations) using a particle filter. As an example of inference

without CSSM modeling, Dai et al. [21] recognize different

meeting activities of three to five persons. They manually modelled

a Dynamic Bayesian Network with two activity nodes (discussion,

presentation, and various sub-activities), and different context

nodes (e. g. locations and roles). They use exact inference using an

exact Bayes Filter adopted to this particular DBN, showing that

250,000 states can be handled without approximations in this

scenario. Accuracies have been evaluated for different nodes

independently, distinguishing up to five different activity classes.

While the first two operate only on simulated data and action

observations, the last two examples use real sensor data.

Nonetheless, none of the scenarios contains fine-grained activities,

where more than 10 classes of activities are distinguished. As

opposed to 91.6 actions on average for our scenario, the scenarios

presented here do not exhibit more than 20 actions that are

executed. As a consequence, the results reported in previous

studies may not be applicable to the larger scenarios arising from

the use of CSSM methods. The question is whether the scalability

issues we encountered can be resolved by suitable design decisions.

To answer this question, we conducted a study on the feasibility of

CSSM methods for reconstructing activity sequences of durative

actions from noisy observation data in scenarios with millions of

states. Considering the studies discussed above, this is the first

attempt to analyze whether the CSSM method is applicable to

problems of this scale. We therefore provide important evidence

regarding the general applicability of the method. In addition, we

provide data on the impact of several important modeling

considerations – such as the choice of inference method – on

the performance of the resulting system.

1.4 Study objectives
Objective of this study was to evaluate the applicability of

CSSMs for the purpose of sequential state estimation in dynamic

systems with very large state spaces and dense transition models.

Focus was the application domain of tracking human activities.

Study aims were answering the following two subsequent research

questions:

N Is it possible to achieve successful state estimation using CSSM

models of everyday activities with large state spaces (containing

hundreds of millions of states)?

N Which modeling factors (duration model, action selection

heuristics, inference algorithm, etc.) are relevant for achieving

a good performance in CSSM-based inference?

These questions were reframed into two research hypotheses:

N H1: A suitably parameterized CSSM model for a typical

activity of daily living will achieve the same accuracy on

average on a given estimation task as a conventional state

space model built from training data when applied to the same

task.

N H2: All CSSM modeling factors and their interactions have

significant effects on the average accuracy achieved in state

estimation using the CSSM model.

The study focused on the applicability of the method, not on

superiority with respect to other methods considering measures

such as accuracy. The primary motivation of using CSSM-based

methods is not that it gives a higher performance, but rather that it

provides additional benefits for model construction such as use of

prior knowledge and reusability (cp. Sec. 1.1). It was also not an

objective to build a model with specific reusability properties or to

show that CSSMs indeed provide the claimed benefits. A deeper

investigation of these aspects is of interest only once it has been

established that CSSMs are applicable to the inference task itself.

Materials and Methods

This section explains the methods and design of the empirical

study. The study and all procedures were approved by the

institutional review board of Rostock University (A 2014-0057).

Participation was voluntary and all participants provided written

informed consent. Data presented in this study is anonymous and

does not allow identification of individual characteristics of

participants.

The roadmap for testing both research hypotheses is: collect

real-world data of an activity of daily living, build a suitable CSSM

model, and evaluate performance of the model against the

recorded data. Sec. 2.1 presents the trial setting, experimental

procedure, and annotation methodology. The statistical model

used for the experiments is described in Sec. 2.2, including the

sensor model, action durations, and the DBN structure. Sec. 2.3

describes the two main inference methods used for the experi-

ments: the particle filter and the marginal filter. The concrete

experimental setup (choice of model and parameter combinations)

and evaluation methodology for testing the research hypotheses

H1 and H2 is described in Sec. 2.4.

2.1 Empirical data
The use of empirical trial data was chosen for the following

considerations:

N Using simulated data (presumably from the same model that is

used for inference) will exaggerate accuracy and overestimate

the effect of action selection heuristics: if actions are simulated

according to the same selection heuristics used for inference,

the heuristic essentially knows which actions are executed. This

is highly undesirable, as it will guide research on heuristics in

the wrong direction.

N Evaluating model behavior with respect to sensor data

obtainable in real settings requires to have such data available

for use as observations.

N As long as we do not know whether prior knowledge provides

enough information for building CSSM models, it seems

prudent to use samples of real-world behavior as starting points

Computational State Space Models for Activity & Intention Recognition
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for model construction, in order to arrive at symbolic models

that have realistic structural complexity with respect to

everyday behavior.

N A certain amount of training data was required for building the

baseline classifiers, against which the CSSM model was to be

compared.

2.1.1 Trial setting. A typical meal time routine was selected

as trial setting, consisting of the following major tasks: (i) Prepare

meal (prepare ingredients; cook meal). (ii) Set table. (iii) Eat meal.

(iv) Clean up and put away utensils. (A symbolic map of the spatial

structure of the trial domain and the involved domain objects are

given in Fig. 1; a more detailed task sequence is given in Table

S1). Selection of this scenario is based on the following

considerations:

1. It combines a relevant activity of daily living (eating) and a

relevant instrumental activity of daily living (meal preparation

and cleanup) [22]. Assisting (instrumental) activities of daily

living is an important application domain of assistive systems.

2. It covers as subtask (meal preparation) an activity that is used as

functional measure for recording the level of cognitive support

required by a person suffering from cognitive decline (the

Kitchen Task Assessment, [23]). In addition, there is evidence

that action languages can be used to model erroneous behavior

specifically for this setting [24].

3. Kitchen activities are frequently used as trial settings for

activity recognition methods (see Sec. 1.3.2 and [25]). A

successful use of CSSM for this setting should allow many

researchers to reproduce the results of this study in a similar

environment.

4. The task has a non-trivial causal structure combining regions of

high dispersion, where many different routes exist (often caused

by permutation effects, when n actions can be executed in any

order, such as setting the table or cleaning up kitchen utensils)

with regions of low dispersion (preparing food and cooking

food are strictly sequential), making the use of CSSM

techniques meaningful.

2.1.2 Subjects and sample size. Target of the study was the

comparison of the CSSM approach to standard methods in a

scenario of realistic complexity. Therefore, as merely relative

comparisons between methods were required, the representativity

of the subjects chosen for the trials was not an issue, allowing the

use of a convenience sample of volunteers. As CSSMs are

conceptually not built from training data but from prior

knowledge, the main purpose of the empirical samples is to

provide data for model comparison. Seven subjects were

considered sufficient to detect relevant effects on accuracy, such

as consistent inferiority of CSSM in comparison to standard

methods, at the :05 a level (significance level). The rationale here is

that if CSSM can not be proven to be inferior at this level, then

this justifies to spend the effort on a larger scale experiment.

With respect to designing the symbolic component of the CSSM

system model, seven data sets were considered sufficient to allow a

system designer to detect all relevant causal dependencies.

Although there is no direct data on how much experimental data

is required for building successful causal models, a weak argument

can be found in the domain of usability research, where it is

established that in interactive software five to seven subjects are

sufficient to identify most usability problems – most situations

where system behavior does not meet user expectations [26].

Furthermore, the causal model is not subject to the
ffiffiffi
n
p

law

regarding the standard error of a parameter estimate, as at the

symbolic level a single example is sufficient to infer a causal link.

For methodologically obvious reasons, a leave-one-out cross-

validation would have been infeasible considering CSSM model

construction: it would have required the availability of seven

model engineers of identical qualification. Therefore, in order to

not place the baseline models at a disadvantage relative to the

CSSM model, they also were built on the complete data. Thus,

CSSM and baseline performance can be expected to be

exaggerated in absolute terms due to overfitting. However, as this

study focuses on a comparison of modeling factors, absolute

performance is of minor interest. Indeed, as the training-based

baseline has more parameters as the CSSM model (cp. Sec. 4.2),

this exaggeration should favor the baseline. This bias is actually

desirable, as it is an additional safeguard against type I errors

considering H1.

Figure 1. Instrumentation and trial setting. Left: Instrumentation of participants (red points indicate IMU positions). Right: Conceptual spatial
layout (view from above) and domain objects of trial setting.
doi:10.1371/journal.pone.0109381.g001
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2.1.3 Experimental procedure. Considering the study

objectives, neither absolute motion trajectories nor absolute action

duration were of relevance. Therefore, it was possible to use a

simplified motion capturing environment where some of the

kitchen utensils (for instance, the stove) were replaced by physical

props (cp. [27]), and some actions (e.g., cooking) were shortened to

bound overall experiment duration. (See Fig. S1 for the physical

setup.)

The experimenter presented the experimental task verbally to

the participants and explained the stage, the props, and their use.

Afterwards, the participants were instrumented with motion

capturing equipment. After the ‘‘start’’ signal, the participants

would execute the task; the experimenter would monitor task

execution and prompt the next step in case the participant got

stuck. Within the causal dependencies of actions (food needs to be

prepared before being cooked) the participants were free to choose

the sequence of actions. The experiment was simultaneously

recorded by a documenter on video to enable later annotation.

2.1.4 Sensor data and preprocessing. As prototypic

examples for realistic sensor setups, a motion capturing system

based on wearable inertial measurement units (IMUs) was chosen.

This choice was motivated by the following considerations in favor

of other setups such as RFID labeling [28], cameras [18], or

various multi-modal setups [29]:

N This sensor setup is used in several experiments by various

researchers [30–32], simplifying a translation of the CSSM

method to other available data sets.

N As IMUs do not require the instrumentation of the

environment, they are a technically and economically feasible

choice for everyday environments.

N As IMUs monitor a specific individual, identification problems

do not arise (although such problems by design did not arise in

the trial setting, they become relevant when translating results

into the application domain). Likewise, environmental factors

such as lighting conditions have no influence.

N If absolute accuracy is not a major target, it is comparatively

easy to set up IMU sensor models with reasonable perfor-

mance.

N Some researchers claim that ‘‘wearable sensors are not suitable

for monitoring activities that involve complex physical motions

and/or multiple interactions with the environment’’ [19]. It is

therefore especially interesting to see whether a more refined

system model is able to alleviate these problems.

The participants were instrumented with five IMUs, fixed at

lower legs, lower arms, and upper back. These sensor locations

were chosen to be compatible with sensor data available from

other experiments [32]. For each sensor three axis acceleration

and angular rates were recorded, with a sampling rate of 120 Hz.

