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Regardless of the eventual site of disease, the point of entry for Mycobacterium

tuberculosis (M.tb) is via the respiratory tract and tuberculosis (TB) remains primarily

a disease of the lungs. Immunological biomarkers detected from the respiratory

compartment may be of particular interest in understanding the complex immune

response to M.tb infection and may more accurately reflect disease activity than those

seen in peripheral samples. Studies in humans and a variety of animal models have

shown that biomarkers detected in response to mycobacterial challenge are highly

localized, with signals seen in respiratory samples that are absent from the peripheral

blood. Increased understanding of the role of pulmonary specific biomarkers may prove

particularly valuable in the field of TB vaccines. Here, development of vaccine candidates

is hampered by the lack of defined correlates of protection (COPs). Assessing vaccine

immunogenicity in humans has primarily focussed on detecting these potential markers

of protection in peripheral blood. However, further understanding of the importance of

local pulmonary immune responses suggests alternative approaches may be necessary.

For example, non-circulating tissue resident memory T cells (TRM) play a key role in

host mycobacterial defenses and detecting their associated biomarkers can only be

achieved by interrogating respiratory samples such as bronchoalveolar lavage fluid or

tissue biopsies. Here, we review what is known about pulmonary specific immunological

biomarkers and discuss potential applications and further research needs.
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INTRODUCTION

Tuberculosis (TB) remains one of the top ten causes of death worldwide. Around a quarter of the
world’s population are estimated to be infected with Mycobacterium tuberculosis (M.tb) (1). The
World Health Organization’s (WHO) End TB Strategy has set the goals of reducing TB incidence
by 90% and TB deaths by 95% globally by 2035. If there is any chance of meeting these ambitious
targets, new tools to combat this devastating disease will be needed. These include an urgent need
for improved diagnostic tests, shorter treatment regimens and more effective vaccines (2).

The range of clinical phenotypes following M.tb exposure spans complete elimination of the
pathogen through immunologically contained latent infection to active TB disease (3). This
spectrum is governed by complex and incompletely understood interactions between the pathogen
and host innate and adaptive immune responses. Innate immune mechanisms within the lung
mucosa may be responsible for early clearance ofM.tb bacilli prior to T-cell sensitization in exposed
individuals who appear to be resistant toM.tb infection (4). Of those who do have presumed latent
M.tb infection (LTBI), 5–10% of immunocompetent individuals go on to develop TB disease in
their lifetime (5), with the remaining majority achieving immunological equipoise.
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Incomplete knowledge of the desired immune responses
needed to prevent either active disease or initial infection is one
of the key barriers to effective vaccine development (6). It is
well-characterized that a T-helper 1 (Th1) cell-mediated adaptive
immune response is required, but insufficient, for protection (7,
8). Likewise, whilst antigen-specific interferon gamma (IFN-γ)
plays a key role, the level of vaccine-induced IFN-γ in the blood
does not correlate with protection (9, 10). Understanding the host
immune responses that are needed to confer adequate protection
against M.tb would dramatically help in the development and
prioritization of vaccines that induce these putative responses.

An immunological biomarker is a measurable characteristic
of the immune system that can be assessed as an indicator
of normal immune function, disease process, or response to a
therapeutic intervention (11). Biomarkers of disease can be used
in diagnosis and disease monitoring. Vaccines aim to induce an
immunological response to prevent infection or reduce disease
severity, termed protection. Biomarkers that are believed to
correspond with this effect are termed immune correlates of
protection (COP) (12) and form the main focus of biomarkers
discussed in this review.

The majority of TB studies looking at biomarkers of
protection, both from disease and from infection, have focussed
on the peripheral blood compartment in humans and blood and
lymphoid organs in animal models. Regardless of the site of
active disease, the predominant route via whichM.tb bacilli enter
the body is via aerosol droplets that are deposited onto alveolar
surfaces of the lungs (4). Systemic immunity does not necessarily
reflect pulmonary immune responses in the bronchoalveolar
spaces at this site of entry for M.tb in humans. Cells of both
the innate (such as alveolar macrophages) and adaptive (such
as tissue resident memory cells) components of the pulmonary
immune system play an increasing recognized role that may be
interrogated in the search for markers of protection.