Although provided by the sensing platform, magnetometer

readings as well as higher order features (such as joint angles)

were discarded, as such features may be not available in low cost

equipment. The resulting data stream of 5|6~30 signals was

segmented into frames using a simple window-based segmentation

with a window size of 128 samples and 75% overlap, giving a

frame rate of 3.75 Hz. For each frame, mean, variance, skew,

kurtosis, peak, and energy were computed for each signal. This

stream of 180-dimensional feature vectors at 3.75 Hz was then

subjected to dimension reduction by applying principal compo-

nent analysis to the full set of feature vectors, choosing the loadings

of the factors corresponding to the k largest eigenvalues as effective

observations. (See below for the method of choosing k.)

Additionally, the collected data was annotated based on the

video logs. This is done in order to provide a target label ‘t for

every observation yt such that methods for supervised learning can

be applied. Furthermore, comparing target values with the values

estimated from observation data is used for quantifying the

performance of the estimation procedure. These labels are called

‘‘ground truth’’, as they conceptually provide a symbolic

representation of the true state of the world at time t. As CSSMs

provide causal representation of the human behavior, the

underlying annotation has to be causally correct, too. However,

in reality, labels are a finite set L :~‘1,:::,‘n where besides the

equality relation no other algebraic structure on L exists. For that

reason one has to ensure that the produced annotation represents

a causal structure. The detailed procedure of annotating the data

and ensuring its causal correctness can be found in Appendix S3.

The annotations for subject S1 are provided in Table S3.

2.2 Statistical model
The statistical model formally describes the framework and

assumptions of the model for the kitchen task scenario. This

section briefly describes the model for the inference LTS (iLTS),

including the sensor model, duration model, and action selection

heuristics. For a discussion of the difference between the inference

LTS and the annotation LTS (aLTS) we refer to Appendix S3.

Detailed discussions of the statistical model and its development

process is given in Appendix S4. Finally, the baseline models

(QDA and HMM) are presented briefly, which are used as

comparison against the CSSM model.

2.2.1 CSSM model structure. For the probabilistic model of

Sec. 1.2 (see Appendix S2 for details), a DBN with the structure

given in Fig. 2 was used. Yt~(Wt, Zt) is the observation data for

time step t, i. e. the sensor data as discussed in Sec. 2.1.4. Vt is the

associated time stamp, required to be strictly increasing.

Xt~(At,Dt,Gt,St,Ut) defines the hidden state. For this study,

Gt, the current goal, could be assumed to be constant, namely that

the user has prepared the meal, eaten, and cleaned afterwards. A

new action is selected according to the action selection heuristic c,

which incorporates the distance from the current state to the goal

Figure 2. CSSM DBN structure. Boxes represent tuples of random
variables. An arc starting/ending at a box ( = a tuple) represents a set of
arcs connected to the tuple’s components. Nodes with double outline
signify observed random variables.
doi:10.1371/journal.pone.0109381.g002
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(for more details on action selection heuristics, see Sec. 4.1.5 of

Appendix S4). St is the LTS state for time step t: either the result

of applying the new action to the previous state, or by carrying

over the old state. For the purpose of this study, actions could be

assumed to be deterministic and with instantaneous effect. In

contrast to the model defined in Sec. 1.2, actions in our model may

last longer than a single time step. A model was chosen where

multiple observations may correspond to a single action. This

model introduces a real-valued random variable Ut representing

the starting time of an action At and a boolean random variable

Dt signaling termination status of the previous action At{1.

As the sensor model, all actions a of a given class c~class(a)
share the same observation distribution, each being a multivariate

normal distributions with unconstrained covariance. Although

there is no reason to believe that the observation data is

particularly well represented by this model, it was found to

perform reasonably well in the baseline models, justifying its

further use in this study. The 16 action classes and their empirical

frequencies can be seen in Fig. S3. For example, an action class is

TAKE, while the actions belonging to it are take carrot, take bottle,

take spoon etc. As alternative to the IMU sensors, a location-based

model was set up, giving categorical observations (place names) of

the S state component. The observations themselves were taken

from the annotations of each subject, where the locations of the

protagonist (3 places) and the food (6 places) were used (see Table

S5).

For simplification it was assumed that all actions of a given class

share the same action duration distribution. Note that duration

distributions with large, possibly infinite, support increase infer-

ence complexity. In order to determine this effect, an instance

based and a parametric duration model was built. The instance

based model was given by the corresponding empirical distribution

function, that is by the observed action durations from the

annotations. For the parametric models, the distribution giving the

maximum likelihood was selected from a set of candidate

distributions (including Cauchy, exponential, and lognormal) the

parameters of which were fitted to the observed class durations.

As primary goal-driven action selection feature, the goal

distance feature fd as discussed in Appendix S2 was chosen. As

computing goal distances may become intractable for large

models, two approximations were considered in this study:

N A goal distance heuristic fh, that assigns heuristic distances to

LTS states based on prior knowledge, identifying 14 serial task

steps there were used to define a map from LTS state s to

remaining script steps h(s).

N A restricted goal distance feature f�dd. Here, only those LTS

states were considered that are visited when using the

annotations as exact observations. Restricted goal distance f�dd

should give an upper limit to the gain achievable by a goal

distance measure.

To gain insight on the effect of weight factors, each of these

features was tested with the weight values

li~{(2k), k[f0, . . . ,4g, using exponential probing.

2.2.2 Baseline models. Two baseline models for estimating

the action class from observation data were built: a quadratic

discriminant model (QDA) with one category for each action class

and a hidden Markov model (HMM) with one state for each class.

The QDA model was constructed from the sensor models

N(yADmc,Sc) and the priors p(c), given by the frequencies of the

action classes in the data set annotations. The HMM transition

matrix was computed by counting the class-transition frequencies

in the data set annotations, the N(yADmc,Sc) were used as

observation model. The baseline models were used to establish

target values for estimation accuracy and to select between

alternative observation models (see also Sec. 2.4).

2.3 Inference methods
Due to the expected size of the state space, exact methods are

infeasible and approximate methods for inference were selected. In

order to assess the effect of inference method on performance, two

methods were compared: a particle filter (PF) and a marginal filter

(MF), a variant of the D-condensation algorithm described in [8].

2.3.1 The particle filter. The PF maintains a vector of n

weighted samples (x1:n,1:t,v1:n,t) where xi,1:t[X t and
Pn

i~1 vi,t~1

such that the density p̂pt(x1:t) :~
P

vi,t½x1:t~xi,1:t�&p(x1:tDy1:t)
approximates the joint filtering distribution. A standard bootstrap

filter was used [33] where the system model serves as proposal

function: given a sample vector (x1:n,1:t{1,v1:n,t{1) and a new

observation (yt,vt), a new sample vector (x1:n,1:t,v1:n,t) was

produced by drawing xi,t*p(xtDxi,t{1,vt,vt{1), setting

~vvi,t :~p(ytDxi,t)vi,t{1 and normalizing vi,t!~vvi,t. The effective

number of samples is computed from the weights as (
Pn

i~1 v2
i,t)

{1

[34]. If this number drops below a threshold, resampling is

performed. The filter step complexity of PF is O(n). If n is fixed,

this is O(1).

Essentially, a PF represents the probability of a point in state

space by the density of samples in the vicinity of this point. This

works very well in continuous state spaces where a meaningful

concept of ‘‘distance’’ can be defined. In these domains, all

particles typically occupy different points in state space (with the

exception of resampling time, when particles are copied); there are

as many different state samples as there are particles. In discrete

categorical spaces, this does not hold any more. There is no

‘‘distance’’ between points in state. Probabilities have to be

represented by particle weights – and as a PF strives for all

particles to have equal weight, this results in probabilities to be

represented by the number of particles in this state (explaining the

‘‘particle clinging’’ phenomenon often observed in PF applica-

tions). In discrete categorical spaces, there are usually much more

particles than states. PF thus may perform suboptimal in discrete

categorical spaces with high complexity – which are created by

CSSM models.

2.3.2 The marginal filter. The MF is tailored towards

categorical discrete spaces, where there is no notion of distance,

but where there is a chance for trajectories to end up in the same

state (consider k actions that need to be done in any order: there

are k! trajectories, all ending in the same state). The MF uses a

finite set of states for approximating the marginal filtering

distribution by maintaining a density p̂pt(xt)&p(xtDy1:t) with finite

support, supp(p̂pt). Being finite, p̂pt can be represented by a set of

ordered pairs (implementationally, these sets were built using tries,

see Sec. 4.2.1 of Appendix S4). The value of p̂pt(x) is computed by

summing over all trajectories that arrive in x at time t. The MF

therefore should give a better approximation than the PF in

categorical domains, specifically with high dispersion, as here

many different trajectories could lead to the same state. MF

inference proceeds in two stages. First, prediction pz
t and

uncorrected posterior ~ppt are computed using

pz
t (xt) : ~

X
xt{1[supp(p̂pt{1)

p(xtDxt{1,vt,vt{1) p̂pt{1(xt{1) ð1Þ
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~ppt(xt) : ~p(ytDxt)p
z
t (xt) ð2Þ

If �tt and p(stDat,st{1) have finite support (specifically, if a is

deterministic), then both computations remain tractable since only

a finite number of states is reachable from each state in

supp(p̂pt{1). Thus supp(~ppt) is finite too. The second stage

computes p̂pt from ~ppt. In general, supp(~ppt) will contain more than

n states, requiring pruning. For this study, p̂pt was computed from

~ppt by selecting the n most probable states from supp(~ppt),
normalizing the values so that p̂pt sums to one. The bias introduced

by this method was considered negligible for the purpose of this

study.

If the number of actions applicable to a state can be considered

constant, the filter step complexity of MF is O(n log n), giving O(1)
if n is fixed. The term n log n is due to the sorting procedure

implicit to the pruning process. For computing the approximate

marginal smoothing density p̂ptDT (xt)&p(xtDy1:T ) and the MAP

(maximum a-posteriori) sequence arg maxx1:T[XT p(x1:T Dy1:T ) us-

ing an adapted Viterbi algorithm [35], a complexity of O(nT) can

be achieved.

In general, the support of �tt will not be finite. However, the

frame rate was considered high enough to render the error

introduced by approximating �tt with a suitable point distribution –

positioned for instance at the mean or the new time stamp vt –

negligible. For both PF and MF the approximation

�tt(utDut{1,vt,vt{1,at{1)~½ut~vt� was used in this study. Using

the time stamp values vt fixed by observation as potential ut values

supports state identification in the MF.