INNATE IMMUNITY WITHIN THE LUNG

Trained Immunity
Trained immunity refers to immunological memory within the
innate immune system, leading to an augmented response to
subsequent, often heterologous insults (13). Innate immune
memory is induced in animals after vaccination with BCG (14,
15) although the precise mechanisms via which this occurs are
still being studied. Studies of TB contacts show that despite high
levels of exposure, up to 30–50% of individuals do not become
infected with M.tb, as evidenced by non-reactive tuberculin
skin tests and negative IFN-γ release assay (IGRA) testing
(16). BCG vaccination correlates with this state of immune
protection, suggesting that BCG-potentiated innate immunity
may contribute to earlyM.tb clearance (17).

Given this, it is unclear why, in mice, BCG does not protect
againstM.tb in the first 14 days post-challenge (18). The kinetics
and role of the innate immune response need further study.
Controlled human infection models with serial mucosal and
systemic sampling allow us to define the kinetics of innate and
adaptive immunity and may help us understand this further.

Alveolar Macrophages
In CD4/CD8 T-cell knock out mice, subcutaneous BCG
vaccination induces lasting protective immunity within 7 days,
prior to any adaptive immune mechanisms (18). Cells from the
lungs of vaccinated mice show a higher proportion of tissue
resident macrophages (CD11b+F4/80+) compared to circulating
monocytes. Following an infection, or in this case immunization,
monocytes may differentiate into interstitial lung macrophages,
which then self-perpetuate within the pulmonary compartment.
This may represent a mechanism via which BCG induces innate
immune memory within the lung (18).

Respiratory viral infection has been found to induce immune
memory in lung resident mouse alveolar macrophages (AMs),
which go on to produce accelerated levels of detectable neutrophil
chemokines, such as CXCL1 and CXCL2 upon restimulation.
These trained AMs protect against secondary bacterial infection,
with a memory response that is not reliant on circulating
monocytes (19).

In a recent model using T-cell depleted mice, mucosal, but not
intramuscular, vaccination with an adenoviral-vectored vaccine
expressing the M.tb antigen 85A resulted in upregulation of
activation markers, such as MHC II, on alveolar and pulmonary
interstitial macrophages. This corresponded with reduced M.tb
burden after challenge and suggests that activated airway
macrophages may play an important role in early M.tb control
(20). Debate is ongoing about the precise role AM play in
M.tb control. AMs do not readily express pro-inflammatory
genes until 10 days after host M.tb infection, which may
allow early mycobacterial replication (21). AM-depleted mice
show defective granuloma formation, but increased recruitment
of other phagocytic and cytotoxic cells to the lungs, with
corresponding improvedM.tb clearance (22).

AM have been shown to leave the alveolar space and transport
M.tb to the lung interstitium in an IL-1 dependent manner,
proliferating within the lung to form aggregates (23). Whether
this represents the initiation of effective immunological control
or the first step inM.tb dissemination is not clear. Systemic BCG
immunization in mice has been shown to hasten this egress of
M.tb-infected AM from the alveoli into the lung interstititum,
increase attraction of monocyte-derived macrophages to the site
of infection and promote the early transfer of M.tb from AM to
other phagocytic cells (24). In humans, infant AM are less able
to control M.tb replication in vitro than adult AM, which may
partly explain their susceptibility to more severe, disseminated
forms of TB disease. Infant AM were found to express lower
levels of chemotactic cytokines including chemokine (C-X-C
motif) ligand 9 (CXCL9), suggesting that failure of AM to recruit
additional mononuclear cells to the site of infection may result in
failure of initialM.tb control (25).

Innate Lymphoid Cells
Innate lymphoid cells (ILCS) mediate protective immunity in a
variety of tissues, including the lungs. Activated ILCs proliferate
in the lungs of mice following mucosal BCG vaccination and lead
to increased levels of IFN-γ production (26).

Group 3 ILCs (ILC3s) have similar functionality to Th-
17 cells, including production of Il-17 and Il-22. In a human
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lung tissue explant model, ILC3s upregulate IL-22 and GM-
CSF following ex vivo M.tb infection (27) and IL-22 producing
ILCs have been shown to enhance phagolysosomal fusion
leading to mycobacterial growth inhibition (28). Inhibition of
phagolysosomal fusion is one of the key immune mechanisms
wherebyM.tb evades host immunity.

ILC3s proliferate in the lungs of M.tb infected mice, leading
to early alveolar macrophage accumulation. ILC knockout mice
showed loss of early AM-mediated M.tb control, which could
be rescued by adoptive cell transfer (ACT) of lung ILCs from
M.tb-infected control mice (29). ACT of ILC3s also prolonged
the survival of diabetic M.tb-infected mice, with increased IL-22
production resulting in reduced lung epithelial damage (30). Loss
of ILCs, in particular ILC3, leads to a decrease in AM recruitment
within the lung and subsequent higher mycobacterial burden
duringM.tb infection (29).

Distinct populations of CD103-expressing ILC2 and ILC3s
and CXCR5-expressing ILC3s have been identified in human
M.tb-infected lung tissue (29). CXCR5 signaling is essential in
the formation of inducible bronchus associated lymphoid tissue
(iBALT). iBALT is seen surrounding granuloma formation in
non-human primate (NHP) and humans with LTBI, but not TB
disease (31). iBALT proliferation in the lungs of mice lacking
lymph nodes and spleen may be sufficient to control M.tb
infection (32).

These studies suggest that ILC3s in particular may have a
protective role in early M.tb control, via CXCR5-dependant
iBALT formation and the production of IL-22 and IL-17. Mouse
models of intranasal BCG vaccination have shown a correlation
between protection and levels of IL-17 producing cells within the
lungs followingM.tb challenge (33).

Mucosal-Associated Invariant and γδ T
Cells
Mucosal-associated invariant T (MAIT) cells preferentially
reside in mucosal tissues, including the pulmonary mucosa.
They express pattern recognition receptors, conferring
innate immune function, and secrete IFN-γ following
stimulation. In humans and NHPs, MAIT cells are enriched
in the lungs and BAL fluid following M.tb infection and
NHP MAITs express activation markers such as CD69
following both M.tb challenge and intradermal (ID) BCG
vaccination (34, 35). In rhesus macaques, intravenous (IV)
BCG vaccination induces pulmonary MAIT expansion,
which corresponds with subsequent protection against
M.tb challenge (36). Following M.bovis infection, MAIT
cell deficient mice show higher bacterial colony forming
units (CFUs) at early time points compared to wild-type
mice (37), highlighting a potential role for MAITs in early
mycobacterial clearance.

γδ T-cells are defined by heterodimeric T-cell receptors
(TCRs) composed of γ and δ chains and are enriched in epithelial
and mucosal tissues, including lung alveoli. The majority
are activated in an MHC-independent manner and produce
cytotoxic granules and canonical pro-inflammatory cytokines,
including IFN-γ, TNF-α, and IL-17. Their activation results in

killing of M.tb infected macrophages (38). Following bacterial
infection, lung γδ T-cells in mice exhibit increased expression of
activation markers such as CD69 and CD25, and proliferate by
local expansion rather than recruitment from the periphery (39).
In NHPs, expansion of lung γδ T-cells by selective vaccination
reduces disease pathology and dissemination following M.tb
challenge (40).

ADAPTIVE PULMONARY IMMUNITY

Lung Tissue Resident Memory Cells
Tissue resident memory cells (TRM) represent a distinct subset
of lymphocytes. They share functional similarities with central
and effector memory T-cells, but remain situated within localized
tissue compartments and do not recirculate into the blood
stream. They have been demonstrated at sites including the
skin, intestines, urogenital tract, and lung mucosa (41–44). This
positioning at key anatomical barrier sites means that TRM can
respond rapidly to potential infective stimuli and lung TRM may
signify the first line of adaptive cellular defense against specific
respiratory pathogens, includingM.tb.

Due to the highly vascular nature of the lungs, distinguishing
genuine TRM, truly resident in the lung mucosa, from blood
lymphocytes that egress from the vasculature following a
stimulus such as infection, is difficult. Mouse models, using
techniques such as parabiosis and in vivo intravascular staining,
have confirmed that true lung TRM cells are identifiable and
do not re-enter the peripheral circulation, in comparison to
lymphoid memory T cells.