The PF was parameterized with nP
U~100,000 particles. PF

resampling threshold was set to nres~1000 states. The MF used

nM
U ~10,000 states with discrete empirical timing and nM

U ~20,000

with parametric timing. (nx
U is the number of ‘‘representation

units’’ available to filter x.) These MF and PF parameters had

shown reasonable results in preliminary tests.

2.4 Experimental analysis
The experimental design and evaluation methodology used for

establishing the hypotheses H1 and H2 (Sec. 1.4) is described in

this section. In this context, an experiment refers to the application

of one of the inference algorithms on all data sets, followed by a

performance analysis. This includes the set-up of different

algorithms (marginal or particle filter) and parameters (e. g.

observation models), and describes which analysis methods have

been chosen for testing the hypotheses.

2.4.1 Experimental design. The experimental design tar-

geted the following objectives

N Selection of the observation models relevant to analyzing

CSSM performance.

N Comparison of CSSM and baseline models (test of H1).

N Factor analysis of the effect of CSSM configuration parameters

on CSSM performance (test of H2).

For model comparison (H1), using the best result of some

standard parameter search procedure would be sufficient.

However, understanding how parameter variations affect model

performance and how parameters interact (H2) requires a

systematic multi-factorial experimental design.

Table 3 lists all factors and levels that determine the experi-

mental configurations resulting from the discussions in the

preceding sections. Target gives the distribution (or MAP

sequence) that is estimated by the inference process. Model
describes the system model used for representing temporal

correlations. Mode is the inference mode used for the system

model based on the CSSM approach. Observations describes the

different models for (continuous) IMU observations, using either

original or scrambled (ensuring i.i.d. observations, see Sec. 4.1.3 of

Appendix S4) sequences, and the categorical location model. For

evaluating the effect of k, the number of principal components, a

selection according to the Fibonacci series was chosen (Fibonacci

Table 3. Factors and levels for experimental configurations.

Factor Level Comment

Target f filtering distribution p(xt Dy1:t)

s smoothing distribution p(xt Dy1:T )

v MAP-sequence xMAP
1:T :~arg maxx1:T

p(x1:T Dy1:T )

Model QDA (no system model)

HMM HMM transition matrix

C CSSM model

Mode M Marginal filter

P Particle filter

Observations Oko IMU data using k[f5,8,13,21g principal components

Oks IMU data, scrambled

OL Locations (categorical)

Distance fd True goal distance, complete state space

f�dd True goal distance, restricted state space

fh Heuristic goal distance, using script

Weight Ll l[f0,1,2,4,8,16g
Duration tc continuous parametric duration models

td discrete duration models based on empirical distribution function

doi:10.1371/journal.pone.0109381.t003
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probing). Distance, Weight, and Duration represent the different

tuning parameters of the CSSM system model discussed above.

Target, Model, and Mode are combined to a Method factor with

the valid levels QDA, HMMf, HMMs, CMf, CMs, CMv, CPf,
where for instance ‘‘HMMs’’ means an HMM model with

smoothing distribution as estimation target, ‘‘CPf’’ a CSSM model

with particle filter and filtering distribution as target, and ‘‘CMv’’ a

CSSM model with target MAP-sequence computed using the

Viterbi algorithm. A detailed summary of all factor meanings is

given in Table 3.

Finally, the factor ‘‘Subject’’ with levels ‘‘Si’’ where i[1 . . . 7
represents the seven data sets being available for experiments.

Using these factors, the following experimental configurations

were selected:

N (QDA , Oko ) – Baseline establishing discriminative power of

observations. As this model does not use any information on

temporal correlations, using original or scrambled observations

will have no influence on performance.

(4 Configurations)

N (HMM ff, sg, Okfo , sg) – Baseline for establishing the

impact (i) of information on temporal correlations, (ii) of

different observation models, and (iii) of scrambling. The

outcome of these experiments was used for selecting the

relevant observation models for the CSSM experiments. For

each target, the best performing HMM baseline was selected

as basis of comparison for the CSSM experiments.

(2|4|2~16 Configurations)

N (fCMf, CMs , CMv , CPfg, fO5s , O21s , OLg, ffd,�dd,hg, Ll,

tfc,dg) – CSSM evaluation experiments. The restriction to

O5s , O21s results from the baseline analysis. OL implements

an observation model based on locations of two objects. For

comparing marginal filter and particle filter, it was considered

that already the f target would allow a substantiated judgment.

This results in 4|3|3|6|2~432 configurations.

A within-subjects design was used where each configuration was

applied to all of the data sets, resulting in (432z16z4)|7~3164
experiments. (We report these numbers to provide an intuition for

the number of data points shown in the plots of Sec. 2.4.2.)

2.4.2 Evaluation methods. Performance comparisons for

testing research hypothesis H1 were based on point estimates for

the action class at time t, given by the obvious method. (This

means choosing the most probable action class for each time t
given the estimated filtering resp. smoothing distribution for f and

s targets. For the MAP sequence the action class at time t is

directly given by the action selected for time t.) The estimates were

collected into a confusion matrix C :~(cij), where cij is the

number of time-steps where the action class was actually i and

action class j has been estimated. From the resulting confusion

matrices, the accuracy acc(C) :~(
P

i cii)=(
P

ij cij ) was used as

primary comparison measure. The target ‘‘action class’’ was

chosen in favor of the more complex targets such as ‘‘ground

action’’ in order to allow the training-based baseline models

(HMM) a sufficient amount of training data for estimating the

transition model. For the QDA model, a finer grained target than

provided by the observation model would have been meaningless

anyway as the QDA model does not support temporal information

and therefore can not disambiguate actions indistinguishable by

the observation model.

Concerning research hypothesis H2, multi-factorial repeated

measures analysis of variance (rANOVA) was used to analyze the

effects of the configuration factors Mode, Observations, Distance,

Weight, and Duration on Accuracy for CSSM configurations.

Accuracy corresponds to assuming a 0-1-loss function for a

decision theoretic comparison of classifier performance, where the

loss of a classification decision at time t is counted independently of

previous and following decisions. If no additional knowledge is

available, this correctly reflects system performance. Accuracy is

also the performance measure most frequently used in present

research (cp. Sec. 1.3.2). Therefore, it was selected as primary

measure for comparing model performance.

Although it has the advantage of being a well established and

widely understood performance measure, Accuracy has the

drawback that it assigns the same value to causally different

sequences. Consider the true sequence (on, off, off) for which two

hypothetical estimates e1~(on, on, off) and e2~(on, off, on) are

given. Both estimates have the same accuracy (2/3), but their

causal consequences are different. In addition, e1 consists of two

actions, while e3 has three actions. Thus, e1 can be regarded as

‘‘better’’ than e2, since e1 mistakes just the action durations while

e2 gets the causal sequence wrong. Metrics for measuring sequence

alignment – such as edit distances (e.g., the Levenshtein distance)

or dynamic time warping (DTW) – may provide a more

appropriate measure with respect to these considerations (cp.

[36]). However, as it is not yet known in how far the implicit

assumptions of these metrics agree with the reality of the

application domain considered in this study, performance

comparisons focused on accuracy. (A short analysis of edit distance

and DTW is given in Fig. S7.)

Besides estimating the action (class) sequence, the CSSM

method also allows to estimate the probability of states and, more

generally, the truth value of predicates on state. To provide data

on the validity of the estimates obtainable, three sample predicates

corresponding to three situations of potential interest were

established:

N ‘‘Danger’’ – a potentially dangerous situation exist (i. e., the

stove is on): on (stove ).

N ‘‘Eaten’’ – the protagonist has finished the dinner:

:hungry ^ :thirsty .

N ‘‘Success’’ – the protagonist has finished the complete routine

(and may be engaged with addit ional cleanup):

:hungry ^ :thirsty ^ clean (plate ) ^ clean (glass).

The ground truth for these predicates was computed by the

same method used for generating the location observations. This

ground truth p
q
t :~p(qt) is a Bernoulli distribution with param-

eter bq
t giving the probability of qt being true. Usually p

q
t is

deterministic with bq
t either 0 or 1, except for situations where the

aLTS model is ambiguous given the observed actions.

The estimated filtering probability p̂p
q
t :~p̂p(qtDy1:t) of predicate

q being true at time t is given by the parameter estimate

b̂bq
t :~

P
x[supp p̂pt

½x � q� p̂pt(x). For the smoothing target, p̂ptDT is

used in place of p̂pt. For comparing the estimated distribution p̂p
q
t

with the true distribution p
q
t the Jensen-Shannon distance

DJS(p̂p
q
t , p

q
t ) was used. (DJS is the square root of the Jensen-

Shannon divergence [37].) As measure for the sequence of

distributions p̂p
q
1:T the mean Jensen-Shannon distance was used,

given by �DDJS(p̂p
q
1:T , p

q
1:T ) :~T{1

PT
t~1 DJS(p̂p

q
t , p

q
t ). In addition,

a conventional accuracy value was computed by

acc(p̂p
q
1:T , p

q
1:T ) :~T{1

PT
t~1½p̂p

q
t §0:5up

q
t §0:5�. This uses point

estimates, assuming q to be true if its probability is at least 0.5.
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Results

This section provides results of the experiments as described in

Sec. 2.4. First, some empirical data on the model and the

annotations themselves are given. They provide some intuition

about the complexity of the experimental setting. Then, the

performance of the baseline models is compared with the CSSM

models and inference algorithms. The key result is the confirma-

tion of hypothesis H1. Hypothesis H2 can be accepted after

assessing the influence of the parameters (factors presented in Sec.

2.4.1). Finally, results on the ability of state predicate estimation

are given.

3.1 Empirical data
3.1.1 Data sets and annotations. The data sets obtained

have a mean length of 91.6 (standard deviation SD~5) action

steps and a mean duration of 950 (SD~174) observation steps (cf.

Table S2). The shortest observed plan had a length of 66 causal

actions (that is, not counting ‘‘WAIT’’ actions). This is consider-

ably longer than has been found in previous research (cp. Sec. 1.3).

Plots of the preprocessed observation data (PCA transformed)

and action classes for the ground truth annotation are given in Fig.

S4. The detailed annotations for subject 1 are given in Table S3.

3.1.2 aLTS and iLTS model. The aLTS model defines 16

action classes and 82 action instances. Thus performance

evaluations would be based on 16 target classes. This is in the

highest quartile of N.classes and it exceeds the number of target

classes that have been considered in previous studies on CSSMs

(cp. Sec. 1.3.2). The action classes occupied between 0.5% of total

time (TURN_ON, TURN_OFF) and 19.8% (WASH). See Fig. S3

for details.

In the iLTS model, these were translated into 44 action

schemata (of which 9 were parameterized), resulting in 99 ground

actions, produced by the instantiation of action schemata with

iLTS domain constants (objects and slot values). The iLTS model

defines 18 state variables based on 14 domain objects and 11 slot

types (not all objects use all slot types). For further details, see

Table S4. In total DSD~1:47|108 iLTS states were reachable

from the initial state using simple breadth-first search (bfs). The

median branching factor was ~bb~5 (interquartile range

IQR~3{6). Bfs tree depth was 66 steps, which means that all

action sequences taking 66 or more steps will allow all iLTS states

to become possible. (The fact that the shortest observed action

sequence took 66 steps is pure coincidence.) If all actions have a

non-zero probability for a single-step duration (which is the case

for parametric duration models), this means that already after 66

observation steps, all states have non-zero probability. The

maximum goal distance was 40.

The observed sequences traversed no~467 iLTS states. The

maximum goal distance in the LTS restricted to these 467 states

was 52. For both full and restricted iLTS state space, the

maximum goal distance was considerably smaller than the shortest

observed action sequence (66). The maximum possible number of

iLTS states would have been nm~549{6~543 (the plans of all

subjects share only the starting state and the final state), the

minimum would have been nd~40 (the length of the shortest path

to the goal from the starting state). It is possible to compute a

‘‘proportion of unique state discoveries’’, given by

(no{nd )=(nm{nd )~:85. Finding 85% unique iLTS states in the

observed data can be taken as indicator of a substantial degree of

freedom in task execution provided by the experimental setting.

3.1.3 Action durations. For the duration modeling as

described in Sec. 2.2.1 and Appendix S4, the lognormal model

provided the best fit for the pooled action durations (although this

fit is far from perfect, see Table S6), justifying its use as baseline for

determining the set of classes with specific duration models. Ten

classes were found, four using Weibull models, two gamma, and

four lognormal. The other six action classes shared a common

lognormal model. (See Table S7 for additional detail.)

Considering the instance based timing models, a median

number of ~dd~8:5 (IQR~6{14) different durations for actions

was found. Combining the median number of durations with the

median branching factor and the number of iLTS states gives as

approximation for total number of states governing inference

complexity DX D&DSD|~bb|~dd~6:23|109.

3.2 Model comparison results
Below we provide results for the baseline models (QDA and

HMM) as well as for the CSSM model. The performance is always

given as accuracy as described in Sec. 2.4.2. For notational

conventions, please refer to Appendix S1.

3.2.1 Baseline performance. Best mean performance of

QDA was :64 with confidence interval (CI:95~:6, 68). For HMM

forward filtering, best mean performance was :73 (CI:95~:69, 77)

using scrambled observations, and :66 (CI:95~:62, 71) with

original observations. In all cases, the number of principal

components k~21. Fig. 3 contains detailed data for all configu-

rations and all subjects. For QDA, scrambled and original

Figure 3. Baseline classifier accuracies per subject. Different numbers of principal components in the observation model have been used. An
accuracy of .2 (solid gray line) is achieved by selecting the action class with highest prior probability.
doi:10.1371/journal.pone.0109381.g003
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observations gave identical performance (as they should). Follow-

ing, ‘‘pp’’ refers to ‘‘percentage points’’. An accuracy increase from

.27 to .32 is an increase by 5pp.

For HMM, scrambled observations uniformly outperformed

original observations for all k (median increase 9.89pp, Wilcoxon

signed rank test, V(28)~406, pv:001). A median improvement of

11.7pp over QDA was found for HMM with scrambled

observations (V(28)~406, pv:001), while an HMM with original

observations achieved only an improvement of 1.67pp over QDA

(V(28)~302, p~:023).

The observed effect of scrambling was supported by the finding

that for the original data there was a highly significant influence of

observation position in a run on expected probability, substanti-

ating the conjecture in Sec. 4.1.3 of Appendix S4. This influence

could not be found in scrambled data. Consequently, CSSM

analysis focused on scrambled data. (See Fig. S2 for additional

details).

With respect to k, the models using k~21 uniformly performed

best, while k~5 had the lowest mean and median performance.

The CSSM analysis was restricted to these two extremes. For

completeness we note that HMMs (smoothing) outperformed

HMMf (filtering) with a mean increase of 3.98pp (paired t-test,

t(55)~11:6, pv:001), on scrambled data alone an increase of

5.57pp was found (t(27)~19:9, pv:001).

3.2.2 Comparison between CSSM and baseline: H .1

Fig. 4 gives the performance data resulting from the CPf and

CMf CSSM model configurations. (The complete data, including

the CMs and CMv configurations, is given in Fig. S8). For baseline

comparison, the (CMf, O21s, L1) and (CMs, O21s, L1)

configurations were selected. The detailed performance data

obtained for these configurations is given in Fig. 5. An analysis of

the clearly visible influence of the configuration parameters on

performance is given in Sec. 3.3.

For testing H1, the configurations (CM {f, s}, O21s, fd, L1, tc)

were chosen. These configurations use the least amount of

information from the training data, are the least restrictive

considering the state space, and employ the most rational action

selection heuristic available in this study. Comparison of HMMf
and CMf showed a significant median increase of accuracy for

CMf by 3.63pp (Wilcoxon signed rank test, V(7)~27, p~:031).

For HMMs and CMs a median increase of 6.78pp was found

(V(7)~28, p~:016). Both results do not support the hypothesis

that CSSM models perform at the same level of accuracy as

training-based models, instead they suggest that CSSM perfor-

mance exceeds baseline performance. (For comparisons of the

other configurations, see Table S8.) This is also supported by the

per-class performance data shown in Fig. 6. (The confusion

matrices from which this data has been computed are included in

Fig. S5.) Considering the per-class performance there was no

strong difference in overall classification behavior between QDA,

HMM, and CSSM. However, the F1 score suggests an overall

more balanced performance for CSSM. We also see that there are

fundamentally ‘‘difficult’’ action classes (TAKE, PUT, WAIT).

Plots of the estimated action class sequences versus ground truth

for all (O21s, fd, L1, tc) configurations and the corresponding

baseline results are given in Fig. S6.

Additional evidence for the alternative to H1 is given by

computing Cohen’s k from the confusion matrices and testing for

significant difference of the values obtained. The results show

highly significant difference in k (cf. Table 4). However, as these

results are based on using n~6647, the observed frames, which

are typically not i.i.d. (independent and identically distributed), we

think they exaggerate the true performance difference.

3.3 CSSM configuration factor analysis
The subsequent sections analyze the effects of the different

parameters of the CSSM model on accuracy. After describing

general observations on parameter interaction and influence,

results for the inference methods (Mode, particle and marginal

Figure 4. Boxplots of Accuracy vs. CSSM configuration. c,d = continuous (tc) resp. discrete (td ) duration model. d,�dd,h = f�dd (restricted), fd

(complete), hh (scripted) distance computation. Details for the O21s configurations marked by triangles are shown in Fig. 5. The orange triangle marks
the CMf configuration used in testing H1 .
doi:10.1371/journal.pone.0109381.g004
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filter) and goal distance heuristics (Distance) are presented in more

detail.

3.3.1 H2: Configuration factor effects. Fig. 4 suggests

that several effects of CSSM configuration factors on Accuracy are

present. These effects were analyzed using rANOVA. The

complete rANOVA results including F statistics are given in

Table S9. Here we concentrate on significant effects with at least

medium effect size (using the criterion g2
G§:0588; g2

G is the

generalized Eta-squared effect size measure [38], the medium

effect size threshold :0588 has been taken from [39]).

Significant main effects (all pv:001) were found for Mode
(g2

G~:34), Observations (g2
G~:61), Distance (g2

G~:14), and Weight
(g2

G~:18). There was no significant effect for Duration. Further-

more, there were significant interactions (all pv:001) for

Mode|Observations (g2
G~:24), Mode|Weight (g2

G~:089),

Distance|Weight (g2
G~:1), and Observations|Weight

(g2
G~:079). Fig. 7 shows interaction plots for the first three effects.

Fig. 4 illustrates the effect of the interaction between

Observations and Weight in more detail.

Use of Marginal mode increased Accuracy over Particle mode

by 9.81pp (CI :95~7:96, 11:7). The difference between O21s
(highest) and OL (lowest) was 20.5pp (CI :95~12:9, 28). Using

Restricted distance instead of Complete improved performance by

4.99pp (CI :95~2:58, 7:4), while using Script caused a decrease of

1.57pp (CI :95~20:55, 3:68). A moderate nonzero Weight im-

proved performance, the difference between L0 and L2 was

8.41pp (CI :95~6:07,  10:8). The small difference between L1 and

L2 was not significant (t(6)~20:049, p~:96). Interestingly, as

weights get larger performance begins to decrease again: there was

a significant drop from L2 to L16 by 8.39pp (CI :95~5:78,    11).

Considering interactions, the Marginal mode gained more from

better observations than the Particle mode. While there was only

small performance difference at OL of 1.55pp (CI:95~0:54,  2:57)

(although significant (t(6)~3:75, p~:01)), the Marginal mode

clearly exceeded the Particle mode at O21s by 20pp

(CI :95~15:7,   24:3). With regard to Distance there was a significant

effect for transiting from L0 to L1 for both Complete and Restricted
with an increase of 6.5pp (CI :95~3:97, 9:02) and 11.3pp

(CI :95~8:28,  14:4), respectively. The tendency for Script was not

significant (t(6)~0:8, p~:45). There was a marked decrease in

performance of 15.2pp (CI :95~13:3, 17:1) for Complete when

proceeding from L2 to L16. The same tendency could also be

observed for Restricted, with a decrease of 8.69pp

Figure 5. Accuracy comparison of selected CSSM configurations to baseline (HMM), by subject and filter method. c/d = use of tc

(continuous) or td (discrete) duration model. d/�dd/h = use of fd (complete), f�dd (restricted), or fh (script) goal distance model. Observation model O21s,
distance weight L1. (Subjects sorted by median performance in all configuration.)
doi:10.1371/journal.pone.0109381.g005

Figure 6. Per-class performance measures. Detailed accuracies for
the configuration (OS21s, fd , L1, tc).
doi:10.1371/journal.pone.0109381.g006
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(CI :95~4:87, 12:5). An analysis of the significant interaction of

Mode|Distance|Weight (g2
G~:077), Fig. S10, shows that this

tendency is mainly caused by Particle in combination with

Complete (decrease of 26.7pp (CI :95~23:4, 30:1) for L16 ) and

Restricted (decrease of 15.4pp (CI :95~8:43, 22:4) for L16 ).