Many of the techniques employed in animal models to
delineate TRM from pulmonary vascular lymphocytes are not
feasible in humans but have been crucial in confirming that
biomarkers seen in humans correspond to TRM specific markers
identified in animals. Upregulation of CD69 is a key marker
of TRM activation at a variety of sites including the lung
and results in inhibition of sphingosine 1-phosphate-meditated
lymphocyte migration (45). Additionally, CD8+ TRM cells
express the αEβ7 integrin heterodimer, identified by CD103
marker staining (46). Other significant markers of lung TRM in
both human and animal models include PD-1, CD44, CXCR3,
and integrins including CD49a, CD11a, and VLA-4 (45), with
KLRG-1 and CD62L downregulated (47). CD4+ TRM form a
heterogeneous group, with some displaying an effector profile (T-
bet+) and others appearing more regulatory (Foxp3hi IL-10hi]. In
contrast, pulmonary CD8+ TRM cells appear more homogenous,
expressing predominantly Th1 cytokines (48).

The key importance of these cells in animal models of
respiratory infection has been shown in several studies. Inmurine
adoptive transfer studies, CXCR3hiCD4+ T-cells preferentially
localize to the lung parenchyma and are better at controlling
M.tb infection than their CX3CR1hiKLRG1hi equivalents which
remain within the vasculature (47). Intranasal immunization
of mice with a recombinant influenza A vaccine expressing
the PR8.p25 Ag85B epitope led to the development CD4+

TRM throughout the lung parenchyma. Persistence of these
cells following FTY720-induced intravascular lymphopaenia
indicates true tissue-resident memory status, without reliance
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on circulating cells, and was sufficient for protection against
subsequentM.tb challenge (49).

Route of vaccinationmay alter the magnitude and character of
the adaptive pulmonary immune response, but it is unclear if this
will necessarily lead to improved overall protective efficacy. For
example, airway mucosal boosting following parental priming
with the subunit vaccine candidate H56:CAF01 results in a
significant increase in pulmonary TRM and early local T-cell
responses, without conferring any additional protection against
M.tb challenge (50). Intramuscular vaccination of mice with
the adjuvanted subunit TB vaccine candidate ID-93 results
in a systemic, TH1-dominated immune response. In contrast,
following ID-93 intranasal immunization, a predominantly IL-
17A-producing, TH-17 response is seen; with an increase in
antigen specific CD4+ TRM in the lung and BAL fluid. Despite
these differences, the level of protection conferred was equal
across the different delivery methods (51). In a recent study,
protection conferred by intra-tracheal administration of the
fusion protein TB vaccine candidate, CysVac2, was associated
with the induction of higher levels of antigen-specific CD4+ lung
TRM, expressing IL-17, and RORγT (52).

While intradermal BCG vaccination is able to generate
antigen-specific pulmonary TRM in mice, mucosal BCG
vaccination produces increased numbers of both CD4+ and
CD8+ TRM and this corresponds with subsequent enhanced
protection against M.tb challenge (48, 53). Mucosal transfer
of sorted airway resident T-cells, in particular CD8+ TRM,
from mucosally BCG-vaccinated mice provided increased
protection against M.tb challenge in recipient mice (48).
Non-human primates immunized with intravenous BCG
were found to have significantly higher levels of CD69+

(with a subset of CD103+) lung parenchymal CD4+ T-
cells than intradermal or aerosol immunized animals and
this was associated with sterilizing immunity against M.tb
challenge (36).

These findings suggest that vaccination routes and strategies
which induce pulmonary CD4+ and CD8+ TRM may result
in superior levels of protection. This may be one reason why
levels of peripheral circulating antigen-specific T-cells do not
adequately correlate with protection. Biomarkers of TRM may
be useful as correlates of vaccine induced protection, but would
require a significant change in sampling methods to assess
vaccine efficacy.

Lung Mucosal Antibodies IgA
The role of the humoral immune system in TB control is
uncertain. In humans, M.tb infection induces M.tb-specific IgA,
as well as IgG, antibodies in BAL fluid, but their precise role
and level of interaction with M.tb at the mucosal level remains
unknown (54, 55).

Secretory Immunoglobulin A (sIgA) is the predominant
isotype in mucosal secretions and may contribute to protection.
Intranasal administration of purified human sIgA to mice leads
to increased M.tb clearance and improved disease control (56).
Knockout mice lacking the polymeric IgR receptor necessary for
IgA transport to the respiratory mucosa are more susceptible
to M.tb infection than wild-type mice (57). In a BCG challenge

model, IgA deficient mice are more susceptible to infection than
wild-type (58).