For Marginal this effect is only significant for L16
(p~:071, :053, :001 for L4 , L8 , and L16 ) for Complete and

not significant for Restricted (p~:06, :49, :21).

Concerning the effect of Script, a detailed look at the significant

interaction between Observations, Distance, and Weight
(p~:001, g2

G~:018), Fig. S9, shows the situation to be more

complex. While for O21s Script had only significant effect for L16
(p~:55, :13, :70, :06, :03 for all five non-zero weights), it had a

significant benefit for OL, giving an increase of 3.04pp

(CI :95~0:66, 5:42) at L1, up to 5.58pp (CI :95~2:98, 8:19) at

L16 (p~:020, :003, :001, :001, :002 for the non-zero weights).

3.3.2 Understanding the effect of Mode. One explanation

for the superiority of the Marginal mode is that the marginal filter

is able to maintain more states than the particle filter, as it

represents state probabilities by weights rather than replication

counts (cp. Sec. 2.3). To analyze this, the number of LTS states

(elements of S) as well as the number of inference states (elements

of X ) were counted for each step in each filter run. The numbers

obtained were compared with the number of representation units

(nU ) available to the respective filter, giving the quantity ‘‘LTS

state per representation unit’’ (SpU) and ‘‘inference state per

representation unit’’ (XpU).

Table 5 gives the median values across all runs. The marginal

filter clearly makes much better use of the available representation

resources. The numbers show the marginal filter to be 80 to 125

times more efficient than the particle filter considering represen-

tation unit use. Concerning XpU, the ratio is always 1:1 for the

marginal filter (detailed data is provided in Fig. S11). The row

‘‘XpS’’ gives the number of inference states per LTS state. The

marginal filter is able to maintain more inference states (more

variations in starting times and action under execution) per LTS

state. #S and #X give the median values for the absolute

numbers of states. (Note that the particle filter has been used with

nP
U~100,000, while the marginal filter used nM

U ~10,000 and

nM
U ~20,000.)

3.3.3 Understanding the effect of Distance. For a state xt

entered at some time t in an execution sequence of total length T ,

the remaining execution time is given by RT(xt) :~1{t=T . To

understand the effect of Distance on Accuracy, linear models were

built that predicted the RT values observed for the ground truth

state sequences from the normalized goal distance value given by

the different Distance methods. The ground truth state sequences

were computed using the method described in Sec. 4.1.3 of

Appendix S4. Fig. 8 gives the resulting models. All models

explained a substantial amount of RT variance. The goal distance

values computed by the tested methods thus were highly

correlated with the true temporal structure of the observation

sequence, although the ground truth state sequences did not follow

the shortest paths.

However, while r2 for all methods was high, they showed a

markedly different performance (cp. Sec. 3.3.1). As F tests

comparing the residual variances show (column F(958,958) in

Table 6), the Complete and Script models had a significantly

higher residual variance than the Restricted method in predicting

RT . The difference between Script and Complete also was

significant (F(958,958)~0:76, pv:001). The residual variance of

the methods seems to be an indicator for the observed effect of

distance method on performance.

3.4 State predicate estimation
Table 7 gives the median Jensen-Shannon distances (JSD) and

the accuracies obtained for estimating the probabilities of the

selected state predicates ‘‘Eaten’’, ‘‘Danger’’, and ‘‘Success’’. A

Table 4. Cohen’s k and overall accuracies for selected configurations.

k dk Acc. dAcc

QDA .6 .65

HMMf .7 .73

CMf .74 .042 .77 .037

HMMs .75 .78

CMs .82 .072 .84 .064

Cohen’s k and overall accuracies for selected configurations. dk , dAcc = difference between k and Acc values, respectively, for CSSM and corresponding HMM (n~6647,
pv:001 in both cases). Configuration (O21s, fd , L1, tc).
doi:10.1371/journal.pone.0109381.t004

Table 5. Median SpU and XpS values and ratios, across all runs.

CMf CPf ratio (CMf/CPf)

SpU 0.10 0.001 83.18

XpU 1.00 0.008 127.15

XpS 9.77 6.947 1.42

#S 15000.00 786.500 18.42

#X 1090.50 106.750 10.43

doi:10.1371/journal.pone.0109381.t005
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even less perfect distance models begin to show a positive effect.



sample of estimates for the configuration (CMf, O21s ,
fd, L1, tc) is shown in Fig. 9. In general, predicate estimation

achieved median accuracies of .93 or better, reaching perfect

estimation for Eaten in the configuration (CMs , O21s , fd,
L1, td ) (Table 7). As suggested by Table 7, a significant

correlation between JSD and Accuracy was observed (Spearman’s

r~{:86, S~1:47|106, pv:001). (This correlation is even

more prominent in the detail data provided in Fig. S12.) This

suggests that accuracy can serve as a surrogate measure, although

JSD, being the more sensitive measure, was found to detect

differences in situations where accuracy signaled perfect estimates.

There was an interesting outlier concerning the estimation of

predicate ‘‘Danger’’ for Subject S3. Fig. 9 shows a situation where

sensor data has been mistaken for TURN_ON, causing inference

to consistently give the wrong situation estimate. (In an assistive

setting, a system would negotiate the true state with the

protagonist in such a situation.) This is an instance of a situation

where an error in estimating the action sequence with a low

impact on accuracy may have a high (non-linear) impact on

derived estimates that are based on the causality of the estimated

sequence (cf. Sec. 2.4.2 and Fig. S7).

Discussion

We have introduced CSSMs as an emerging knowledge-based

method enabling probabilistic inference in dynamic systems with

large state spaces by using computational action languages. As

Figure 7. Interaction plots for Mode|Observations , Mode|Weight and Distance|Weight . Color: first factor, X-axis: second factor. X-
position ‘‘Mean’’: main effects of first factor. Grey points: main effects of second factor. Error bars give the 95% confidence intervals due to between
subject variance. Effect comparisons are based on within subject differences. Confidence intervals for effects therefore are much smaller than implied
by these error bars.
doi:10.1371/journal.pone.0109381.g007

Figure 8. Observed normalized remaining time to goal (RT) versus normalized goal distances. Data based on S states traversed in
observed sequences. These states have been entered at different times by different subjects; due to alternative paths also multiple discoveries by the
same subject were possible. In total, 960 different discovery events were recorded (blue points in plot). For each discovery event, we plot normalized
goal distance of discovered state (X axis) versus remaining execution time (Y axis). The three plots show the values for different goal distance
computation methods/heuristics. The red line is the linear model predicting (RT) from heuristics using RT ~b0zb1 Predictor . Table 6 gives
properties of linear models.
doi:10.1371/journal.pone.0109381.g008
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discussed in Sec. 1.1, research on activity and intention

recognition considers CSSMs as they potentially allow to build

detailed and reusable system models for probabilistic inference.

We have claimed that, however, until now there is no empirical

proof that CSSMs are indeed applicable to this problem, as

empirical studies so far have focused scenarios with limited

complexity. Our objective therefore was to move a step further

towards providing this empirical proof and to gain insight into the

impact of specific modeling aspects on resulting performance.

Following, we discuss what our results imply with respect to this

objective.

4.1 Problem size
While CSSM methods are considered to have interesting

benefits (cf. Sec. 1.1), they are liable to produce large state spaces.

Our results indicate that modeling activities of daily living, at the

level of individual actions using CSSM methods, results in state

spaces substantially larger than previously considered in CSSM

research (and, indeed, in research on activity recognition and

intention recognition in general). Already the state space produced

by the domain objects and their possible locations (Table S5)

exceeds the largest state space found in previous studies (cf.

Table 2) – although this set of objects and locations contains no

unnecessary complexity. Overall, we arrived at 1:47|108 LTS

states, corresponding to 6:23|109 states in X (Sec. 3.1.2). This

state space is more than 104 times larger than considered in

previous empirical studies on activity or intention recognition.

Considering the observed action sequence length, a median

plan length of 15 actions used in previous studies is substantially

smaller than what we found for our domain (at least 66 causal

actions, mean length 91.6 actions). Given a domain with a specific

branching factor, if plans are too short they will access only parts

of the state space and therefore also mask inference complexity.

We therefore think it is justified to say that in previous studies

the true inferential challenge arising from the use of CSSM

methods – maintaining tractable inference in large state spaces –

has been masked by the use of simplified experimental scenarios.

Inference with billions of states needs approximative solutions. It

is important that the approximation strategies make their errors

where they do not matter. The smaller the state space used in the

experiments is, the less visible the effect of suboptimal approxi-

mation strategies will be. Using small state spaces therefore is

dangerous, as it will hide potential flaws of the methodology used

(or its application). This is consistent with the observation that

approximative filtering in intention recognition and activity

recognition usually relies on particle filtering (cf. Sec. 1.3.2), but

usually no issues with this are reported – in disagreement with our

findings. Specifically studies on CSSMs need to acknowledge this,

as here state spaces used in studies so far tend to be even more

restricted.

4.2 Applicability of CSSMs
Using computational action languages, it is easy to model

systems that have very large – even latently infinite – state spaces.

The question here is whether such models still afford a meaningful

inference. A reasonable requirement is that in case a set of

categorical classification targets is given (e.g., the set of action

classes), a CSSM should, with respect to these targets, perform at

the same level as a simpler system that uses only these targets as

state space. If this is the case, using the larger CSSM state space

does not – at least not obviously – incur any performance penalty

regarding ‘‘simpler’’ estimation tasks, while still providing the

benefits of CSSMs.

This has been tested by comparing the accuracy of a CSSM-

based method in estimating the sequence of action classes to the

performance of HMM built purely from training data. Our

findings suggest that a CSSM is able to provide the same level of

performance as an HMM on this task, even though the HMM has

been allowed to overfit to the training data (the HMM has been

built from the complete data set). Indeed, our results in testing H1

indicate that the CSSM outperforms the training based model

(Sec. 3.2.2).

In conjunction with the discussion above, this suggests that the

first research question of this study can be affirmed: CSSM models

of real world activities afford tractable inference based on data

from noisy and ambiguous sensors. This means, it is possible to use

symbolic knowledge on the causal structure of human actions to

build probabilistic filters which are, considering the computational

complexity of the marginal filter, able to work in real time.

Notably, this seems to be achievable without posing contingent

constraints on CSSM model complexity. This suggests that there is

a certain latitude concerning the number (and value domain

cardinalities) of state variables built into a CSSM model. As

increasing state space complexity does not visibly reduce

performance, creating a rich state space by the anticipatory

inclusion of state variables of potential relevance in future

applications (or different deployment settings) becomes a viable

option.

An HMM might not seem to be a very sophisticated adversary.

However, for a 16-state HMM, as has been used for this study, the

16|16 transition matrix is defined by 16|15~240 parameters.

In contrast to this, the only parameters of the CSSM transition

model are contained in the duration model, which in this case

amounts to 11|2~22 parameters. Therefore, interestingly, the

HMM indeed had more degrees of freedom to adapt to the data

than the CSSM. (Nevertheless, we think there are other data-

driven models, such as Echo State Networks [40], which will

provide a much bigger challenge to the CSSM method with

respect to sheer performance.)

With respect to the discussion of different performance metrics,

which we have only touched in passing (Sec. 2.4.2 and Sec. 16), we

fully agree with [36]: for a thorough assessment of sequential

classifier performance, its is important to consider criteria such as

sequence alignment in addition to measures based on confusion

Table 6. Properties of linear models in Fig. 8 (for all F , pv:001).

Predictor b0 b1 F(1,958) r2 F(958,958)

f�dd(Restricted) 0.09 0.91 17579 .95 1.00

fd(Complete) 0.13 0.88 13441 .93 0.78

fh (Script) 20.08 1.20 10029 .91 0.59

doi:10.1371/journal.pone.0109381.t006
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matrix analysis. Otherwise, important aspects – such as the causal

structure of the estimated sequence – will be hidden in the

evaluation.

4.3 Impact of modeling parameters
Considering design decisions, there were two major factors

determining model performance:

N Making sure that observations are i.i.d. (independent and

identically distributed). This has been the major insight from

the baseline analysis. Without i.i.d. observations, a model

including temporal structure shows essentially the same

performance as a simple QDA. Making observations i.i.d. by

using a simple scrambling mechanism improved performance

by 9.9pp.

N Using the marginal filter (Sec. 2.3.2) that represents state

probabilities by state weights rather than by state duplications

(as the particle filter) increases performance by 9.8pp.

We think a combination of these two factors has been the reason

for the failure of our initial attempt to build a working CSSM

inference system. In hindsight, it is obvious that both aspects have

an impact. However, it had not been anticipated how large this

impact is in comparison to other modeling decisions. Indeed, the

analysis in Sec. 3.3.2 shows that the particle filter is not very well

suited for state estimation in CSSMs. As outlined in Sec. 2.3 we

think the reason is that CSSM state spaces are essentially non-

metric. It is interesting that, while present research on activity and

intention recognition unanimously uses particle filters if approx-

imate methods are applied (cp. Sec. 1.3.2), only in one case (study

21, [8]) a potential mismatch between this approximation method

and the application domain of categorical state spaces is indicated.

Our results strongly confirm these findings.

In this context, it was interesting to see that replacing

continuous by discrete timing did not have any major impact on

performance. The initial assumption was that continuous timing,

allowing a larger set of durations, would increase the number of

states with significant weight and therefore have a negative
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Figure 9. Estimating the probability of state properties. Sample
values for configuration (CMf, O21s , fd, L1, tc ), plotted for each
subject individually.
doi:10.1371/journal.pone.0109381.g009
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performance. This effect could not be established. We do not think

that this means the timing model is irrelevant. Our conclusion is

rather that in the domain we consider a set of empirically observed

durations indeed can be successfully approximated by a careful

selection of class-specific duration models, using for instance a

process such as outlined in Appendix S4.

The finding that heuristics based on goal distance improve

performance supports our hypothesis in this direction. It is,

however, somewhat discouraging to see that goal distance

heuristics seemingly have to be very good to have a meaningful

effect (cp. Sec. 3.3.3). Specifically, ‘‘intuitive recipes’’ seem to be

essentially of no value, except when observations are very

unreliable. The computation of exhaustive goal distances is clearly

not possible for large state spaces. In addition, as Fig. 4 (top right)

and Fig. S9 imply, exhaustive goal distances have essentially no

effect when observations are already very good. From a certain

perspective, this should be no surprise: All observed action

sequences used more actions than strictly necessary – meaning that

goal distance (at least the naive version used in this study) can not

be the optimal predictor as it consistently underestimates sequence

length. Eventually it points in the wrong direction and observa-

tions have to correct this. This means that further research on

suitable action selection heuristics and also on the combination of

different heuristics using models such as outlined in Appendix S2

are required.

As conclusion to this discussion, we have seen that all modeling

aspects do have a significant and relevant impact on system

performance. This means that building CSSM models which give

good results in inference requires a significant amount of care in

setting up the different model components. As experience with the

method is gathered, this modeling process may become increas-

ingly routine. However, it remains a major challenge for a CSSM-

based approach. For the CSSM method to be accepted on a

broader scale, the availability of an efficient design methodology is

an important prerequisite. This needs to be addressed in future

research.

4.4 CSSM assets
As outlined in Sec. 1.1, CSSMs are considered to have certain

benefits considering reusability and flexibility. In this study, we

have gained experience with two specific aspects:

Exchange of observation models. The OL observation

model uses a sensor setup quite different from the Oks models.

While the Oks models use the Z-observation component

(actions), the OL model uses the W component (providing

observations for the location slots of two domain objects). A

switch between the two types of observation models required

no change at the level of the system model. In general, a

CSSM system model will accommodate any observation

model that represents observations of its state variables (here

we refer to the complete X state, not just the LTS

component).

As adding state variables to a CSSM model does not seem to

have a negative effect (see discussion above, Sec. 4.2), CSSM

methods allow to use rich state spaces that accommodate a

wide variety of observation models.

Estimating expectations on state. Our findings con-

cerning the estimation of state predicates (Sec. 3.4) provide

anecdotal evidence to the claim that CSSM models allow to

compute the expectation of arbitrary functions on state. For

the predicates we used, we found a high level of estimation

accuracy. This again suggests that large state spaces can

efficiently be handled in CSSM models.

As for sensor models, this also means that a given CSSM

model can be reused across different expectation estimation

tasks, as long as the function for which to estimate the

expectation can be formulated in terms of the state variables

present in the CSSM model.

However, as this test has looked only at a few chosen target

expectations, we do not know how reliable these estimates will

be in general. In fact, we observed instances of substantial

estimation errors (Fig. 9, predicate ‘‘Danger’’, subject S3). It is

not clear in how far this error is the correct estimate given the

sensor data, or if it is a symptom of state space impoverish-

ment. (As the marginal filter discards state when pruning, it

may share this symptom with the particle filter.) To answer

this, further research on the behavior of the marginal filter is

required in order to understand how errors caused by the

approximation method express themselves in the resulting

estimates.

To summarize, we believe our findings regarding these two

aspects indeed give some justification to the claim that CSSM

models tend to provide a certain level of reusability that is not as

easily accessible in methods that do not employ symbolic model

definition methods. This reusability property of CSSMs is

fundamentally connected with the fact that it is very easy to add

state variables to a CSSM model – which on the other hand

quickly creates very large state spaces. From the inferential

viewpoint, large state spaces are a liability. From the viewpoint of

generalizability, they are an asset. Our study suggests that it is

possible to benefit from this asset without being overwhelmed by

the liability it incurs.

There are two more potential assets of CSSMs that have not

been considered in this study:

N Easy domain development and use of prior knowledge. CSSMs

are based on symbolic representations of generative causal

connections between states that describe how new states are

computed from old states. It has been claimed that such

generative causal structures are ‘‘more accessible to the mind’’

([41], p. 21) than mere associations. This suggests that CSSMs

might be particularly suited to capture expert knowledge on

activity structures within a domain model. Possibly such

models can even be created using only prior knowledge.

However, an analysis of this topic has not been part of this

study.

N On the one hand, symbolic prior knowledge has clearly

influenced the underlying domain structure: domain objects,

locations, state variables, and actions. On the other hand,

video recordings of the test subjects’ task execution have been

used to identify the concrete causal structure. From our study

we therefore can not conclude if it is possible to arrive at a

reasonable domain model without any observational data.

Then again it is not certain that it is mandatory to completely

dispense with observation data. Already a substantial reduction

in the amount of observational data required might be a

significant benefit for model development. At the symbolic

level already a single example allows to infer the existence of

certain causal connection; it is not necessary to count

frequencies.

N Reusability across different applications. This study has

considered a specific application setting; investigating the

reuse of individual modeling components in different applica-

tion domains has not been part of the study design. While it

seems reasonable that a symbolic model should provide more

reusability across different application settings than a para-

metric subsymbolic model, our study provides no data that
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confirms this conjecture (or provides counter-evidence). This

very interesting topic – it would arguable be the most attractive

feature of CSSM-based approaches – remains an important

research questions for future investigations.

4.5 Interleaved and erroneous actions
Our study has not explicitly considered the ability of CSSMs to

cope with (or discriminate between) interleaved and erroneous

actions. However, as these phenomena are a cause for consider-

able concerns in approaches that are based on plan libraries, such

as [42], we think it is of interest to discuss briefly how this topic

affects CSSM-based approaches. There are two questions: (i) can

activity sequences containing erroneous actions (or actions

pertaining to other goals) be reconstructed correctly and (ii) can

specific actions in a reconstructed sequence be correctly labeled as

erroneous or belonging to a different goal.

With respect to the first question: a CSSM is by design able to

reconstruct any action sequence it encounters: in a given state,

every action whose preconditions are met is considered as next

activity – this encompasses actions that make progress towards a

given goal as well as actions that move away from that goal (or that

may even reach states from which it is impossible to reach the

goal). Thus, since CSSMs allow any causally possible action

sequence, CSSMs support the reconstruction of action sequences

produced by arbitrary interleaving of composite activities and

arbitrary errors. This is essentially a consequence of using explicit

states (cf. Sec. 1.2 and Appendix S2).