LINKING THE INNATE AND ADAPTIVE
IMMUNE SYSTEM

A functional mycobacterial growth inhibition assay (MGIA),
which measures the sum of the parts of the innate and adaptive
immune response, may be a useful tool to facilitate vaccine
development. Such a tool could also allow the interrogation of
potential COP by depletion studies using serum, peripheral blood
mononuclear cells (PBMCs) or other specific cell types. To date
such an assay has been optimized for use in whole blood and
PBMC (59, 60). Using mucosal samples in such an assay may
further identify lung specific protective mechanisms in future.

INTERROGATING PULMONARY MUCOSAL
IMMUNITY

Animal and human studies that focus on sampling the lung
mucosal compartment will improve our understanding of lung
mucosal immunity to M.tb. Parallel animal and human studies
would allow more detailed interrogation of these processes.
Delivery of vaccine candidates via aerosol routes has been shown
to induce specific mucosal immune components that can be
compared across species, with BAL samples from macaques
and humans following aerosol MVA85A showing increased
levels of antigen-specific cellular immune responses compared
to peripheral blood (61–63). Further detailed mechanistic
interrogation of lung-specific immunity is possible in the more
tractable murine model (64, 65).

Specific Challenges of Human Studies
The study of human lung immunity gives the opportunity to
interrogate the interaction between the host and M.tb bacilli at
the site of natural infection. However, significant barriers exist.
Obtaining high quality respiratory samples for immunological
analysis generally requires invasive sampling (see Figure 1).
The scarcity of these resources in areas with the highest
burdens of TB disease, coupled with the costs and ethical
considerations of invasive sampling, may explain the relative lack
of immunological studies focussing on the human pulmonary
microenvironment (4).

How best to sample the human pulmonary compartment
remains the subject of debate. Sputum (induced or spontaneous)
is often too contaminated, for example with upper airway
epithelial cells and microbes, to provide detailed immunological
analysis of the lower respiratory tract. Bronchoalveolar lavage
(BAL) can be used to obtain bronchoalveolar cells (66). Studies
comparing BAL cells to lung tissue biopsies in healthy controls
and TB patients suggest that BAL cells are a reasonable
representation of lung cellular composition (67). However, this
assumption may not hold true for HIV infected individuals,
where significant depletion of lung interstial CD4+ T cells
may occur despite relatively normal CD4+ T cells levels in
bronchoalveolar cells (68).
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FIGURE 1 | (A) Samples that can be obtained from the human pulmonary compartment from immunological interrogation. (B) Selected components of the

pulmonary mucosal immune system that may be involved in protection against Mycobacterium tuberculosis (M.tb). AM, alveolar macrophages; CD, cluster of

differentiation; CXCR, C-X-C chemokine receptor; FBC, follicular dendritic cell; GM-CSF, granulocyte-macrophage colony-stimulating factor; iBALT, inducible

bronchus-associated lymphoid tissue; IFN, interferon; ILC, innate lymphoid cells; IM, interstitial macrophages; IL, interleukin; KLRG, killer-cell lectin like receptor G;

MAIT, mucosal-associated invariant T-cells; PD, programmed cell death protein; sIgA, secretory immunoglobulin A; TCR, T-cell receptor; TNF, tumor necrosis factor;

TRM, tissue-resident memory T-cell. Created with BioRender.com.

Where comparative data does exist, it suggest there is a
significant difference in immunological activity and therefore
possible biomarkers of disease and protection in the lungs
compared to the peripheral blood. Schwander et al. found
compartmentalized markers of active TB disease, with
significantly increased levels of activated T lymphocytes
(CD69+ HLA DR +) seen in bronchoalveolar cells of patients
with active TB compared to healthy controls, whereas in PBMCs
there was no difference across groups (69). PBMC in TB patients
are hyporesponsive, with respect to both frequency of IFN-γ
producing cells and DNA synthesis, to both mycobacterial
and non-mycobacterial antigens compared to healthy subjects.
Conversely, bronchoalveolar cells from affected lung segments
in TB patients show increased responses to mycobacterial
antigens, suggesting significant localization of antigen–specific
cells within the affected lungs during active pulmonary
TB (70).