The second question concerns how to discriminate between

interleaved actions and ‘‘errors’’ – or, less judgmental, how to

discriminate between more or less efficient actions. This is

eventually based on comparing the likelihoods of two CSSM

models e (the error model) and g (the goal model), using the same

symbolic domain model but different action selection heuristics. A

less informed (or possibly misleading) selection strategy fe is used

for the error model, the goal model uses a better informed strategy

fg (for instance, goal distance). An action is labeled as ‘‘inefficient’’

or ‘‘efficient’’ according to which of the two models produces a

higher likelihood for the action (a similar idea has been described

in [43]). This also works for multiple goals, which are simply

conjunctions of individual goals. Such joint goals will naturally

lead to interleaved action sequences in CSSM models. The most

natural way to capture this transition between different action

selection regimes is to allow the G variable to vary over time (cp.

Sec. 2.2.1). In the case that enumerating all potential interleaved

goals is not desired or infeasible, another option is to flag actions

that do not make progress towards the goal, but which do not

(significantly) increase goal distance, as belonging to some

interleaved activity. Again, the main challenge will be to get the

heuristics right.

Incidentally, in the scenario considered in our study, the

subgoals ‘‘cook meal’’ and ‘‘set table’’ allowed for a natural

interleaving (which also could be found in the observation data), as

well as the subgoals ‘‘not hungry’’ and ‘‘not thirsty’’. Also, the final

‘‘clean up’’ sequence did provide for a substantial interleaving of

different subgoals.

Since erroneous and interleaved actions are captured by CSSM

approaches at the conceptual as well as the algorithmic level, we

consider it legitimate to focus on the feasibility of CSSM-based

inference in this study. However, we note that for a given

application the concrete definition of fe and fg are not

immediately obvious in general – our own results show that a

useful definition of fg can not be reduced to intuitive recipes.

Indeed, as discussed in Sec. 1.2, research on action selection

strategies is an active research topic in human behavior modeling.

While this is not a problem specific to CSSM-based models, but

rather pertaining to all activity and intention recognition

approaches, it is nevertheless a potential source of uncertainty

and performance degradation.

4.6 Model development
Quantifying the effort spent on developing the CSSM model

used in this study is not easy, as during model development also a

substantial amount of method development has taken place.

Assuming all methods (construction of timing models, action

selection heuristics, inference engines, observation model con-

struction) to be in place and assuming causally correct annotations

to be available, CSSM model development is in fact a quite

straightforward process. Building the symbolic model for the

scenario used in this study by employing the iterative approach

outlined in Appendix S4 took about one week for an experienced

model engineer.

In contrast to this, the interleaved procedures of annotating the

observation sequences, validating the causal correctness of the

annotation sequences, and establishing the corresponding aLTS

for these annotations took several months. One reason for this is

that in the beginning comparatively inexperienced students

performed the annotation process, based on an initial misjudg-

ment of the complexity and importance of the ground truth

annotation. Only half way through the annotation process we

became aware of the fact that even in seemingly well understood

everyday domains the production of causally correct annotations

requires careful ontology design and is, in fact, that process which

produces the main bulk of insight into the causal structure of the

domain. It is therefore, in hindsight, quite surprising that in

current research on activity and intention recognition the process

of getting the annotations right is usually absent from the method

description. Indeed, we found other publicly available sets of

observation data on everyday activities – such as [31] – as lacking

in annotation correctness as our own initial attempts. While there

is some work on annotation methodology [29,44,45], none is

concerned with causally correct annotations. We think that

research domains such as content analysis and business process

analysis, which are also concerned with reliably and reproducibly

annotating real world phenomena with a set of formal notations,

might provide valuable tools and methods for creating dependable

annotations (see for instance [46] and [47]).

Considering the iLTS model, we found anecdotal evidence that

(inexperienced) model engineers are prone to modeling errors such

as deadlocks, livelocks, and similar phenomena. The possibility of

such errors to occur is a natural consequence of the innate

capabilities of CSSMs to represent the interleaved execution of

multiple threads of activity. In such settings, locks are typically

used to synchronize threads [48]. Getting lock management wrong

then results in deadlocks or livelocks (or multiple persons sitting on

the same chair). We note that the iLTS model produces 405,324
states with infinite goal distance, i. e. livelocks: regions in the iLTS

graph that can be entered from the initial state, but which provide

no success state and no exit. It therefore seems advisable to employ

established methods of software engineering such as code analysis

[49] and model checking [50] to avoid at least the detectable

modeling errors from the iLTS model.

As discussed in Sec. 4.3, the success of CSSM-based inference

depends on all modeling factors, not only the iLTS model. In so

far, the use of CSSMs raises a new challenge for model

engineering, as they combine symbolic, algorithmic modeling

aspects with probabilistic and statistical reasoning. In developing
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CSSM models, it is necessary to understand both domains of

modeling, as well as the interactions between them.

4.7 Limitations of the study
Performance values (such as accuracy) have been reported for

comparison of different models within this study. We do not

consider them as indicators for prospective performance at an

absolute level for the following reasons:

N The observation models have used a very simple approach; no

detailed modeling of, for instance, motion trajectories has been

attempted. Therefore, performance results may be overly

pessimistic. On the other hand, use of scrambling to make sure

observations fulfill the i.i.d. property is not available for real

world settings. This may lead to performance to be too

optimistic.

N As baseline and CSSM equally profit from both effects, model

comparisons should be valid. But it is not clear in how far the

absolute performance is biased.

N As explained in Sec. 2.1.2, practical methodological con-

straints have inhibited the use of procedures for establishing

reliable absolute performance results, such as cross-validation.

This means the performance data we used for comparison

purposes within this study can not be used for inferring

statements on potential absolute performance or for compar-

ison with performance results reported in other studies.

(However, considering the substantial variance in experimental

procedures between different studies, we doubt that a

meaningful comparison would have been possible anyway.)

As discussed previously, neither the performance in discrimi-

nating between different goals was considered in this study nor the

ability to detect erroneous actions or interleaved activities.

Although the observed action sequences obviously contained

suboptimal actions (all observed action sequences were substan-

tially longer than the goal distance computed for the starting state),

no attempt was made to flag individual actions in the estimated

sequence as ‘‘efficient’’ or ‘‘inefficient’’. Also, although there were

interleaved composite activities (setting the table, cooking the

meal), it was not attempted to label the estimated action with the

composite activity they potentially belong to.

These questions, as well as the discrimination between different

goals, can most naturally be solved by appropriate use of the G

variable (cf. Sec. 4.5 and 2.2.1): different values of G select

different action selection regimes, so that from the observed

actions the most probable G can be estimated via its effect on the

action selection c. While this is conceptually straightforward and

the appropriate approach, this study provides no data that allows a

statement on the practical viability and the performance to expect.

A further limitation concerns the coarse-grained estimation

target (16 classes), which is effectively a consequence of the

baseline comparison approach and the low-resolution observation

model (cf. Sec. 2.4.2). The Oks models only allow to discriminate

between action classes. It is therefore impossible to reconstruct, for

instance, the exact sequence in which n items have been cleaned

from the observation of n ‘‘wash’’ actions. Any permutation is

possible given the action selection heuristics and observations. This

means the model used in this study provides a level of detail that is

not resolvable by observation models. From the viewpoint of

model reusability (see Sec. 4.8 below), this ‘‘latent detail’’ may be

actually desirable. However, this study gives no information on the

question whether latent detail indeed can be made accessible by

other observation models. (In comparison to previous research,

where a median number of 6 target classes has been used, see Sec.

1.3.2, the 16 targets in this study are in fact quite fine grained.)

Finally, this study focuses on a very specific application domain

– human activity recognition. Concerning the CSSM method, this

may induce a unnecessary conceptual restriction, as the method is

applicable to sequential state estimation in any non-deterministic

dynamic system that lends itself to a symbolic description.

4.8 Conclusion
CSSMs are a conceptually interesting approach to defining state

space models for sequential state estimation in dynamic systems,

where the system model is built from symbolic prior knowledge on

the causal – computational – structure of actions. An interesting

application domain for this approach is tracking human activities.

The use of this approach makes it easy to define very detailed state

models, which produce very large, usually categorical state spaces.

Concerning prior research, it is not clear whether successful

inference in these environments is possible outside of very simple

scenarios. Existing methods for non-linear non-Gaussian system

dynamics, such as particle filters, may be incompatible with the

non-metric structure of the state space.

In this paper, we have presented a unified view on the different

instances of the CSSM method, based on the definition of latently

infinite LTS using computational action languages and a

probabilistic semantics for the resulting model. We regard this in

itself as an important contribution, as it should help researchers to

relate the different approaches under this common view.

The results of the empirical study imply that scenarios may be

easily several orders of magnitude larger than have been

considered in existing studies on CSSM. Our results further

indicate that it is indeed possible to use the resulting models for

inference without compromising performance in comparison to

typical systems built from training data. This is encouraging for

further research on CSSMs as it shows that the method is

potentially applicable outside the limitations of confined labora-

tory experiments. We have also shown that in order to achieve this

performance, a range of modeling parameters has to be carefully

adjusted, as all of these parameters have a significant and

substantial impact on inference performance. This is a very

important result, as these effects have so far not been discussed in

research on CSSMs. (One explanation for this is that in the limited

scenarios investigated so far the effect of these factors has simply

been not significant and therefore been overlooked by the

investigators.) Specifically, we have found sequential Monte-Carlo

methods (i. e., particle filter) to be not suitable for approximate

inference in CSSMs; a fact that has not been discussed in present

CSSM research (again, this may be due to the effect being not

visible in small scenarios). Instead we propose use of a marginal

filter, which previously has been shown to improve performance in

state estimation based on plan libraries [8].

In addition to these results, the study provides a blueprint for a

systematic CSSM model construction that should allow other

researchers to reproduce our results and to apply the CSSM

method systematically to other scenarios.

Nevertheless, this study is only a first step towards making

CSSMs and latently infinite LTS applicable to real world activity

recognition settings. The following points seem to be of prime

importance as next steps:

N Improving observation model and system model.