Pulmonary TB disease is characterized by an enhancement of
local Th1-mediated immunity, with increased IL-12 and IFN-
γ production within affected lung segments (70). Despite this
apparently functional local Th1-mediated immune response,
there is clearly failure to control M.tb in those with active

disease. Suppressive cytokines, including IL-4, TGF-β and IL-
10, are increased in bronchoalveolar cell samples of active
TB compared with healthy controls (71) and may represent
distinct local immunosuppressivemechanisms that interfere with
Th1-mediated effectors in the bronchoalveolar environment.
One difficulty in studying the respiratory mucosal immune
response to M.tb infection in humans is the inability to
define precisely the time of infection. Due to the varying
clinical course and potential for latency, active disease may
only be diagnosed months or years after the point of
infection. In other diseases, such as influenza, malaria and
typhoid, controlled human infection models (CHIMs) have
been used to interrogate the immune response and can also
be used to evaluate vaccine efficacy. Treatment for active TB
disease requires a lengthy combination of potentially toxic
medications, and proof of definitive cure may not be possible.
For these reasons, a CHIM with M.tb would not be ethical.
However, use of alternative mycobacterial models to mimic
M.tb infection are being explored. For example, BCG may be
used as a surrogate, as it does not cause active disease in
immunocompetent humans but is a live replicating mycobacteria
that stimulates an immune response. Interrogation of the
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pulmonary mucosal immune response following a defined time
point infection with BCG may lead to greater understanding of
key immunological mechanisms, in particular in the early stages
of infection.

Bronchoscopic instillation of BCG into lung segments of
healthy, HIV-negative participants in South Africa with a
range of TB phenotypes was shown to be safe and resulted
in changes to differentially expressed genes and proteomics
in the BAL fluid which were not detectable in the blood,
suggesting a highly localized response (72). Studies in our
group are ongoing to define the human innate and adaptive
immune response to a defined time point challenge with
aerosol BCG, and specifically comparing the peripheral and
pulmonary compartment (Clinical trials.gov/NCT03912207).
Parallel ongoing studies in non-human primates will add value to
this work.

DISCUSSION

Growing evidence shows that immunological responses are
compartmentalized and biomarkers present in the peripheral
blood may be poorly representative of important, local effects
within the lungs. Innate, trained and adaptive components
of the pulmonary immune system are likely to play an
interconnected role in protection, with distinct features of lung
mucosal immunity such as alveolar macrophages, BALT and
TRM all warranting further investigation. The characterization
of these immunological responses at the natural site of M.tb
infection is of paramount importance, both in to increase our
understanding of pathogenesis and more specifically to aid
rational vaccine development.

Pre-clinical animal models play a key role in defining
the pulmonary immune response to both M.tb and systemic
and mucosally-delivered TB vaccines. Carefully designed small
studies in humans can complement and add to these pre-
clinical studies. Interrogating the initial stages ofM.tb immunity
in human lungs, for example in healthy household contacts,
would have the potential to distinguish biomarkers of protective

immunity (COP) at the site of initial host contact with M.tb.
Logistical and ethical difficulties in obtaining invasive human

pulmonary sample in these circumstances mean that more novel
investigative strategies may be needed.

Vaccine development in TB faces a paradox—a vaccine-
induced COP can only be validated in large field trials of an
effective vaccine. However, selection of which candidate vaccines
to take forward for such costly trials requires some level of
discrimination. As evidenced by the compartmentalized nature
of immunological biomarkers in both human and animal models,
peripheral blood biomarkers, whilst easier to obtain, may not be
the best choice of read-out for rational vaccine selection.

CHIMs in healthy volunteers, either with BCG or potentially
in future with rationally attenuated M.tb strains, may prove an
alternative strategy to delineate human immunological response
to a defined time point infection (73). Davids et al. human lung
challenge model showed that responses to in-vitro and in-vivo
PPD and BCG stimulation were significantly different, raising the
prospect that the study of vaccine-induced immune biomarkers
of protection may need to focus more on lung mycobacterial
challenges and sampling, rather than peripheral blood (72).
Given the considerable technical obstacles this approach faces,
it could prove more likely that if pulmonary correlates of
protection (or disease) are identified, systemic surrogate markers
may be identifiable that can then be more easily appraised in
future studies.
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