N As shown in Sec. 3.3.1, choice of observation model had the

strongest impact on performance. Considering the rather

simple approach used in this study, the obvious consequence is

to experiment with more refined observation models. Dense
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observations [19] as well a more detailed modeling of motion

trajectories are immediate options; as is the use of camera-

based tracking. The first step should be to ensure i.i.d.

observations without requiring to resort to scrambling as this

clearly is infeasible in real-world applications. The next step is

to analyze in how far additional model detail becomes

resolvable through the use of improved observations.

N With respect to the system model, it is important to understand

which effectively computable action selection heuristics (having

the second largest effect) are really helpful in improving

performance.

N Exploiting G for intention recognition and error detection.

N As discussed in Sec. 4.7, the conceptual approach is

straightforward. Indeed, for laboratory examples this method

has already been shown to work [1, 5]. Objective of a further

study on this question should be to investigate how to apply

this method at the practical level using a state space of realistic

complexity and how large goal sets can be handled.

N Analyze model construction methodology and use of prior

knowledge.

N A strong point claimed for CSSMs is the ability to replace

training data by prior knowledge. So far, it has not been shown

conclusively that this assumption really holds – there has been

no study looking at this question. In order to assess the cost and

benefit of CSSM-based approaches to model construction in

comparison to other methods, it is necessary to understand

which amount of training data and which amount of

annotation effort really can be replaced by prior knowledge.

N In this context it is also of interest to analyze in how far

symbolic models can be reconstructed from activity traces, a

topic considered in process mining [51], learning of planning

domains [52], and also in web mining [53]. While still

requiring training data, such methods possibly can produce

candidate models for review, refinement, and generalization by

a modeling expert, thereby simplifying the task of model

construction.

N Analyze model reusability. Eventually, exchange of observa-

tion models, flexible state predicates, plan-synthesis, and rich

state spaces are all aspects of model reusability. It needs to be

shown that these reusability properties potentially provided by

CSSMs – which we have found to exist in two instances – are

indeed present in general and of practical relevance.

When addressing these questions, it may become necessary to

further improve the implementation of the inference method in

order to keep inference tractable. This might include a more

efficient representation of states (using, e.g. binary decision

diagrams [50] instead of tries as dictionaries, see Sec. 4.2.1 of

Appendix S4), the support of continuous domains (employing

Rao-Blackwellization [54]), or the use of approximate state

representations, for instance by ignoring higher order interactions

[55].

Supporting Information

Figure S1 Physical setup of experiment. Left: Participant

sensor instrumentation. Right: Stage and props used in experi-

ment.

(TIFF)

Figure S2 Effect of scrambling on (expected) log
probability of observations vs. normalized relative run
position. Red lines are computed by locally weighted regression

using the loess function in R. Right plot: detail of left plot.

Consider a run of d observations yt,ytz1, . . . ,ytzk, . . . ,ytz(d{1),

all labeled with class c. The relative position of observation ytzk in

this run is k. Relative positions range from 0 to d{1. The

normalized relative position of observation ytzk is

rpos (ytzk) :~(kz0:5)=d. Relative run positions are values

between 0 and 1. Adding the term 0:5 puts the normalized

relative position of the run’s center (with relative position at

(d{1)=2) at 0:5. The figure shows a scatterplot of the log

probabilities of the given observations (using the model

p(ytDc)~N(ytDmc,Sc)) versus their normalized relative run posi-

tions. The local regression curves, representing approximations to

the expected values, show the centering effect proposed in Sec.

4.1.3 of Appendix S4. (A preliminary analysis of individual actions

suggests this effect to be more prominent in actions with longer

duration, in agreement with this hypothesis.). The figure suggests

that there is an influence of the squared distance between an

observations relative position and the run center, given by

sqd(yt) :~(rpos(yt){0:5)2, and the expected probability. This

is indeed the case: a linear model for predicting log p(ytDc) from

sqd(yt) shows a highly significant influence (pv0:001), while this

influence can not be established for scrambled data (p~0:924).

However, sqd(yt) explains only 2.2% in log p(yt) variance – it is

therefore quite interesting that scrambling has such a massive

influence on accuracy (this could possibly be due to the cumulative

effect – all observations at the start of a run are affected –, and the

fact that a few percentage points in logarithmic scale may

represent a factor of two or more in linear scale).

(TIFF)

Figure S3 Frequencies of action classes in empirical
data. WASH is the most frequent activity with a proportion of

19.8%, giving an uninformed baseline accuracy of :198.

(TIFF)

Figure S4 Preprocessed observations (principal compo-
nents factor loadings) and ground truth. The black line

shows the ground truth (action class, 16 classes) for each subject.

The heatmap gives the factor loadings for the 21 prinicpal

components used in O21, one component per row (color coding:

red~{33, white~0, blue~z33).

(TIFF)

Figure S5 Scaled confusion matrices for different
inference methods. Columns sum to one, diagonal thus gives

sensitivity. Class labels sorted by number of action instances for

class.

(TIFF)

Figure S6 Details for action class estimates produced
by baseline classifiers and CSSM models. Comparison of

the action class estimate for the different classifier grouped by

subject. On the left side the results of the QDA, the forward

filtered HMM (HMMf) and marginal filter (CMf) are illustrated.

The right side gives the MAP (CMv) sequence as well as the

smoothed estimates of HMM (HMMs) and marginal filter (CMs).

(TIFF)

Figure S7 Comparison of different performance met-
rics. Each box shows a different distance measure, within a box

the specific measure is used to compare the different Mode factors.

The performance gives the distance relative to the worst inference

method (always QDA), smaller means better. The figure provides

the results of different performance metrics. Levenshtein edit

distance has unit cost for insertion, deletion, and substitution

operations. pe is the error probability, given by 1{Accuracy. x is

the difference in numbers of actions, given by x~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(O{E)2=E

q
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where O is the observed number of actions (the number of actions

in the estimation sequence) and E the expected number of actions

(as given by the ground truth). x represents the intuition that out-

of-sequence actions, as discussed in Sec. 2.4.2, will increase the

number of runs in the estimated action sequence. D :~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

ezx2
p

is an Euclidian distance interpretation of pe and x. DTW is the

dynamic time warping distance, computed based on a 0-1-distance

for sequence elements. In the upper row of the figure the values of

each metric m have been divided by the maximum value for m, in

the lower row the values for each subject s in each metric m have

been divided by the maximum value for s in m. To allow a better

assessment of the separation of the different Method levels afforded

by these measures, data points for different subjects within a

method have been connected by lines. In order to visually

untangle the resulting plots, subjects have been sorted be mean

DTW value. D and DTW give a clearer separation of the four

groups fCMv , CMsg, fCMf, HMMsg, fHMMfg, and

fQDAg than is given by pe resp. Levenshtein distance.

Specifically, in DTW CMf performs at the same level as HMMs.
In other words: if the temporal structure is taken into account for

performance evaluation, by using measures such as D or DTW,

the performance advantage of CSSMs over HMMs is even more

prominent than indicated by accuracy alone.

(TIFF)

Figure S8 Complete accuracy data for 432 CSSM model
configurations. Details for the O21s configurations marked by

triangles are shown in Fig. 5. The orange triangles mark the CM
configurations used in testing H1.

(TIFF)

Figure S9 Interactions between Observations, Distance, and
Weight.
(TIFF)

Figure S10 Interactions between Mode, Distance, and
Weight.
(TIFF)

Figure S11 Distribution of median relative state counts
in filtering runs. Left and center plots: empirical distribution

function and density estimate of iLTS states (S states) per unit

(SpU). Right plot: empirical distribution function of inference

states (X states) per unit (XpU).

(TIFF)

Figure S12 Jensen Shannon distance and accuracies for
different values for Target and Distance. Plots are based on

configuration (CM , O21s , L ). Details for the bottom right

configuration (CMf, O21s , fd , L1 , tc) are shown in Fig. 9.

(TIFF)

Table S1 Task script and fh distance values.

(PDF)

Table S2 Basic properties of observed action sequenc-
es. Steps: number of actions in sequence (641 in total),

Plan.Length (549 in total) ignores actions without effect (‘‘wait’’).

Frames, Duration: sequence duration in frames (6647 in total) and

seconds. W , p: statistic and p-value for Shapiro-Wilk normality

test (H0 = data has normal distribution, n~7). There is no

significant correlation between temporal length of an action

sequence (Duration) and the number of action it contains (Steps)
(Pearson’s r, p~:98). Use of Pearson’s r justified by normality of

data, cf. results of Shapiro-Wilk tests.

(PDF)

Table S3 Action sequence of subject S1 (aLTS annota-
tions).

(PDF)

Table S4 Domain objects and slots. The domain objects

and their slots. All slots have boolean value domains with two

exceptions:

N available(hands) is an integer. The actions implement the

constraint 0ƒ available(hands)ƒ2.

N location(object) is a symbolic value. Allowed values for the

different objects are given in Table S5 (these constraints are

again implemented by the actions).

(PDF)

Table S5 Value domains of location slot by domain
object. (1152000 potential combinations).

(PDF)

Table S6 Finding the distribution for pooled action
durations. Finding the distribution for pooled action durations

(n~641). LL = log-likelihood of observed durations under

corresponding parametric model. D and p are statistic and p-

value for the Kolmogorov-Smirnov test with the null that observed

data has been drawn from parametric distribution. (As the

parameters have been estimated from the sample data, the

assumptions of the KS test are violated. Nevertheless the p-values

obtained agree with the log-likelihood.).

(PDF)

Table S7 Duration models selected for action classes.

(PDF)

Table S8 Comparing performance of different CSSM
model configurations to HMM model. Comparing perfor-

mance of different CSSM model configurations to HMM model,

using paired t-test and Wilcoxon signed rank tests (CM, O21s, L1).

For all t-tests, df ~6. pSW gives the p-value for the Shapiro-Wilk

normality test.

(PDF)

Table S9 Significance of effects of CSSM configuration
factors on Accuracy. Significance of effects of CSSM

configuration factors on Accuracy, using 216 CMf/CPf configu-

rations. (2 modes, 3 observations, 3 distances, 6 weights, 2

durations.).

(PDF)

Data S1 Observation model and pre-processed sensor
data.

(ZIP)

Appendix S1 Notational conventions and abbreviations.

(PDF)

Appendix S2 Computational state space models.

(PDF)

Appendix S3 Annotation procedure and annotation
ontology.

(PDF)

Appendix S4 Detailed model description.

(PDF)
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